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Abstract. The aim of the article is to establish the structure of partial cone b-metric spaces over Banach
algebras. Topological and structural properties are investigated of the new spaces. We also define general-
ized Lipschitz mappings and give their application in fixed point theory. The results presented in this paper
substantially extend and strengthen the results of the literature. Few examples are provided to support
our conclusions and as an application we establish the existence and uniqueness of a solution to a class of
system of nonlinear integral equations.

1. Introduction

In 1994, Matthews [27] introduced the notion of a partial metric space. In this space, the usual metric is
replaced by a partial metric with the interesting property that the self-distance of any point of space may
not be zero. After introducing the idea of partial metric spaces, Matthews proved the partial metric version
of Banach fixed point theorem. Many authors followed his idea and gave fixed point theorems in this space
(see for example [2], [5], [20], [29]).

In 2007, the concept of cone metric spaces was introduced by Huang and Zhang [17] as a generalization
of metric spaces. The distance d(x, y) of two elements x and y in cone metric space X is defined to be a vector
in a Banach space E whereas in metric spaces the distance of two elements is defined to be a non-negative
real number.

Later in 2008, by omitting the assumption of normality of the cone, Rezapour and Hamlbarani [32],
obtained generalizations of the results of [17] and presented few examples to support the existence of
non-normal cones, which shows that the results in the setting of cone metric spaces are appropriate only
if the underlying cone is not necessarily normal. In this direction several authors further established fixed
point results in non-normal cone metric spaces (see, e.g., [4], [10], [13], [14], [15], [30], [31] and the references
therein).
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In 2011, the notion of cone b-metric spaces as a generalization of b-metric spaces and cone metric spaces
was studied by Hussain and Shah [19]. Afterwards, many authors have established fixed point results in
cone b-metric spaces the reader may refer ([3], [6]).

In 2013 Shukla S. [35], introduced the concept of partial b-metric spaces as a generalization of partial
metric and b-metric spaces. He also gave an analog to Banach contraction principle and Kannan type fixed
point result in such space is proved. Mustafa et al. [28] has obtained a modified version of ordered partial
b-metric spaces in the interest that each partial b-metric pb generates a b-metric dpb . They studied some
fixed point and common fixed point results for (ψ,ϕ)-weakly contractive mappings in the setup of ordered
partial b-metric spaces. However, Ge and Lin [16] revised the definition of topology in partial b-metric
space by giving a suitable counter example.

Very recently, Fernandez et al. [11] introduced the concept of partial b-cone metric space which is a
generalization of cone b-metric space and partial metric spaces. They also proved some properties of these
spaces and established some fixed point results for asymptotic regular maps in the setting of partial b-cone
metric space.

In recent research some authors have raised a problem dealing with the existence of fixed points of the
mappings in cone metric spaces and established an equivalence between some fixed point results in metric
and in cone metric spaces (topological vector space-valued) see ([7], [8]) and also between cone b-metric
spaces and b-metric spaces. They proved that any cone metric space (X, d) is equivalent to a usual metric
space (X, d∗), if the real-valued metric function d∗ is defined by a nonlinear scalarization function ξe (see [9])
or by a Minkowski functional qe (see [24]).

In order to generalize and to overcome these problems Liu and Xu [26] in 2013 introduced the notion of
cone metric space over Banach algebra by replacing the Banach space E by Banach algebra A which became
a milestone in the study of fixed point theory since one can prove that cone metric spaces over Banach
algebra are not equivalent to metric spaces in terms of the existence of the fixed points of the mappings.
They proved some fixed point theorems of generalized Lipschitz mappings with weaker conditions on
the generalized Lipschitz constant by restricting the contractive constants to be vectors and the relevant
multiplications to be vector ones instead of usual real constants and scalar multiplications. Subsequently
many authors established interesting and significant results in this space (see [11], [36]). Among these
generalizations is partial cone metric spaces over Banach algebra introduced by Fernandez et al. [12]
obtained by generalizing the partial metric spaces and cone metric spaces over Banach algebra which was
Selected for Young Scientist Award 2016, M.P., India.

In 2015 Huang H. et al. [18] introduced the concept of cone b-metric space over Banach algebra and
presented some common fixed point theorem of generalized Lipschitz mappings without normality of the
underlying solid cones. They provided an example to explain the non-equivalence of the fixed point result
between cone metric spaces over Banach algebra and cone b-metric space over Banach algebra. Reader may
also refer [34].

On the other hand in 1986, the study of compatible maps for metric spaces was initiated by Jungck [22]
and weakly compatible maps were firstly studied by Jungck and Rhoades in [23]. They proved some fixed
point theorems for set valued noncontinuous functions. Using the ideas of Jungck for compatible maps and
of weakly compatible maps of Jungck and Rhoades, from the setting of metric spaces Janković S. et al. [21]
extended the definitions to the setting of cone metric spaces without the normality property on the cone.

Throughout this paper we propose a generalization of partial cone b-metric called partial cone b-metric
spaces over Banach algebras, replacing Banach spaces by Banach algebras as the underlying spaces of
partial cone b-metric spaces. Topological and structural properties are investigated in the new structure.
We also define generalized Lipschitz mappings. With this modification, we shall obtain the existence and
uniqueness of the fixed point for such mappings in the new setting without assumption of normality. Our
results generalize and extend the recent result of [18] and [12]. Furthermore, an example is provided to
support our conclusions. In addition, we show that our results establish the existence and uniqueness of a
solution to a class of system of nonlinear integral equations.
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2. Preliminaries

Let us recall some notions which will be needed in the sequel.
Let A always be a real Banach algebra. That is, A is a real Banach space in which an operation of multipli-
cation is defined, subject to the following properties (for all x, y, z ∈ A, α ∈ R)

1. (xy)z = x(yz),

2. x(y + z) = xy + xz and (x + y)z = xz + yz,

3. α(xy) = (αx)y = x(αy),

4.
∥∥∥xy

∥∥∥ ≤ ‖x‖ ∥∥∥y
∥∥∥.

Throughout this paper, we shall assume that a Banach algebra has a unit (i.e., a multiplicative identity) e
such that ex = xe = x for all x ∈ A. An element x ∈ A is said to be invertible if there is an inverse element
y ∈ A such that xy = yx = e. The inverse of x is denoted by x−1. For more details, we refer the reader to [33].
The following proposition is given in [33].

Proposition 2.1. Let A be Banach algebra with a unit e, and x ∈ A. If the spectral radius ρ(x) of x is less than 1, i.e.

ρ(x) = lim
n→+∞

‖xn
‖

1
n = inf ‖xn

‖
1
n < 1.

then e − x is invertible. Actually,

(e − x)−1 =

∞∑
i=0

xi.

Remark 2.2. From [33] we see that the spectral radius ρ(x) of x satisfies ρ(x) ≤ ‖x‖ for all x ∈ A, where A is a Banach
algebra with a unit e.

Remark 2.3. (See [36]). In Proposition 2.1, if the condition ‘ρ(x) < 1’ is replaced by ‖x‖ ≤ 1, then the conclusion
remains true.

Remark 2.4. (See [36]). If ρ(x) < 1 then ‖xn
‖ → 0 (n→ +∞).

Now let us recall the concepts of cone over a Banach algebra A subset P of A is called a cone if

1. P is non-empty closed and {θ, e} ⊂ P;

2. αP + βP ⊂ P for all non-negative real numbers α, β;

3. P2 = PP ⊂ P;

4. P ∩ (−P) = {θ},

where θ denotes the null of the Banach algebra A. For a given cone P ⊂ A, we can define a partial ordering
4 with respect to P by x 4 y if and only if y − x ∈ P.x ≺ y will stand for x 4 y and x , y, while x � y will
stand for y − x ∈ intP, where intP denotes the interior of P. If intP , ∅ then P is called a solid cone.
The cone P is called normal if there is a number M > 0 such that, for all x, y ∈ A, θ 4 x 4 y implies
‖x‖ ≤M

∥∥∥y
∥∥∥. The least positive number satisfying the above is called the normal constant of P [17].

In the following we always assume that A is a Banach algebra with a unit e, P is a solid cone in A and 4 is
the partial ordering with respect to P.

Definition 2.5. ([17,26]). Let X be a nonempty set. Suppose the mapping d : X × X→ A satisfies

1. θ 4 d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y,
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2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, y) 4 d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space over Banach algebra A.
For other definitions and related results on cone metric spaces with Banach algebra we refer to [26].

Definition 2.6. ([18]) Let X be a nonempty set and s ≥ 1 be a constant. A mapping d : X×X→ A is said to be cone
b-metric if and only if, for all x, y, z ∈ X, the following conditions are satisfied:

1. θ ≺ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, y) 4 s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then d is called a cone b-metric on X, and (X, d) is called a cone b-metric space over Banach algebra A. For more
definitions and results on cone b-metric spaces, the reader may refer to [18].

Definition 2.7. ([27]). A partial metric on a nonempty set X is a function p : X×X→ R+ such that for all x, y, z ∈ X
the following conditions hold:

1. x = y if and only if p(x, x) = p(x, y) = p(y, y),

2. p(x, x) ≤ p(x, y),

3. p(x, y) = p(y, x),

4. p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

The pair (X, p) is called a partial metric space. It is clear that, if p(x, y) = 0, then from (1) and (2) x = y. But if
x = y, p(x, y) may not be 0. To study the other details on partial metric spaces, refer to [27].

Definition 2.8. ([35]). A partial b-metric on a nonempty set X is a function b : X × X → R+ such that for all
x, y, z ∈ X,

1. x = y if and only if b(x, x) = b(x, y) = b(y, y);

2. b(x, x) ≤ b(x, y);

3. b(x, y) = b(y, x);

4. there exists a real number s ≥ 1 such that b(x, y) ≤ s[b(x, z) + b(z, x)] − b(z, z).

A partial b-metric space is a pair (X, b) such that X is a nonempty set and b is a partial b-metric on X. The number s
is called the coefficient of (X, b).
For more details on partial b-metric spaces the reader may refer to [35].

Definition 2.9. ([10]). A partial cone b-metric on a nonempty set X is a function pb : X × X → E such that for all
x, y, z ∈ X,

1. x = y if and only if pb(x, x) = pb(x, y) = pb(y, y);

2. θ 4 pb(x, x) 4 pb(x, y);

3. pb(x, y) = pb(y, x);

4. pb(x, y) 4 s[pb(x, z) + pb(z, y)] − pb(z, z).
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The pair (X, pb) is called a partial cone b-metric space. The number s ≥ 1 is called the coefficient of (X, pb).
In a partial cone b-metric space (X, pb), if x, y ∈ X and pb(x, y) = θ, then x = y, but the converse may not be true.
It is clear that every partial cone b-metric space is a partial cone metric space with coefficient s = 1 and every cone
b-metric space is a partial cone b-metric space with the same coefficient and zero self distance. However, the converse
of these facts needs not to be hold.
The definitions and subsequent results on partial cone b-metric space are given in [10].

Definition 2.10. ([1]). Let X be a nonempty set and f , 1 be self maps on X and x, z ∈ X. Then x is called coincidence
point of pair ( f , 1) if f x = 1x, and z is called point of coincidence of pair ( f , 1) if f x = 1x = z.

Definition 2.11. ([1]). Let f , 1 : X→ X be given self-mappings on X. The pair ( f , 1) is said to be weakly compatible
if f and 1 commute at their coincidence points (i.e., f1x = 1 f x, whenever f x = 1x).

Lemma 2.12. ([1]). Let f and 1 be weakly compatible self maps of a set X. If f and 1 have a unique point of
coincidence w = f x = 1x, then w is the unique common fixed point of f and 1.

3. Partial cone b-metric spaces over Banach algebra

We now present the concept of partial cone b-metric spaces over Banach algebra A with appropriate
examples and study some of its properties needed in the sequel.

Definition 3.1. A partial cone b-metric on a nonempty set X is a function
pb : X × X→ A such that for all x, y, z ∈ X:
(pb1) x = y if and only if pb(x, x) = pb(x, y) = pb(y, y),
(pb2) θ 4 pb(x, x) 4 pb(x, y),
(pb3) pb(x, y) = pb(y, x),
(pb4) pb(x, y) 4 s[pb(x, z) + pb(z, y)] − pb(z, z).
The pair (X, pb) is called a partial cone b-metric space over Banach algebra A. The number s ≥ 1 is called the coefficient
of (X, pb).

Remark 3.2. In a partial cone b-metric space over Banach algebra (X, pb), if x, y ∈ X and pb(x, y) = θ, then x = y,
but the converse may not be true.

Remark 3.3. It is clear that every partial cone b-metric space over Banach algebra is a partial cone metric space over
Banach algebra with coefficient s = 1 and every cone b-metric space is a partial cone b-metric space with the same
coefficient and zero self distance. However, the converse of these facts needs not to be hold.

Example 3.4. Let A = C[a, b] be the set of continuous functions on the interval [a, b] with the norm ‖x‖ =

‖x‖∞ +
∥∥∥x′

∥∥∥
∞

. Define multiplication in the usual way. Then A is a Banach algebra with a unit 1. Set P = {x ∈ A :
x(t) ≥ 0, t ∈ [a, b]} and X = R+. Define a mapping pb : X × X→ A by

pb(x, y)(t) =
(
[max{x, y}]2 + |x − y|2

)
et

for all x, y ∈ X. This makes (X, pb) into a partial cone b-metric space over Banach algebra A with the coefficient s = 2,
but it is not a partial cone metric space over Banach algebra since the triangle inequality is not satisfied.

Example 3.5. Let A = C1
R[0, 1] and define a norm on A by ‖x‖ = ‖x‖∞ +

∥∥∥x′
∥∥∥
∞

for x ∈ A. Define multiplication in
A as just point wise multiplication. Then A is a real unit Banach algebra with unit e = 1. Set P = {x ∈ A : x ≥ 0}
is a cone in A. Moreover, P is not normal (see [32]). Let X = [0,+∞) and a > 0 be any constant. Define a mapping
pb : X × X→ A by

pb(x, y)(t) =
(
(max{x, y})2 + a

)
et

for all x, y ∈ X. Then (X, pb) is a partial cone b-metric space over Banach algebra A with the coefficient s ≥ 1 but it is
not a cone b-metric space over Banach algebra A since for any x > 0 we have pb(x, x)(t) = (x2 + a)et , θ.
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Example 3.6. Let X = [0, 1] and A be the set of all real valued function on X which also have continuous derivatives
on X with the norm ‖x‖ = ‖x‖∞ +

∥∥∥x′
∥∥∥
∞

. Define multiplication in the usual way. Let P = {x ∈ A : x(t) ≥ 0, t ∈ X}.
It is clear that P is a nonnormal cone and A is a Banach algebra with a unit e = 1. Define a mapping pb : X ×X→ A
by

pb(x, y)(t) =

{
xpet, x = y
(x + y)pet, otherwise

Then (X, pb) is a partial cone b-metric space over Banach algebra A with the coefficient s = 2p−1 but it is not a cone
b-metric space over Banach algebra A since pb(x, x)(t) , θ for each x ∈ X with x , 0.

Definition 3.7. Let (X, pb) is a partial cone b-metric space over Banach algebra A. Then for an x ∈ X a θ � c, the
pb-ball with center x and radius θ� c is

Bpb (x, c) = {y ∈ X : pb(x, y)� pb(x, x) + c}

4. Topology on Partial cone b-metric spaces over Banach algebra

In this section, we define the topology in partial cone b-metric space over Banach algebra A.

Definition 4.1. Let (X, pb) be a partial cone b-metric space over Banach algebra A with coefficient s ≥ 1. For each
x ∈ X and each θ � c, put Bpb (x, c) = {y ∈ X : pb(x, y) � pb(x, x) + c} and put B = {Bpb (x, c) : x ∈ X and θ � c}.
Then B is a subbase for some topology τ on X.

Remark 4.2. Let (X, pb) be a partial cone b-metric space over Banach algebra A. In this paper, τ denotes the topology
on X,B denotes a subbase for the topology on τ and Bpb (x, c) denotes the pb-ball in (X, pb), which are described in
Definition 4.1. In addition U denotes the base generated by the subbase B.

Theorem 4.3. Let (X, pb) be a partial cone b-metric space over Banach algebra A. Then (X, pb) is a T0-space.

Proof. Suppose pb : X × X → A be a partial cone b-metric and x, y ∈ X. If x , y then pb(x, y) � θ. It follows
from (p1) and (p2) that pb(x, x) ≺ pb(x, y) or pb(y, y) ≺ pb(x, y). Write

∥∥∥pb(x, x) − pb(x, y)
∥∥∥ = δx. Then δx > 0.

Hence there exists a cx � θ with ‖cx‖ <
δx
k .

Thus x ∈ Bpb (x, cx) and y < Bpb (x, cx).

For the case pb(y, y) ≺ pb(x, y), one can find a cy � θ with
∥∥∥cy

∥∥∥ < δy

k .
Thus y ∈ Bpb (y, cy) and x < Bpb (y, cy).
Consequently, we find that partial cone b-metric space over Banach algebra (X, pb) is T0.

Now, we define θ-Cauchy sequence and convergent sequence in partial cone b-metric space over Banach
algebra A.

Definition 4.4. Let (X, pb) be a partial cone b-metric space over Banach algebra A and {xn} be a sequence in X. If for
every c ∈ intP there is a positive integer n0 such that, pb(xn, x) � c + pb(x, x) for all n > n0, then {xn} is said to be
convergent and converges to x, and x is the limit of {xn} and we denote this by xn → x as n→ +∞ or limn→+∞ xn = x.

Definition 4.5. Let (X, pb) be a partial cone b-metric space over Banach algebra A. A sequence {xn} in (X, pb) is
called a θ-Cauchy sequence if {pb(xn, xm)} is a c-sequence in A, i.e. if for every c ∈ intP there exists n0 ∈ N such that
pb(xn, xm)� c for all n,m > n0.

Definition 4.6. Let (X, pb) be a partial cone b-metric space over Banach algebra A. Then (X, pb) is said to be
θ-complete if every θ-Cauchy sequence {xn} in X converges to a point x ∈ X; that is,

lim
n,m→+∞

pb(xn, xm) = lim
n→+∞

pb(xn, x) = pb(x, x) = θ.

Definition 4.7. Let (X, pb) and (X′

, pb
′

) be a partial cone b-metric space over Banach algebra A. Then a function
f : X→ X′ is said to be continuous at a point x ∈ X if and only if it is sequentially continuous at x, that is, whenever
{xn} is convergent to x we have { f xn} is convergent to f (x).
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5. Generalized Lipschitz Mapping

In this section, we introduce the concept of generalized Lipschitz mapping on partial cone b-metric spaces
over Banach algebras with an example.

Definition 5.1. Let (X, pb) be a partial cone b-metric space over a Banach algebra A. A mapping T : X→ X is called
a generalized Lipschitz mapping if there exists a vector k ∈ P with ρ(k) < 1 and for all x, y ∈ X, one has

pb(Tx,Ty) 4 kpb(x, y).

Example 5.2. Let X = [0,+∞) and let (X, pb) be a partial cone b-metric space over Banach algebra A with the
coefficient s = 2 and p = 2 as defined in Example 3.6. Define a self map T on X as follows
Tx = ln

(
1 + x

4

)
. Since ln(1 + u) 4 u for each u ∈ [0,∞), for all x, y ∈ X, we have when x , y

pb(Tx,Ty)(t) =

(
ln

(
1 +

x
4

)
+ ln

(
1 +

x
4

))2

et 4
(x
4

+
y
4

)2
et

=
1

16
(x + y)2et =

1
16

pb(x, y)(t)

Now when x = y,

pb(Tx,Tx)(t) =

(
ln

(
1 +

x
4

))2

et 4
(x
4

)2
et =

1
16

(x)2et

=
1

16
pb(x, x)(t)

Therefore, pb(Tx,Ty)(t) 4 1
16 pb(x, y)(t)

Clearly, T is a generalized Lipschitz map in X.

Now we review some facts on c-sequence theory.

Definition 5.3. ([24]). Let P be a solid cone in a Banach space E. A sequence {un} ⊂ P is said to be a c-sequence if
for each c� θ there exists a natural number N such that un � c for all n > N.

Lemma 5.4. ([33]). Let P be a solid cone in a Banach algebra A. Suppose that k ∈ P be an arbitrary vector and {un}

is a c-sequence in P. Then {kun} is a c-sequence.

Lemma 5.5. ([31]). Let A be a Banach algebra with a unit e, k ∈ A, then limn→+∞ ‖kn
‖

1
n exists and the spectral

radius ρ(k) satisfies

ρ(k) = lim
n→+∞

‖kn
‖

1
n = in f ‖kn

‖
1
n .

If ρ(k) < |λ|, then (λe − k) is invertible in A, moreover,

(λe − k)−1 =

∞∑
i=0

ki

λi+1

where λ is a complex constant.

Lemma 5.6. ([31]). Let A be a Banach algebra with a unit e, a, b ∈ A. If a commutes with b, then

ρ(a + b) ≤ ρ(a) + ρ(b), ρ(ab) ≤ ρ(a)ρ(b).
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Lemma 5.7. ([33]). Let A be a Banach algebra with a unit e and P be a solid cone in A. Let a, k, l ∈ P hold l 4 k and
a 4 la. If ρ(k) < 1, then a = θ.

Lemma 5.8. ([33]). If E is a real Banach space with a solid cone P and {un} ⊂ P be a sequence with ‖un‖ → 0 (n→
+∞), then {un} is a c-sequence.

Lemma 5.9. ([33]). If E is a real Banach space with a solid cone P

1. If a, b, c ∈ E and a 4 b� c, then a� c.

2. If a ∈ P and a� c for each c� θ, then a = θ.

Lemma 5.10. ([33]). Let A be a Banach algebra with a unit e and k ∈ A. If λ is a complex constant and ρ(k) < |λ|,
then

ρ
(
(λe − k)−1

)
≤

1
|λ| − ρ(k)

.

6. Application to Fixed Point Theorems

In this section, we present some fixed point theorems for generalized Lipschitz mappings in the framework
of partial cone b-metric spaces over Banach algebra A over a non-normal solid cone with an illustrative
example. We start with the following result.

Theorem 6.1. Let (X, pb) be a θ-complete partial cone b-metric space over Banach algebra A with the coefficient s ≥ 1
and P be a solid cone in A. Let ki ∈ P(i = 1, 2, 3, 4, 5) be generalized Lipschitz constants with (s + 1)ρ(k) + 2sρ(k1) +
sρ(k4) + sρ(k5) < 1, where k = ρ(k2) + ρ(k3) + sρ(k4) + sρ(k5) < 1. Suppose the mappings f , 1 : X→ X satisfy

pb( f x, f y) 4 k1pb(1x, 1y) + k2pb( f x, 1x) + k3pb( f y, 1y) + k4pb(1x, f y)
+ k5pb( f x, 1y) (6.1)

for all x, y ∈ X. If the range of 1 contains the range of f and 1(X) is a complete subspace, then f and 1 have a unique
point of coincidence in X. Moreover, if f and 1 are weakly compatible, then f and 1 have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point. Since f (X) ⊂ 1(X), there exists an x1 ∈ X such that f x0 = 1x1. By
induction, a sequence { f xn} can be chosen such that f xn = 1xn+1(n = 0, 1, 2, ...). Thus, by (6.1), for any natural
number n, on the one hand, we have

pb(1xn+1, 1xn) = pb( f xn, f xn−1)
4 k1pb(1xn, 1xn−1) + k2pb( f xn, 1xn) + k3pb( f xn−1, 1xn−1)
+ k4pb(1xn, f xn−1) + k5pb( f xn, 1xn−1)
4 k1pb(1xn, 1xn−1) + k2pb(1xn+1, 1xn) + k3pb(1xn, 1xn−1)
+ k4pb(1xn, 1xn) + k5pb(1xn+1, 1xn−1)
4 k1pb(1xn, 1xn−1) + k2pb(1xn+1, 1xn) + k3pb(1xn, 1xn−1)
+ k4pb(1xn−1, 1xn) + k5[spb(1xn+1, 1xn) + spb(1xn, 1xn−1)
− pb(1xn, 1xn)] [by pb2 and pb4]
4 k1pb(1xn, 1xn−1) + k2pb(1xn+1, 1xn) + k3pb(1xn, 1xn−1)
+ k4pb(1xn−1, 1xn) + k5spb(1xn+1, 1xn) + k5spb(1xn, 1xn−1)
4 (k1 + k3 + k4 + sk5)pb(1xn, 1xn−1) + (k2 + sk5)pb(1xn+1, 1xn)
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which implies that

(e − k2 − sk5)pb(1xn+1, 1xn) 4 (k1 + k3 + k4 + sk5)pb(1xn, 1xn−1) (6.2)

On the other hand, we have

pb(1xn, 1xn+1) = pb( f xn−1, f xn)
4 k1pb(1xn−1, 1xn) + k2pb( f xn−1, 1xn−1) + k3pb( f xn, 1xn)
+ k4pb(1xn−1, f xn) + k5pb( f xn−1, 1xn)
4 k1pb(1xn−1, 1xn) + k2pb(1xn, 1xn−1) + k3pb(1xn+1, 1xn)
+ k4pb(1xn−1, 1xn+1) + k5pb(1xn, 1xn)
4 k1pb(1xn−1, 1xn) + k2pb(1xn, 1xn−1) + k3pb(1xn+1, 1xn)
+ k4[spb(1xn−1, 1xn) + spb(1xn, 1xn+1) − pb(1xn, 1xn)]
+ k5pb(1xn−1, 1xn)
4 (k1 + k2 + sk4 + k5)pb(1xn−1, 1xn) + (k3 + sk4)pb(1xn+1, 1xn)

which implies that

(e − k3 − sk4)pb(1xn+1, 1xn) 4 (k1 + k2 + sk4 + k5)pb(1xn, 1xn−1) (6.3)

Add (6.2) and (6.3)

(2e − k2 − k3 − sk4 − sk5)pb(1xn+1, 1xn) 4 [2k1 + k2 + k3

+ (1 + s)k4 + (1 + s)k5]pb(1xn−1, 1xn) (6.4)

Denote k2 + k3 + sk4 + sk5 = k then (6.4) yields that

(2e − k)pb(1xn+1, 1xn) 4 (k + 2k1 + k4 + k5)pb(1xn, 1xn−1) (6.5)

Note that

ρ(k) ≤ (s + 1)ρ(k) ≤ (s + 1)ρ(k) + 2sρ(k1) + sρ(k4) + sρ(k5) < 1 < 2

leads to ρ(k) < 2, then by Lemma 5.5 it follows that (2e − k) is invertible. Furthermore,

(2e − k)−1 =

∞∑
i=0

ki

2i+1

By multiplying in both sides of (6.5) by (2e − k)−1, we arrive at

pb(1xn+1, 1xn) 4 (2e − k)−1(k + 2k1 + k4 + k5)pb(1xn, 1xn−1) (6.6)

Denote h = (2e − k)−1(k + 2k1 + k4 + k5), then by (6.6) we get

pb(1xn+1, 1xn) 4 hpb(1xn, 1xn−1) 4 · · · 4 hnpb(1x1, 1x0) = hnpb( f x0, 1x0).

Note by Lemma 5.6 and Lemma 5.10 that

ρ(h) = ρ
(
(2e − k)−1

· (k + 2k1 + k4 + k5)
)

≤ ρ
(
(2e − k)−1

)
· ρ(k + 2k1 + k4 + k5)

≤
1

2 − ρ(k)

[
ρ(k) + 2ρ(k1) + ρ(k4) + ρ(k5)

]
<

1
s
,

[
Since (s + 1)ρ(k) + 2sρ(k1) + sρ(k4) + sρ(k5) < 1 < 2

]
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which means that (e − sh) is invertible and ‖hm
‖ → 0 (m→∞). Hence, for any m ≥ 1, p ≥ 1 and h ∈ P with

ρ(h) < 1
s , we have that

pb(1xm, 1xm+p) 4 s[pb(1xm, 1xm+1) + pb(1xm+1, 1xm+p)] − pb(1xm+1, 1xm+1)
4 spb(1xm, 1xm+1) + spb(1xm+1, 1xm+p)
4 spb(1xm, 1xm+1) + s[spb(1xm+1, 1xm+2) + spb(1xm+2, 1xm+p)]
− pb(1xm+2, 1xm+2)

4 spb(1xm, 1xm+1) + s2pb(1xm+1, 1xm+2) + s2pb(1xm+2, 1xm+p)

4 spb(1xm, 1xm+1) + s2pb(1xm+1, 1xm+2) + s3pb(1xm+2, 1xm+3)

+ · · · + sp−1pb(1xm+p−2, 1xm+p−1) + sp−1pb(1xm+p−1, 1xm+p)

4 shmpb( f x0, 1x0) + s2hm+1pb( f x0, 1x0) + s3hm+2pb( f x0, 1x0)

+ · · · + sp−1hm+p−2pb( f x0, 1x0) + sphm+p−1pb( f x0, 1x0)

= shm[e + sh + s2h2 + · · · + (sh)p−1]pb( f x0, 1x0)

4 shm(e − sh)−1pb( f x0, 1x0).

In view of Remark 2.4,
∥∥∥shmpb( f x0, 1x0)

∥∥∥ ≤ ‖shm
‖

∥∥∥pb( f x0, 1x0)
∥∥∥ → 0 (m → +∞), by Lemma 5.8, we have{

shmpb( f x0, 1x0)
}

is a c-sequence. Next by using Lemma 5.4 and Lemma 5.9, we conclude that {1xn} is a
θ-Cauchy sequence. Since 1(X) is θ-complete, there is q ∈ 1(X) such that 1xn → q (n → +∞). Thus there
exists p ∈ X such that 1p = q. Therefore

lim
n→+∞

pb(1xn, q) = lim
n,m→+∞

pb(1xn, 1xm) = pb(q, q) = θ.

We shall prove f p = q. In order to end this, for one thing,

pb(1xn, f p) = pb( f xn−1, f p)
4 k1pb(1xn−1, 1p) + k2pb( f xn−1, 1xn−1) + k3pb( f p, 1p)
+ k4pb(1xn−1, f p) + k5pb( f xn−1, 1p)
4 k1pb(1xn−1, q) + k2pb(1xn, 1xn−1) + k3pb( f p, 1p)
+ k4pb(1xn−1, f p) + k5pb( f xn−1, 1p)
4 k1pb(1xn−1, q) + k2pb(1xn, 1xn−1) + k3pb( f p, q)
+ k4pb(1xn−1, f p) + k5pb( f xn−1, q)
4 k1pb(1xn−1, q) + k2[spb(1xn, q) + spb(q, 1xn−1) − pb(q, q)]
+ k3[spb( f p, 1xn) + spb(1xn, q) − pb(1xn, 1xn)]
+ k4[spb(1xn−1, q) + spb(q, f p)
− pb(q, q)] + k5pb(1xn, q)
4 k1pb(1xn−1, q) + k2spb(1xn, q) + sk2pb(q, 1xn−1) + k3spb( f p, 1xn)
+ sk3pb(1xn, q) + k4spb(1xn−1, q) + sk4pb(q, f p) + k5pb(1xn, q)
4 k1pb(1xn−1, q) + k2spb(1xn, q) + sk2pb(q, 1xn−1) + k3spb( f p, 1xn)
+ sk3pb(1xn, q) + sk4pb(1xn−1, q) + k4s[spb(q, 1xn)
+ spb(1xn, f p) − pb(1xn, 1xn)]
+ k5pb(1xn, q)
4 k1pb(1xn−1, q) + k2spb(1xn, q) + sk2pb(q, 1xn−1) + k3spb( f p, 1xn)
+ sk3pb(1xn, q) + sk4pb(1xn−1, q)

+ k4s2pb(q, 1xn) + k4s2pb(1xn, f p) + k5pb(1xn, q)
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which implies that

(e − sk3 − s2k4)pb(1xn, f p) 4 (k1 + k2s + k4s)pb(1xn−1, q) + (k2s + k3s + k4s2

+ k5)pb(1xn, q) (6.7)

For another thing

pb(1xn, f p) = pb( f xn−1, f p) = pb( f p, f xn−1)
4 k1pb(1p, 1xn−1) + k2pb( f p, 1p) + k3pb( f xn−1, 1xn−1)

+ k4pb(1p, f xn−1) + k5pb( f p, 1xn−1)
4 k1pb(1p, 1xn−1) + k2[spb( f p, 1xn) + spb(1xn, 1p)

− pb(1xn, 1xn)] + k3[spb(1xn, q) + spb(q, 1xn−1) − pb(q, q)]
+ k4pb(q, 1xn) + k5[spb( f p, q) + spb(q, 1xn−1)
− pb(q, q)]

4 k1pb(1p, 1xn−1) + k2[spb( f p, 1xn) + spb(1xn, 1p)
− pb(1xn, 1xn)] + k3[spb(1xn, q) + spb(q, 1xn−1) − pb(q, q)]
+ k4pb(1xn, q) + k5[spb( f p, q) + spb(q, 1xn−1) − pb(q, q)]

4 k1pb(1xn−1, q) + k2spb( f p, 1xn) + sk2pb(1xn, q) + k3spb(1xn, q)
+ k3spb(q, 1xn−1) + k4pb(1xn, q) + k5spb( f p, q) + k5spb(q, 1xn−1)
4 k1pb(1xn−1, q) + k2spb( f p, 1xn) + sk2pb(1xn, q) + k3spb(1xn, q)
+ k3spb(q, 1xn−1) + k4pb(1xn, q) + k5s[spb( f p, 1xn) + spb(1xn, q)
− pb(1xn, 1xn)] + k5spb(q, 1xn−1)

4 k1pb(1xn−1, q) + k2spb( f p, 1xn) + sk2pb(1xn, q) + k3spb(1xn, q)

+ k3spb(q, 1xn−1) + k4pb(1xn, q) + k5s2pb( f p, 1xn)

+ k5s2pb(1xn, q) + k5spb(q, 1xn−1)

which means that

(e − sk2 − s2k5)pb(1xn, f p) 4 (k1 + k3s + k5s)pb(1xn−1, q)

+ (k2s + k3s + k4 + s2k5)pb(1xn, q) (6.8)

Combine (6.7) and (6.8), it follows that

(2e − sk)pb(1xn, f p) = (2e − k2s − k3s − k4s2
− s2k5)pb(1xn, f p)

4 (2k1 + k3s + k5s + k2s + k4s)pb(1xn−1, q)
+ (k2s + k3s + k4 + k5 + sk)pb(1xn, q) (6.9)

Now ρ(sk) = sρ(k) ≤ (s + 1)ρ(k) + 2sρ(k1) + sρ(k4) + sρ(k5) < 1 < 2, thus by Lemma 5.5, it concludes that
(2e − sk) is invertible. As a result, it follows immediately from (6.9) that

pb(1xn, f p) 4 (2e − sk)−1[(2k1 + k3s + k5s + k2s + k4s)pb(1xn−1, q)
+ (k2s + k3s + k4 + k5 + sk)pb(1xn, q)]

Since
{
pb(1xn, q)

}
and

{
pb(1xn−1, q)

}
are c-sequences, then by Lemma 5.4, we acquire that {pb(1xn, f p)} is a

c-sequence, thus 1xn → f p (n → +∞). Hence f p = 1p = q. In the following we shall prove f and 1 have a
unique point of coincidence.
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If there exists p′ , p such that f p′ = 1p′ = u. Then we get

pb(1p
′

, 1p) = pb( f p
′

, f p)

4 k1pb(1p
′

, 1p) + k2pb( f p
′

, 1p
′

) + k3pb( f p, 1p) + k4pb(1p
′

, f p)

+ k5pb( f p
′

, 1p)

4 k1pb(1p
′

, 1p) + k2pb(1p
′

, 1p
′

) + k3pb(1p, 1p) + k4pb(1p
′

, f p)

+ k5pb( f p
′

, 1p)

4 k1pb(1p
′

, 1p) + k2pb(1p, 1p
′

) + k3pb(1p, 1p
′

) + k4pb(1p
′

, f p)

+ k5pb( f p
′

, 1p) [by(pb2)]

= (k1 + k2 + k3 + k4 + k5)pb(1p
′

, 1p)

Note the facts that (s + 1)ρ(k) + 2sρ(k1) + sρ(k4) + sρ(k5) < 1 and k1 + k2 + k3 + k4 + k5 ≤ (s + 1)k + 2sk1 + sk4 + sk5,
then by Lemma 5.7, we speculate that 1p′ = 1p. Finally, if ( f , 1) is weakly compatible, then by using Lemma
2.11, we claim that f and 1 have a unique common fixed point.

Corollary 6.2. Let (X, pb) be a θ-complete partial cone b-metric space over Banach algebra A with the coefficient
s ≥ 1 and P be a solid cone in A. Let k ∈ P be a generalized Lipschitz constant with ρ(k) < 1

2s . Suppose that the
mappings f , 1 : X→ X satisfy that

pb( f x, f y) 4 kpb(1x, 1y)

for all x, y ∈ X. If the range of 1 contains the range of f and 1(X) is a complete subspace, then f and 1 have a unique
point of coincidence in X. Moreover, if f and 1 are weakly compatible, then f and 1 have a unique common fixed point.

Proof. Choose k1 = k and k2 = k3 = k4 = k5 = θ in Theorem 6.1, the proof is valid.

Corollary 6.3. Let (X, pb) be a θ-complete partial cone b-metric space over Banach algebra A with the coefficient
s ≥ 1 and P be a solid cone in A. Let k ∈ P be a generalized Lipschitz constant with ρ(k) < 1

2(s+1) . Suppose that the
mappings f , 1 : X→ X satisfy that

pb( f x, f y) 4 k[pb( f x, 1x) + pb( f y, 1y)]

for all x, y ∈ X. If the range of 1 contains the range of f and 1(X) is a complete subspace, then f and 1 have a unique
point of coincidence in X. Moreover, if f and 1 are weakly compatible, then f and 1 have a unique common fixed point.

Proof. Putting k1 = k4 = k5 = θ and k2 = k3 = k in Theorem 6.1, we complete the proof.

Corollary 6.4. Let (X, pb) be a θ-complete partial cone b-metric space over Banach algebra A with the coefficient
s ≥ 1 and P be a solid cone in A. Let k ∈ P be a generalized Lipschitz constant with ρ(k) < 1

2s(s+2) . Suppose that the
mappings f , 1 : X→ X satisfy that

pb( f x, f y) 4 k[pb( f x, 1y) + pb( f y, 1x)]

for all x, y ∈ X. If the range of 1 contains the range of f and 1(X) is a complete subspace, then f and 1 have a unique
point of coincidence in X. Moreover, if f and 1 are weakly compatible, then f and 1 have a unique common fixed point.

Proof. Set k1 = k2 = k3 = θ and k4 = k5 = k in Theorem 6.1, the claim holds.
Finally, we add an example on non-normal θ-complete partial cone b-metric over Banach algebra that
demonstrates Theorem 6.1.

Example 6.5. Let A and P be the same ones as those in Example 3.6. We define a mapping pb : X × X→ A by

pb(x, y)(t) =
(

max{x, y}
)2

et
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We make a conclusion that (X, pb) is a θ-complete partial cone b-metric space over Banach algebra A with the coefficient
s = 2. Now define the mappings f , 1 : X→ X by

f (x) =
x
4
−

x2

4
, 1(x) =

x
2

pb( f x, f y)(t) =

(
max

{x
4
−

x2

4
,

y
4
−

y2

4

})2

et
�

(
max

{x
4
,

y
4

})2

et

=
1
4

(
max

{
x, y

})2

et
�

1
4

pb(1x, 1y)(t)

Choose k1 = 1
4 , k2 = k3 = k4 = k5 = θ. Note that f and 1 commute at the coincidence point x = 0 of them, that is to

say, the pair ( f , 1) is weakly compatible, it is easy to see that all the conditions of Theorem 6.1 holds trivially good and
0 is the unique common fixed point of f and 1.

7. Application to integral equation

We start this section by giving the system of nonlinear integral equations. Furthermore, as an application
of our results we establish the existence and uniqueness of solution to a class of system of nonlinear integral
equations.

We will consider the following system of integral equations. x(t) =
∫ t

a f
(
s, x(s)

)
ds

x(t) =
∫ t

a x(s)ds
(7.1)

where t ∈ [a, b] and f : [a, b] × R→ R is a continuous function.
Now we discuss the existence of a solution for the integral equations.

Theorem 7.1. Let Lp[a, b] =
{
x = x(t) :

∫ b

a |x(t)|p < ∞
}

(0 < p < 1). For (7.1), assume that the following hypotheses
hold:

1. If f
(
s, x(s)

)
= x(s) for all s ∈ [a, b], then

f
(
s,

∫ b

a
x(w)dw

)
=

∫ b

a
f
(
w, x(w)

)
dw

for all s ∈ [a, b].

2. If there exists a constant M ∈ (0, 21− 1
p ) such that the partial derivative fy of f with respect to y exists and

| fy(x, y)| ≤M for all the pairs (x, y) ∈ [a, b] × R.

Then the integral equation (7.1) has a unique common solution in Lp[a, b].

Proof. Let A = R2 with the norm ‖u1,u2‖ = |u1| + |u2| and the multiplication by

uv =
(
(u1,u2)(v1, v2)

)
=

(
u1.v1,u1.v2 + u2.v1

)
.

Let P =
{
u = (u1,u2) ∈ A : u1,u2 ≥ 0

}
. It is clear that P is a normal cone and A is a Banach algebra with a

unit e = (1, 0). Let X = Lp[a, b]. We endow X with the partial cone b-metric

pb(x, y)(t) =


( ∫ b

a

{
|x(t)|p

} 1
p ,

∫ b

a

{
|x(t)|p

} 1
p
)
et, when x = y( ∫ b

a

{
|x(t) + y(t)|p

} 1
p ,

∫ b

a

{
|x(t) + y(t)|p

} 1
p
)
et, when x , y
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for all x, y ∈ X. It is clear that (X, pb) is a θ-complete partial cone b-metric space over Banach algebra A with
the coefficient s = 21− 1

p as defined in Example 3.6. Define the mappings S,T : X→ X by

Sx(t) =

∫ t

a
x(s)ds, Tx(t) =

∫ t

a
f
(
s, x(s)

)
ds

for all t ∈ [a, b]. Then the existence of a solution to (7.1) is equivalent to the existence of common fixed point
of S and T. Indeed, when x , y

pb(Tx,Ty) =

({ ∫ b

a
|

∫ t

a
f
(
s, x(s)

)
ds +

∫ t

a
f
(
s, y(s)

)
ds |p dt

} 1
p
,

{ ∫ b

a
|

∫ t

a
f
(
s, x(s)

)
ds +

∫ t

a
f
(
s, y(s)

)
ds|pdt

} 1
p

)
et

=

({ ∫ b

a
|

∫ t

a

[
f
(
s, x(s)

)
+ f

(
s, y(s)

)]
ds |p dt

} 1
p
,

{ ∫ b

a
|

∫ t

a

[
f
(
s, x(s)

)
+ f

(
s, y(s)

)]
ds|pdt

} 1
p

)
et

4

(
M

{ ∫ b

a
|

∫ t

a
[x(s) + y(s)]ds |p dt

} 1
p
,

M
{ ∫ b

a
|

∫ t

a
[x(s) + y(s)]ds|pdt

} 1
p

)
et

= (M, 0)
({ ∫ b

a
| Sx(t) + Sy(t) |p dt

} 1
p
,

{ ∫ b

a
| Sx(t) + Sy(t) |p dt

} 1
p

)
et

= (M, 0) pb(Sx,Sy)(t).

Now when x = y

pb(Tx,Ty)(t) =

({ ∫ b

a
|

∫ t

a
f
(
s, x(s)

)
ds |p

} 1
p
,
{ ∫ b

a
|

∫ t

a
f
(
s, x(s)

)
ds|p

} 1
p

)
et

4

({
M

∫ b

a
|

∫ t

a
x(s)ds |p

} 1
p
,
{
M

∫ b

a
|

∫ t

a
x(s)ds|p

} 1
p

)
et

= (M, 0) pb(Sx,Sx)(t)
= (M, 0) pb(Sx,Sy)(t).

Because ‖(M, 0)n
‖

1
n = ‖(Mn, 0)‖

1
n →M < 21− 1

p (n→ +∞),
which means ρ

(
(M, 0)

)
< 21− 1

p . Now choose k1 = (M, 0) and k2 = k3 = k4 = k5 = θ.
Note that by (i), it is easy to see that the mappings S and T are weakly compatible. Therefore, all conditions
of Theorem 6.1 are satisfied. As a result, S and T have a unique common fixed point x∗ ∈ X. That is, x∗ is
the unique common solution of the system of integral equation (7.1) .
We notice that the above mentioned application of fixed point theorem in cone b-metric space over Banach
algebra was given by [18].
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8. Conclusion

In this paper, we introduced the concept of partial cone b-metric space over Banach algebras which
are not equivalent to metric spaces since all the coefficients are vectors and the multiplications are vector
multiplications. Furthermore, we define generalized Lipschitz mapping in the new space. We have
established common fixed point results for such maps. In addition as an application, we study the existence
of solution to a class of system of integral equations. Our results may be the vision for other authors to
extend and improve several results in such space.
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