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Abstract. In this paper, we introduce the notion of Krasnoselskii and Dugundji-Granas condensing
operators in Banach spaces. In order to pave the way for a study the solvability of some classes of singular
integral equations in the Banach algebra C[a, b], we provide some results for the existence of fixed points
for such condensing operators. An example is presented to show the applicability of the results.

1. Introduction and Preliminaries

The significance of fixed point theory and its applications in different branches of mathematics is well
known. One of the most important theorems in fixed point theory, is the widely-used Schauder Theorem,
which is stated as follows:

Theorem 1.1 ([1]). Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Then each
continuous and compact map F : Ω→ Ω has at least one fixed point in Ω.

We know compactness is an essential condition in this theorem. If we want to imagine a condition
which is weaker than compactness, we first look at Darbo’s result which uses the concept of measures of
noncompactness. We refer the reader to [2, 9, 12, 20, 22] for a review of some applications of measure
of noncompactness to differential and integral equations. In this paper, the authors apply the concept of
measures of noncompactness in the axiomatic form. Other methods where authors use important measures
of noncompactness in different Banach spaces is also of interest (see [8, 13, 29] and the references therein).

Assume that E is a given real Banach space with the norm ‖.‖ and X is a subset of E. The symbols X,
ConvX represent the closure and convex closure of X, respectively. Further, let us denote byME the family
of all nonempty and bounded subsets of E and by NE its subfamily consisting of all relatively compact sets.
The algebraic operations on sets will be denoted by X + Y and λX(λ ∈ R). Moreover, we denote the norm
of a bounded set X by ‖X‖, i.e., ‖X‖ = sup{‖x‖ : x ∈ X}. In what follows we will use the following definition
of the concept of a measure of noncompactness [15].

Definition 1.2. A mapping µ :ME → R+ is said to be a measure of noncompactness on E if it satisfies the following
conditions:
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1 the family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊆ NE;

2 X ⊆ Y⇒ µ(X) ≤ µ(Y);

3 µ(X) = µ(ConvX) = µ(X);

4 µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1];

5 if (Xn) is a sequence of closed sets fromME such that Xn+1 ⊆ Xn for n = 1, 2, ... and if limn→∞ µ(Xn) = 0, then
the set X∞ =

⋂
∞

n=0 Xn is nonempty.

It can be shown that the set X∞ from axiom 5 is a member of the kerµ. This fact will be useful in our further
considerations. Now, we turn our attention to the Darbo’s fixed point theorem, that is formulated below
under the concept of measure of noncompactness.

Theorem 1.3 ([21]). Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E and let T : Ω→ Ω
be a continuous mapping. Assume that there exists a constant k ∈ [0, 1) such that

µ(TX) ≤ kµ(X)

for any nonempty subset X of Ω, where µ is a measure of noncompactness defined in E. Then T has a fixed point in Ω.

Recently in [3–5, 7, 12, 18, 22, 23] the authors obtained some new generalizations of Darbo fixed point
theorem. In [27], Krasnoselskii investigated a class of operators T on a complete metric space (X, d) that
satisfy the condition:

d(Tx,Ty) ≤ q(α, β)d(x, y), α ≤ d(x, y) ≤ β, x, y ∈ X,

where q(α, β) < 1 for β ≥ α > 0, and showed that such operators have a fixed point in X. Also, in [25]
Dugundji and Granas have studied a class of mappings T on a complete metric space (X, d) that satisfy the
following condition: there exist a θ : X × X→ R+ with

inf{θ(x, y) : a ≤ d(x, y) ≤ b} > 0, for all intervals [a, b] ⊆ R+ \ {0},

such that

d(Tx,Ty) ≤ d(x, y) − θ(x, y),

for all x, y ∈ X, and proved that such operators have a fixed point in X. In this paper, first we introduce the
notion of a Krasnoselskii condensing operator and Dugundji-Granas condensing operator in Banach spaces
and provide some results regarding the existence of fixed points for such operators. Further, we present a
result on the existence of coupled fixed points for a class of condensing operators in Banach spaces. Finally,
the application of our results to the problem of existence of solutions of a large class of integral equations
in the Banach algebra C[a, b] is discussed. We note that the solvability of the following integral equations

x(t) = ((Tx)(t)) f
(
t,
∫ H(t)

h(t)
x(s)ds, x(1(t))

)
, t ∈ [0, a],

x(t) =
(
p1(t) + f1(t, x(t))

∫ t

0
ν(t, s, x(s))ds

)(
p2(t) + f2(t, x(t))

∫
∞

0
ν(t, s, x(s))ds

)
, t ∈ [0,+∞),

x(t) =
(
p1(t) + f1(t, x(t))

∫ t

0
11(t, s)h1(s, x(s))ds

)(
p2(t) + f2(t, x(t))

∫ t

0
12(t, s)h2(s, x(s))ds

)
, t ∈ [0,+∞),

x(t) =
(
m1(t) + f1(t, x(t))

∫ t

0

v1(t, s, x(s))
(t − s)α1

)(
m2(t) + f2(t, x(t))

∫ t

0

v2(t, s, x(s))
(t − s)α2

)
, t ∈ [0,+∞),
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were investigated in [14, 16, 18], respectively. Also

x(t) =
(

f
(
t, x(β(t)),

1
Γ(α)

∫ t

0

u(t, s, x(s))
(t − s)1−α ds

))
.
(
1(t, x(γ(t)), x(t)

∫ 1

0
ν(t, s, x(s))ds)

)
, t ∈ [0, 1],

was discussed in [24]; for more examples see [10, 23]. In the last section of this paper, we study the
solvability of the following integral equations

x(t) = f (t, x(t))
(
q(t) +

1
Γ(α)

∫ ρ(t)

0

ξ(t, s, x(γ(s)))
(ρ(t) − s)1−α ds

)
by establishing some results on the existence of fixed points for the product of two operators each of which
satisfies a special conditions in a Banach algebra, using the technique of measure of noncompactness.

2. Main results

We begin by defining the notion of Krasnoselskii and Dugundji-Granas condensing operators in Banach
spaces. Then using the technique of measure of noncompactness, we provide some fixed point results for
such operators.

Definition 2.1. Let Ω be a nonempty, bounded subset of a Banach space E and µ be an arbitrary measure of
noncompactness on E. We call T : Ω→ Ω a Krasnoselskii condensing operator if there exists a mapping η :ME → R+

with

ν(a, b) := sup{η(X) : a ≤ µ(X) ≤ b} < 1 for all intervals [a, b] ⊆ R+ \ {0},

such that

µ(TX) ≤ η(X)µ(X) (1)

for all X ⊆ Ω.

Theorem 2.2. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E, µ be a measure of
noncompactness on E and T : Ω→ Ω a Krasnoselskii condensing and continuous operator. Then T has at least one
fixed point in Ω.

Proof. Consider the sequence {Ωn} as follows Ω0 = Ω,

Ωn = ConvTΩn−1, n ≥ 1.

If there exists a natural number n0 such that µ(Ωn0 ) = 0, then Ωn0 is compact and using the Schauder fixed
point theorem, we deduce that T has at least one fixed point in Ω. So without loss of generality, we assume
for every n > 1, µ(Ωn) > 0. The sequence {µ(Ωn)} is a positive nonincreasing sequence, and therefore
convergent to some a > 0. We must have a = 0, otherwise µ(Ωn) ∈ [a, a + 1] for all large n, and we could
then choose such an n and use c = ν(a, a + 1) to get, by induction

a ≤ µ(Ωn+k) = µ(ConvTΩn+k−1)
= µ(TΩn+k−1)
≤ c(µ(Ωn+k−1))
≤ ...

≤ ckµ(Ωn)

≤ ck(a + 1)
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for all k > 0, which because c < 1, is a contradiction; therefore a = 0. Thus when n → ∞, µ(Ωn) → 0. As
{Ωn} is a nested sequence, using axiom 5 of measures of noncompactness, we find that Ω∞ is nonempty and
according to the property of Ω∞, it is a member of kerµ. Also we know that Ω∞ is closed, bounded and
convex and is invariant under T. Therefore T : Ω∞ → Ω∞ satisfies the required conditions of Schauder’s
Theorem. As a result T has a fixed point in Ω∞. Since Ω∞ ⊆ Ω , the proof is complete.

Theorem 2.3. Let Ω be a nonempty, bounded subset of a Banach space E and µ be a measure of noncompactness on E.
Then, T : Ω→ Ω is a Krasnoselskii condensing operator if and only if for any M > 0 there exist m = m(M) ∈ (0,M)
and kM < 1 such that lim supM→M0

+
m(M)

M < 1 for all M0 > 0 and

µ(TX) ≤ kMµ(X)

for all X ⊆ Ω with m ≤ µ(X) ≤M.

Proof. Let T be a Krasnoselskii condensing operator with the mapping η :ME → R+ given in Definition 2.1.
We put m(M) = M

2 , for all M > 0,
kM = sup{η(X) : M

2 ≤ µ(X) ≤M}.

Therefore it is obvious that lim supM→M0
+

m(M)
M < 1 for all M0 > 0 and kM = sup{η(X) : M

2 ≤ µ(X) ≤ M} < 1.
Conversely, we define G : R+ → [0, 1) and η :ME → R+ as follows G(M) = kM,

η(X) = G(µ(X)).

Then we have µ(TX) ≤ η(X)µ(X), by assumption. Now, let [a, b] be an arbitrary interval with 0 < a ≤ b. We
prove that the collection {

(
m(M),M

)
,M > 0} of open sets covers the interval [a, b]. On the contrary, we can

assume that y ∈ [a, b] and y <
(
m(M),M

)
for all M > 0. Without loss of generality we may suppose that

y < (m(M),M) for all M > y. Consequently, y < m(M) and limM→y+
m(M)

M = 1 which is in contrast with the
assumption. Now, since [a, b] is compact, we can find a finite cover

(
m(Mi),Mi

)
, i = 1, 2, 3, ...,n of [a, b] and

we have

sup{η(X) : a ≤ µ(X) ≤ b} ≤ max{kMi : i = 1, 2, ...,n} < 1,

and the proof is complete.

Corollary 2.4. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E and T : Ω→ Ω satisfies
the following condition: for any ε > 0, there exists lε < 1 such that

µ(TX) ≤ lεµ(X), for all X ⊆ Ω with µ(X) ≥ ε.

Then T has at least one fixed point in Ω.

Proof. We put m(M) = M
2 and kM = l M

2
for M > 0 in Theorem 2.3. Now applying Theorem 2.2 we can

conclude that T has at least one fixed point in Ω.

Now we present a common fixed point theorem for commuting mappings. First, we introduce the notion
of an affine mapping.

Definition 2.5. A mapping T on a convex set M is affine if it satisfies the identity

T(kx + (1 − k)y) = kT(x) + (1 − k)T(y)

whenever 0 < k < 1, x, y ∈M.
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Theorem 2.6. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E with a measure of
noncompactness µ. Also, let I be a set of indices, and {Ti}i∈I, S be continuous self-maps on Ω such that for any i ∈ I, Ti

commutes with S and Ti(Conv(A)) ⊂ Conv(Ti(A)) for any A ⊂ Ω and i ∈ I. If there exists a mapping η :ME → R+

with

ν(a, b) := sup{η(X) : a ≤ µ(X) ≤ b} < 1 for all intervals [a, b] ⊆ R+ \ {0},

such that

µ(SA) ≤ η(A)µ(TiA)

for all A ⊆ Ω, then S and Ti (i ∈ I) have fixed points. Moreover, if Ti is affine for all i ∈ I then Ti and S have a common
fixed point in Ω.

Proof. To prove the theorem, we consider the sequence {Ωn} defined as Ω0 = Ω and Ωn = Conv(S(Ωn−1)) for
n = 1, 2, 3, ... . Then, we show that

Ωn ⊂ Ωn−1 , Ti(Ωn) ⊂ Ωn (2)

for every n = 1, 2, 3, ... and i ∈ I.
It is clear that Ω1 ⊂ Ω0 and

Ti(Ω1) ⊂ Conv(S(Ti(Ω0)))

⊂ Conv(S(Ω0))
= Ω1.

Thus (2) holds for n = 1. Assume now that (2) is true for some n ≥ 1 and i ∈ I. Then

Ωn+1 = Conv(S(Ωn))

⊂ Conv(S(Ωn−1))
= Ωn

and

Ti(Ωn+1) = Ti(Conv(S(Ωn)))

⊂ Conv(S(TiΩn))

⊂ Conv(S(Ωn))
= Ωn+1

for any i ∈ I. Hence, (2) is true by induction.
As before, we can assume that µ(Ωn) > 0 for all n = 1, 2, ..... Therefore, the sequence {µ(Ωn)} is a positive

nonincreasing sequence. Thus, this sequence is convergent to a number say a, a ≥ 0. We now show that
a = 0. Suppose a > 0. Then for all large n, we have µ(Ωn) ∈ [a, a + 1]. For an adequately large n and
c = ν(a, a + 1), by employing inductive reasoning we conclude that

a ≤ µ(Ωn+k) ≤ ckµ(Ti(Ωn)) ≤ ckµ(Ωn) ≤ ck(a + 1)

for all k > 0, which because c < 1, is a contradiction; therefore a = 0. Thus, we have µ(Ωn) → 0 as n → ∞.
Since the sequence {Ωn} is nested, in view of axiom 5 of Definition 1.2, Ω∞ =

⋂
∞

n=1 Ωn is nonempty, closed
and convex subset of Ω. Hence Ω∞ is the member of kerµ. Thus, Ω∞ is compact. Next, keeping in mind that
S maps Ω∞ into itself and taking into account the Schauder fixed point theorem, we infer that the operator
S has a fixed point x in the set Ω∞. Obviously x ∈ Ω. Further, the set F = {x ∈ Ω : Sx = x} is closed by the
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continuity of S. On the other hand, since Ti commutes with S for any i ∈ I, we see that Tix is a fixed point
of S for any x ∈ F. Thus, Ti(F) ⊆ F. Now assume that µ(F) > 0, and then we have

µ(F) ≤ µ(S(F))
≤ η(F) sup

i∈I
(Ti(F))

≤ η(F)µ(F)

and as a consequence, we obtain 1 ≤ η(F), a contradiction. Then µ(F) = 0, so F is compact. Thus Ti has a
fixed point in F and Fi = {x ∈ Ω : Tix = x} is closed by the continuity of Ti. Also, Sx is a fixed point of Ti for
each x ∈ Fi since Ti commutes with S. Therefore, S(Fi) ⊆ Fi. For every i ∈ I, Fi is convex since Ti is an affine
map. Moreover, we have T j(Fi) ⊆ Fi for every j ∈ I and Fi is convex, closed and bounded. Consider now
the restriction S : Fi → Fi of S. For any A ⊆ Fi, we have µ(SA) ≤ η(A)µ(TiA). Then, S has a fixed point in Fi
by a similar way to that of employed before. Therefore S and Ti have a common fixed point in Ω.

Definition 2.7. We call φ :ME → R+ a compactly positive mapping on Banach space E if

λ(a, b) := inf{φ(X) : a ≤ µ(X) ≤ b} > 0 for all intervals [a, b] ⊆ R+ \ {0}.

Definition 2.8. Let Ω be a nonempty, bounded subset of a Banach space E with a measure of noncompactness µ. We
call T : Ω → Ω a Dugundji-Granas condensing operator, if there exists a compactly positive mapping φ on E such
that

µ(TX) ≤ µ(X) − φ(X),

for all X ∈ME.

Theorem 2.9. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E and T : Ω → Ω be a
Dugundji-Granas condensing and continuous operator. Then T has at least one fixed point in Ω.

Proof. Consider the sequence {Ωn} as follows Ω0 = Ω,

Ωn = ConvTΩn−1, n ≥ 1.

As in the proof of Theorem 2.2, without loss of generality, we can suppose that for all n > 1, we have
µ(Ωn) > 0. Sequence {µ(Ωn)} is a positive nonincreasing sequence. Therefore this sequence is convergent,
say to a, a ≥ 0. We show that a = 0. Suppose a > 0 and take a b > a. Then for all large n, we have
µ(Ωn) ∈ [a, b]. For an adequately large n and c = λ(a, b), by inductive reasoning, we have

a ≤ µ(Ωn+k) = µ(ConvTΩn+k−1)
= µ(TΩn+k−1)
≤ µ(Ωn+k−1) − φ(Ωn+k−1)
≤ ...

≤ µ(Ωn) −
k∑

i=0

φ(Ωn+k−i)

≤ µ(Ωn) − kc
≤ b − kc

for all k > 0, a contradiction with regard to that c > 0, therefore a = 0. Thus, when n → ∞, µ(Ωn) → 0. As
{Ωn} is a nested sequence, using axiom 5 of measures of noncompactness, we find that Ω∞ is nonempty and
according to the property of Ω∞, it is a member of kerµ. Also we know that Ω∞ is closed, bounded and
convex and is invariant under T. Therefore Theorem 1.1 completes the proof.
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Remark 2.10. Comparing the inequalities and assumptions of Theorems 2.2 and 2.9, we can conclude that they are
equivalent. Indeed, the inequality µ(TX) ≤ µ(X) − φ(X) takes the form µ(TX) ≤ η(X)µ(X) if we put

η(X) =

 1 −
φ(X)
µ(X)

µ(X) , 0

0, µ(X) = 0.

It is not hard to see that η satisfies the conditions in Definition 2.1. The converse can be seen similarly.

We now show that some recent generalizations of Darbo’s fixed point theorem studied in [3–5] are in
fact particular cases of Theorem 2.2 and 2.9.

Lemma 2.11. Let ϕ : R+ → R+ be a nondecreasing, upper semicontinuous function with ϕ(r) < r for r > 0. Then
λ(a, b) := inf{r − ϕ(r) : a ≤ r ≤ b} > 0 for all finite interval [a, b] ⊂ R+ \ {0}.

Proof. Suppose that λ(a, b) = 0 for some b > a > 0. Then there exists a sequence {ri} ⊂ [a, b] such that
ri − ϕ(ri)→ 0. Without loss of generality, we can assume that {ri} is an increasing sequence. Let ri → ρ ≥ a
when i → ∞. Since ϕ is nondecreasing we get limϕ(ri) = limϕ(ri). Then the upper semicontinuity of φ
gives us

ρ = lim ri = limϕ(ri) = limϕ(ri) ≤ ϕ(ρ),

a contradiction.

Corollary 2.12. Let ϕ : R+ → R+ be a nondecreasing, upper semicontinuous function and limn→∞ ϕn(t) = 0 for
each t ≥ 0. If µ is an arbitrary measure of noncompactness on Banach space E then µ − ϕoµ is compactly positive
mapping on E.

Proof. According to Lemma 2.1 in [4], we know that if ϕ : R+ → R+ is a nondecreasing, upper semicontin-
uous function, then the following two conditions are equivalent:

(1) limn→∞ ϕn(t) = 0 for each t ≥ 0.

(2) ψ(t) < t for any t > 0.

Now using the previous lemma we get the desired result.

Corollary 2.13 (Theorem 2.2 in [4]). Let Ω be a nonempty, bounded, closed and convex subset of Banach space E
and let T : Ω→ Ω be a continuous operator satisfying the inequality

µ(TX) ≤ ϕ(µ(X))

for any nonempty subset X of Ω, where µ is an arbitrary measure of noncompactness and ϕ : R+ → R+ is a
nondecreasing function such that limn→∞ ϕn(t) = 0 for each t ≥ 0. Then T has at least one fixed point in Ω.

Proof. We rewrite the inequality µ(TX) ≤ ϕ(µ(X)) as

µ(TX) ≤ µ(X) − (µ(X) − ϕ(µ(X))). (3)

Now if we put φ(X) = µ(X)−ϕ(µ(X)), then inequality (3) transforms into µ(TX) ≤ µ(X)−φ(X) in which φ(X)
according to the previous corollary, is a compactly positive mapping. Now Theorem 2.9 is applicable.

Definition 2.14 ([5]). Let C be a nonempty subset of a Banach space E and µ an arbitrary measure of noncompactness
on E. We say that an operator T : C → C is a Meir-Keeler condensing operator if for any ε > 0, there exists δ > 0
such that

ε ≤ µ(X) < ε + δ =⇒ µ((TX)) < ε,

for any bounded subset X of C.
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Corollary 2.15 (Theorem 2.2 in [5]). Let C be a nonempty, bounded, closed and convex subset of a Banach space E
and µ be an arbitrary measure of noncompactness on E. If T : C → C is a continuous and Meir-Keeler condensing
operator, then T has at least one fixed point in C.

Proof. In view of Theorem 2.6 in [5] and Corollary 2.13, we can conclude that T has at least one fixed point
in C.

Corollary 2.16 (Theorem 2.1 in [3]). Let Ω be a nonempty, bounded, closed and convex subset of Banach space
E with an arbitrary measure of noncompactness µ. Also, let T : Ω → Ω be a continuous operator satisfying the
inequality

µ(TX) ≤ β(µ(X))µ(X)

for any nonempty subset X of Ω, where β : R+ → [0, 1) satisfies the condition: β(tn) → 1 implies tn → 0. Then T
has at least one fixed point in Ω.

Proof. First we show that

ν(a, b) := sup{β(µ(X)) a ≤ µ(X) ≤ b} < 1 for all intervals [a, b] ⊆ R+ \ {0}.

On the contrary, let us assume that a finite interval [a1, b1] ⊆ R+ \{0} exists with ν(a1, b1) = 1. Therefore, there
must be a sequence {Xn} of bounded subsets of Ω with limn→∞ β(rn) → 1, where rn := µ(Xn) ∈ [a, b]. But
then, rn 9 0 which is in contrast with the assumption. Now taking η := βoµ, then Theorem 2.2 completes
the proof.

Next, we consider the definition of a coupled fixed point for a bivariate mapping and recall a useful
theorem about the construction of a measure of noncompactness on a finite product space.

Definition 2.17 ([28]). An element (x, y) ∈ X × X is called a coupled fixed point of a mapping G : X × X → X if
G(x, y) = x and G(y, x) = y.

Theorem 2.18 ([8]). Suppose µ1, µ2, ..., µn are measures of noncompactness in Banach spaces E1,E2, ...,En, respec-
tively. Moreover, assume that the function F : [0,∞)n

→ [0,∞) is convex and F(x1, x2, ..., xn) = 0 if and only if xi = 0
for i = 1, 2, 3, ...,n. Then

µ̂(X) = F(µ1(X1), µ2(X2), ..., µn(Xn)),

defines a measure of noncompactness in E1 × E2 × E3 × ... × En where Xi denotes the natural projection of X into Ei,
for i = 1, 2, ...,n.

Now, as a consequence of Theorem 2.18, we have the following example (see [6]).

Example 2.19. Let µ be a measure of noncompactness on a Banach space E, considering F(x, y) = max{x, y} for any
(x, y) ∈ [0,∞)2, then we see that F is convex and F(x, y) = 0 if and only if x = y = 0, hence all the conditions
of Theorem 2.18 are satisfied. Therefore, µ̂(X) = max{µ(X1), µ(X2)} defines a measure of noncompactness in the
space E × E where Xi, i = 1, 2 denote the natural projections of X. Similarly, by letting F(x, y) = x + y for any
(x, y) ∈ [0,∞)2, we conclude that µ̂(X) = µ(X1) + µ(X2) defines a measure of noncompactness in the space E × E
where Xi, i = 1, 2 denote the natural projections of X.

Now, we introduce the notion of a bivariate Dugundji-Granas condensing operators and then provide a
coupled fixed point theorem for such operators.

Definition 2.20. Let Ω be a nonempty and bounded subset of a Banach space E and µ an arbitrary measure of
noncompactness on E. We say that T : Ω × Ω → Ω is a Dugundji-Granas condensing operator if there exists a
compactly positive mapping φ :ME → R+ on E such that

µ(G(X1 × X2)) ≤
µ(X1) + µ(X2)

2
−
φ(X)

2
for all X1,X2 ⊂ Ω.
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Theorem 2.21. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach space E and µ an arbitrary
measure of noncompactness on E. If T : Ω ×Ω→ Ω is a continuous Dugundji-Granas condensing operator, then T
has at least one coupled fixed point in Ω ×Ω.

Proof. By Example 2.19, we conclude that µ̂(X) = µ(X1)+µ(X2) is a measure of noncompactness in the space
E1×E2 where Xi, (i = 1, 2) denote the natural projections of X. Now, we consider the map Ĝ : Ω×Ω→ Ω×Ω
defined by the formula

Ĝ(x, y) = (G(x, y),G(y, x)),

which is continuous on Ω×Ω. We show that Ĝ satisfies all the conditions of Theorem 2.9. For this purpose,
let X ⊂ Ω ×Ω be a nonempty subset. Then, we have

µ̂
(
Ĝ(X)) ≤ µ̂(G(X1 × X2) × G(X2 × X1)

)
= µ(G(X1 × X2)) + µ(G(X2 × X1))

≤
µ(X1) + µ(X2)

2
−
φ(X)

2
+
µ(X2) + µ(X1)

2
−
φ(X)

2
= µ̂(X) − φ(X).

As a result, we get

µ̂(Ĝ(X)) ≤ µ̂(X) − φ(X).

Therefore, all the conditions of Theorem 2.9 are satisfied then G has a coupled fixed point in Ω ×Ω.

Now we employ the Dugundji-Granas condensing operators to provide some results for the existence
of fixed points in Banach algebras. For a Banach space E and given subsets X and Y of E, let

XY = {xy : x ∈ X, y ∈ Y}.

Definition 2.22 ([16]). We say that a measure of noncompactness µ on a Banach algebra E satisfies the condition
(m), if for arbitrary sets X,Y ∈ME we have

µ(XY) ≤ ‖X‖µ(Y) + ‖Y‖µ(X),

where ||X|| := supx∈X ||x||.

Let us consider the Banach space C[a, b] consisting of all real functions defined and continuous on
interval [a, b]. This space is endowed with the standard norm ‖x‖ = sup{‖x(t)‖ : t ∈ [a, b]}. Obviously
C[a, b] has also the structure of a Banach algebra with the standard multiplication of functions. Moreover,
fix a set X ∈ MC[a,b] and an arbitrary ε > 0. For an arbitrary function x ∈ X let us denote by ω(x, ε) the
modulus of continuity of x , i.e.

ω(x, ε) = sup{|x(t) − x(s)| : t, s ∈ [a, b], |t − s| ≤ ε}.

Moreover,

ω(X, ε) = sup{ω(x, ε) : x ∈ X},
ω0(X) = lim

ε→0
ω(X, ε).

Now, we introduce a measure of noncompactness in the Banach algebra C[a, b] which satisfies condition
(m) on some subfamily of the familyMC[a;b]. To do this, let us take a set X ∈ MC[a;b] and for x ∈ X consider
the following quantities:

d(x) = sup{|x(s) − x(t)| − [x(s) − x(t)] : t, s ∈ [a, b]; t, s ∈ [a, b], t ≤ s}.
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The quantity d(x) represents the degree of decrease of the function x. In addition, d(x) = 0 if and only if x is
nondecreasing on [a, b]. Moreover, let us put d(X) = sup{d(x) : x ∈ X} and denote µd(X) = ω0(X) + d(X). It
can be shown that µd is a measure of noncompactness in the space C[a, b] and satisfies condition (m) on the
subfamily of the familyMC[a,b], consisting of sets of functions being nonnegative on the interval [a, b]. (cf.
[18]).

Remark 2.23. It is noteworthy to mention that if X ∈ kerµd then X is equicontinuous and every x ∈ X is a
nondecreasing function on [a, b].

Theorem 2.24. Let Ω be a nonempty, bounded, closed and convex subset of a Banach algebra E and operators P and
T continuously transform Ω into E such that P(Ω) and T(Ω) are bounded. Moreover, we assume that the operator
S = P.T transforms Ω into itself. Assume P and T on Ω satisfy the conditions{

µ(PX) ≤ µ(X) − φ1(X),
µ(TX) ≤ µ(X) − φ2(X),

for any nonempty subset X of Ω, where µ is an arbitrary measure of noncompactness satisfying condition (m),
φ1, φ2 : ME → R+ and ‖T(Ω)‖φ1 + ‖P(Ω)‖φ2 is a compactly positive mapping on E. If ‖P(Ω)‖ + ‖T(Ω)‖ ≤ 1, then
S has at least fixed point in Ω.

Proof. Let us take an arbitrary nonempty subset X of the set Ω. Then in view of the assumption that µ
satisfies condition (m) we obtain

µ(S(X)) = µ(P(X).T(X))
≤ ‖P(X)‖µ(T(X)) + ‖T(X)‖µ(P(X))
≤ ‖P(Ω)‖µ(T(X)) + ‖T(Ω)‖µ(P(X))

≤ ‖P(Ω)‖
(
µ(X) − φ2(X)

)
+ ‖T(Ω)‖

(
µ(X) − φ1(X)

)
=

(
‖P(Ω)‖ + ‖T(Ω)‖

)
µ(X) −

(
‖P(Ω)‖φ2(X) + ‖T(Ω)‖φ1(X)

)
≤ µ(X) −

(
‖P(Ω)‖φ2(X) + ‖T(Ω)‖φ1(X)

)
. (4)

Now, letting θ(X) = ‖T(Ω)‖φ1(X) + ‖P(Ω)‖φ2(X), then from (4), we have µ(S(X)) ≤ µ(X) − θ(X). Now, with
regard to the fact that θ is compactly positive, we can apply Theorem 2.9, to get the desired result.

Remark 2.25. The set of all fixed points of the operator S on the set Ω is a member of the kerµ.

Corollary 2.26. Let E, µ,Ω,P,T,S be as in Theorem 2.24. Assume P and T satisfy the conditions µ(P(X)) ≤ ψ1(µ(X)),
µ(T(X)) ≤ ψ2(µ(X)),

for any nonempty subset X of Ω, where ψ1, ψ2 : R+ → R+ are continuous nondecreasing functions such that limn→∞ ψn
1(t) = 0,

limn→∞ ψn
2(t) = 0,

for any t ≥ 0. If ‖T(Ω)‖ + ‖P(Ω)‖ < 1, then S has at least fixed point in Ω.

Proof. We let φ1(X) = µ(X) − ψ1(µ(X)),
φ2(X) = µ(X) − ψ2(µ(X)).
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In view of Lemma 2.1 in [4], we have ‖T(Ω)‖ψ1(t) < ‖T(Ω)‖t,
‖P(Ω)‖ψ2(t) < ‖P(Ω)‖t.

Therefore, ‖T(Ω)‖ψ1(t) + ‖P(Ω)‖ψ2(t) <
(
‖T(Ω)‖ + ‖P(Ω)‖

)
t < t and by Lemma 2.11, we can conclude

‖T(Ω)‖ψ1(t) + ‖P(Ω)‖ψ2(t) is compactly positive mapping on E and Theorem 2.24 completes the proof.

3. Application

In this section, we consider the Banach algebra C(I), where I is a bounded and closed interval. For the
sake of simplicity we presume I = [0, 1], and employ the measure of noncompactness µd defined in section
2. We investigate the following class of singular integral equations:

x(t) = f (t, x(t))
(
q(t) +

1
Γ(α)

∫ ρ(t)

0

ξ(t, s, x(γ(s))
(ρ(t) − s)1−α ds

)
(5)

where t ∈ I, α ∈ (0, 1) and Γ(α) symbolizes the gamma function. By Φ we denote the family of all
nondecreasing and continuous functions ϕ : R+ → R+ such that limn→∞ ϕn(t) = 0. Notice that (5) can be
rewritten in the form x(t) = (Fx)(t).(Vx)(t), where F is the so-called superposition operator which is defined
by the formula

(Fx)(t) = f (t, x(t)),

and V is the Volterra integral operator of fractional order

(Vx)(t) = q(t) +
1

Γ(α)

∫ ρ(t)

0

ξ(t, s, x(γ(s)))
(ρ(t) − s)1−α ds.

Integral and differential equations of fractional order are important for application in many problems in
physics, mechanics and other fields (for example in the theory of neutron transport, the theory of radioactive
transfer, the kinetic theory of gases [26], traffic theory, etc).
For our purposes, we will need the following Lemma [11]. In what follows denote by XJ the subset of C(I)
consisting of all functions x : I→ J.

Lemma 3.1. Assume that J is an arbitrary real interval and f : I × J → R is a given function continuous on the
set I × J . Then the superposition operator generated by the function f maps continuously the set XJ into the space
C(I). Moreover, if the function t → f (t, x) is nondecreasing on I for any fixed x ∈ J and the function x → f (t, x) is
nondecreasing on J for any fixed t ∈ I , then the operator F transforms every nondecreasing function from the set XJ
into a function of the same type belonging to C(I).

We will investigate (5) assuming that the following conditions are satisfied:

(I) q ∈ C(I) and q is a nondecreasing nonnegative function on the interval I and ρ : I → R+ is a
nondecreasing continuous function such that ρ(t) ≤ L for all t ∈ I, where L is a positive constant and
γ : [0,L]→ I is a continuous function.

(II) The function f : I × R → R is continuous with f (I × R+) ⊆ R+. Also, the function t → f (t, x) is
nondecreasing on I for any fixed x ∈ R+ and the function x → f (t, x) is nondecreasing on R+ for any
fixed t ∈ I.

(III) There exists a function ϕ ∈ Φ such that for any t ∈ I and for all x, y ∈ R we have

| f (t, x) − f (t, y)| ≤ ϕ(|x − y|).

Moreover, we presume that ϕ is superadditive i.e., ϕ(t) + ϕ(s) ≤ ϕ(t + s) for all t, s ∈ R+.
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(IV) ξ : I × I ×R→ R is a continuous function such that ξ : I × I ×R+ → R+ and ξ(t, s, x) is nondecreasing
with respect to each variable t, s and x, separately.

(V) There exists a continuous and nondecreasing function Ψ : R+ → R+ such that ξ(t, s, x) ≤ Ψ(|x|) for
t, s ∈ I and for all x ∈ R .

(VI) There exists a positive solution r0 of the inequality

(ϕ(r) + F)
(
‖q‖ +

Ψ(r)
Γ(α + 1)

Lα
)
≤ r,

where F = max{ f (t, 0), t ∈ I}. Moreover, the number r0 is such that (ϕ(r0) + F) +
(
‖q‖ +

Ψ(r0)
Γ(α+1) L

α
)
< 1.

First, we prove the following theorem that we will need in establishing our main result in this section.

Theorem 3.2. Assume that the hypotheses (II) and (III) are satisfied and x ∈ XJ. Then

d(Fx) ≤ ϕ(d(x)).

Proof. Let Ie be the subset of I × I defined as follows

Ie = {(t, s) ∈ I × I : t < s and x(t) = x(s)}.

For (t, s) ∈ Ie, we have

|(Fx)(s) − (Fx)(t)| − [(Fx)(s) − (Fx)(t)] = | f (s, x(s)) − f (t, x(t))| − [ f (s, x(s)) − f (t, x(t))]
= | f (s, x(t)) − f (t, x(t))| − [ f (s, x(t)) − f (t, x(t))]
= 0.

Now, assume that t, s ∈ I , t < s and (t, s) < Ie, i.e x(t) , x(s). Then we have

|(Fx)(s) − (Fx)(t)| − [(Fx)(s) − (Fx)(t)] = | f (s, x(s)) − f (t, x(t))| − [ f (s, x(s)) − f (t, x(t))]
≤ | f (s, x(s)) − f (t, x(s))| + | f (t, x(s)) − f (t, x(t))| − [ f (s, x(s)) − f (t, x(s))] − [ f (t, x(s)) − f (t, x(t))]
= [ f (s, x(s)) − f (t, x(s))] + | f (t, x(s)) − f (t, x(t))| − [ f (s, x(s)) − f (t, x(s))] − [ f (t, x(s)) − f (t, x(t))]
= | f (t, x(s)) − f (t, x(t))| − [ f (t, x(s)) − f (t, x(t))].

If x(t) ≤ x(s), the expression [ f (t, x(s))− f (t, x(t))] is nonnegative and hence | f (t, x(s))− f (t, x(t))| − [ f (t, x(s))−
f (t, x(t))] = 0. If x(t) ≥ x(s), the expression [ f (t, x(s)) − f (t, x(t))] is negative and [ f (t, x(s)) − f (t, x(t))] =
−| f (t, x(s)) − f (t, x(t))|. Hence, we have

| f (t, x(s)) − f (t, x(t))| − [ f (t, x(s)) − f (t, x(t))] = | f (t, x(s)) − f (t, x(t))| + | f (t, x(s)) − f (t, x(t))|
≤ ϕ(|x(s) − x(t)|) + ϕ(|x(s) − x(t)|)
≤ ϕ(|x(s) − x(t)|) + ϕ([x(t) − x(s)])
≤ ϕ(|x(s) − x(t)| + [x(t) − x(s)])
= ϕ(|x(s) − x(t)| − [x(s) − x(t)]).

Let us mention that in the above calculations we used the fact that ϕ is superadditive. As a consequence,
we infer

d(FX) ≤ ϕ(d(X)).

Theorem 3.3. Under assumptions (I)−(VI) equation 5 has at least one solution x(t) = x ∈ C(I) which is nonnegative
and nondecreasing on I.
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Proof. First observe that with regard to assumption (II) and by Lemma 3.1, F transforms C(I) into itself and
is continuous . We show that the operator V has also the same properties. To do so, let us ε > 0 and take
arbitrarily t1, t2 ∈ I such that |t2 − t1| ≤ ε. Without loss of generality we may presume that t1 < t2. Then, for
arbitrarily fixed x ∈ C(I), we have

|(Vx)(t2) − (Vx)(t1)| ≤ |q(t2) − q(t1)|

+
1

Γ(α)

∣∣∣∣∣ ∫ ρ(t2)

0

ξ(t2, s, x(γ(s)))
(ρ(t2) − s)1−α ds −

∫ ρ(t2)

0

ξ(t1, s, x(γ(s)))
(ρ(t2) − s)1−α ds

∣∣∣∣∣
+

1
Γ(α)

∣∣∣∣∣ ∫ ρ(t2)

0

ξ(t1, s, x(γ(s)))
(ρ(t2) − s)1−α ds −

∫ ρ(t1)

0

ξ(t1, s, x(γ(s)))
(ρ(t2) − s)1−α ds

∣∣∣∣∣
+

1
Γ(α)

∣∣∣∣∣ ∫ ρ(t1)

0

ξ(t1, s, x(γ(s)))
(ρ(t2) − s)1−α ds −

∫ ρ(t1)

0

ξ(t1, s, x(γ(s)))
(ρ(t1) − s)1−α ds

∣∣∣∣∣
≤ ω(q, ε) +

1
Γ(α)

∫ ρ(t2)

0

ξ(t2, s, x(γ(s))) − ξ(t1, s, x(γ(s)))
(ρ(t2) − s)1−α ds

+
1

Γ(α)

∫ ρ(t2)

ρ(t1)

|ξ(t1, s, x(γ(s)))|
(ρ(t2) − s)1−α ds

+
1

Γ(α)

∫ ρ(t1)

0
|ξ(t1, s, x(γ(s)))|

∣∣∣∣∣ 1
(ρ(t2) − s)1−α −

1
(ρ(t1) − s)1−α

∣∣∣∣∣ds

≤ ω(q, ε) +
1

Γ(α)

∫ ρ(t2)

0

ω‖x‖(ξ, ε)
(ρ(t2) − s)(1−α)

ds +
1

Γ(α)

∫ ρ(t2)

ρ(t1)

Ψ(‖x‖)
(ρ(t2) − s)(1−α)

ds

+
1

Γ(α)

∫ ρ(t1)

0
Ψ(‖x‖)

[ 1
(ρ(t2) − s)1−α −

1
(ρ(t1) − s)1−α

]
ds

≤ ω(q, ε) +
ω‖x‖(ξ, ε)
αΓ(α)

[ρ(t2)]α +
Ψ(‖x‖)
αΓ(α)

(ρ(t2) − ρ(t1))α

+
Ψ(‖x‖)
αΓ(α)

[[ρ(t1)]α − [ρ(t2)]α + (ρ(t2) − ρ(t1))α]

≤ ω(q, ε) +
ω‖x‖(ξ, ε)
Γ(α + 1)

Lα +
2Ψ(‖x‖)
Γ(α + 1)

[ω(ρ, ε)]α,

where

ωd(ξ, ε) = sup{|ξ(t2, s, y) − ξ(t1, s, y)| : t2, t1 ∈ I, s ∈ [0,L], |t2 − t1| ≤ ε, y ∈ [−d, d]},

and

ω(ρ, ε) = sup{|ρ(t2) − ρ(t1)|, t2, t1 ∈ I, |t2 − t1| ≤ ε}.

Therefore, considering the uniform continuity of the function ξ(t, s, x) on the compact set I × I × [−‖x‖, ‖x‖]
we conclude that the function Vx is continuous on I. Thus, V transforms C(I) into itself. For a fixed x ∈ C(I)
and t ∈ I we have

|(Fx)(t)| ≤ | f (t, x) − f (t, 0)| + | f (t, 0)|

≤ ϕ(|x(t)|) + F

≤ ϕ(‖x‖) + F. (6)
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Moreover,

|(Vx)(t)| ≤ |q(t)| +
1

Γ(α)

∫ ρ(t)

0

|ξ(t, s, x(γ(s)))|
(t − s)1−α ds

≤ ‖q‖ +
Ψ(‖x‖)
Γ(α)

∫ ρ(t)

0

ds
(ρ(t) − s)1−α

≤ ‖q‖ +
Ψ(‖x‖)
Γ(α + 1)

Lα. (7)

By linking (6), (7) and assumption (VI) we can conclude that there exists a positive number r0 such that
the operator W = F.V transforms the ball Br0 into itself. Now, from estimates (6) and (7) and from the fact
established above we get

‖FBr0‖ ≤ ϕ(r0) + F, (8)

‖VBr0‖ ≤ ‖q‖ +
Ψ(r0)

Γ(α + 1)
Lα. (9)

In addition, consider the set Q including all nonnegative functions x ∈ Br0 . Then, according to our
assumptions the operator W transforms the set Q into itself. Now, from (8) and (9) we get

‖FQ‖ ≤ ϕ(r0) + F, (10)

‖VQ‖ ≤ ‖q‖ +
Ψ(r0)

Γ(α + 1)
Lα. (11)

In what follows we prove that W is continuous on the set Q. To do this, first note that that the continuity
of the operator F is an immediate consequence of assumption (II) and a well known result concerning the
continuity of the superposition operator [11]. Next, we prove that V is continuous on the set Q. Thus, let
us fix arbitrarily ε > 0 and x0 ∈ Q. For an arbitrary x ∈ Q such that ‖x− x0‖ ≤ ε and arbitrarily fixed t ∈ I we
have

|(Vx)(t) − (Vx0)(t)| ≤
1

Γ(α)

∣∣∣ ∫ ρ(t)

0

ξ(t, s, x(γ(s)))
(ρ(t) − s)1−α ds −

∫ ρ(t)

0

ξ(t, s, x0(γ(s)))
(ρ(t) − s)1−α

∣∣∣ds

≤
1

Γ(α)

∫ ρ(t)

0

|ξ(t, s, x(γ(s))) − ξ(t, s, x0(γ(s)))|
(ρ(t) − s)1−α ds

≤
1

Γ(α)

∫ ρ(t)

0

ω(ξ, ε)
(ρ(t) − s)1−α ds

≤
ω(ξ, ε)

Γ(α + 1)
Lα,

where

ω(ξ, ε) = sup{|ξ(t, s, a) − ξ(t, s, b)| : t ∈ I, s ∈ [0,L], a; b ∈ [0, r0]; |a − b| ≤ ε}.

With regard to assumption (IV) we have thatω(ξ, ε)→ 0 as ε→ 0. This implies the desired continuity of the
operator V on the set Q. Finally, we conclude that W is continuous on the set Q. First, let us fix a nonempty
subset X of the set Q. Next, choose a number ε > 0 and take t1, t2 ∈ I such that |t2 − t1| ≤ ε. Without loss of
generality we may presume that t1 < t2. Then we get

|(Fx)(t2) − (Fx)(t1)| ≤ | f (t2, x(t2)) − f (t2, x(t1))| + | f (t2, x(t1)) − f (t1, x(t1))|
≤ ϕ(|x(t2) − x(t1)|) + ωr0 ( f , ε)
≤ ϕ(ω(x, ε)) + ωr0 ( f , ε),
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where we denoted

ωr0 ( f , ε) = sup{| f (t2, x) − f (t1, x)| : t1, t2 ∈ I, |t2 − t1| ≤ ε, x ∈ [−r0, r0]}.

As a consequence, we infer ω(Fx, ε) ≤ ϕ(ω(x, ε)) + ωr0 ( f , ε) and we have

ω0(FX) ≤ ϕ(ω0(X)). (12)

Moreover, we obtain

|(Vx)(t2) − (Vx)(t1)| ≤ ω(q, ε) +
ωψ(r0)(ξ, ε)
αΓ(α)

[ρ(t2)]α +
Ψ(‖x‖)
αΓ(α)

(ρ(t2) − ρ(t1))α

+
Ψ(‖x‖)
αΓ(α)

[(ρ(t1)α − ρ(t2)α + (ρ(t2) − ρ(t1))α]

≤ ω(q, ε) +
ωr0 (ξ, ε)
Γ(α + 1)

Lα +
Ψ(r0)

Γ(α + 1)
[ω(ρ, ε)]α +

Ψ(r0)
Γ(α + 1)

[ω(ρ, ε)]α

= ω(q, ε) +
1

Γ(α + 1)
[ωr0 (ξ, ε)Lα + 2Ψ(r0)[ω(ρ, ε)]α].

Hence, ω(VX, ε) ≤ ω(q, ε) +
1

Γ(α + 1)
[ωψ(r0)(ξ, ε)Lα + 2Ψ(r0)[ω(ρ, ε)]α] and consequently

ω0(VX) = 0. (13)

Now assume that t1, t2 ∈ I and t1 < t2. Then, taking an arbitrary function x ∈ X we have

[|(Vx)(t2) − (Vx)(t1)| − [(Vx)(t2) − (Vx)(t1)] ≤ |q(t2) − q(t1)| − [q(t2) − q(t1)]

+
1

Γ(α)

∣∣∣ ∫ ρ(t2)

0

ξ(t2, s, x(γ(s)))
(ρ(t2) − s)1−α −

∫ ρ(t1)

0

ξ(t1, s, x(γ(s)))
(ρ(t1) − s)1−α

∣∣∣ds

−
1

Γ(α)

[ ∫ ρ(t2)

0

ξ(t2, s, x(γ(s)))
(ρ(t2) − s)1−α −

∫ ρ(t1)

0

ξ(t1, s, x(γ(s)))
(ρ(t1) − s)1−α

]
ds.

(14)

By considering our assumptions, we have∫ ρ(t2)

0

ξ(t2, s, x)(γ(s)))
(ρ(t2) − s)1−α ds −

∫ ρ(t1)

0

ξ(t1, s, x(γ(s)))
(ρ(t1) − s)1−α ds

=

∫ ρ(t1)

0

ξ(t2, s, x(γ(s)))
(ρ(t2) − s)1−α ds +

∫ ρ(t2)

ρ(t1)

ξ(t2, s, x(γ(s)))
(ρ(t2) − s)1−α ds

−

∫ ρ(t1)

0

ξ(t1, s, x(γ(s)))
(ρ(t1) − s)1−α ds +

∫ ρ(t1)

0

ξ(t2, s, x(γ(s)))
(ρ(t1) − s)1−α ds −

∫ ρ(t1)

0

ξ(t2, s, x(γ(s)))
(ρ(t1) − s)1−α ds

≥ p
{∫ ρ(t1)

0

( 1
(ρ(t2) − s)1−α −

1
(ρ(t1) − s)1−α

)
ds +

∫ ρ(t2)

ρ(t1)

1
(ρ(t2) − s)1−α ds

}
+

∫ ρ(t1)

0

ξ(t2, s, x(γ(s))) − ξ(t1, s, x(γ(s)))
(ρ(t1) − s)1−α ds

≥ p
[ρ(t2)]α − [ρ(t1)]α

α
+

∫ ρ(t1)

0

ξ(t2, s, x(γ(s))) − ξ(t1, s, x(γ(s)))
(ρ(t1) − s)1−α ds, (15)

where

p = min{ξ(t, s, x) : t ∈ I, s ∈ [0,L], x ∈ [−r0, r0]}.
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Since the function t→ ξ(t, s, x) is nondecreasing on I, (15) implies that

(Vx)(t2) − (Vx)(t1) ≥ 0.

The above inequality linking with (14) allows us to deduce that d(Vx) = 0. As a result

d(VX) = 0. (16)

Now, from (12), (13), (16), Theorem 3.2, assumption (III) and the definition of µd , we get

µd(FX) ≤ ϕ(µd(X)), µd(VX) = 0. (17)

By linking (10), (11), (17) and assumption (VI) and in view of Corollary 2.26 we conclude that the operator
W has a fixed point x in the set Q. Notice that with regard to Remark 2.23 and Remark 2.25 the function
x = x(t) is a nonnegative and nondecreasing solution of the functional integral equation (5).

Now, we present an example to illustrate our theory.

Example 3.4. Consider the following functional integral equation

x(t) = [
t2

1 + t4 ln(1 +
1

10
|x(t)|)] × [t2e−2t +

1
Γ( 1

2 )

∫ t2

0

s + 3
√

x(
√

s)

3(t2 − s)
1
2

ds], (18)

where t ∈ I = [0, 1]. Notice that this equation is a particular case of equation (5) with

q(t) = t2e−2t, f (t, x) =
t2

1 + t4 ln(1 +
1
10
|x(t)|), ξ(t, s, x) =

s
3

+
√

x, γ(s) =
√

s.

In addition, α =
1
2

and ρ(t) = t2. It is easy to see that equation (18) satisfies all the hypotheses needed in Theorem 5.

Indeed, we have ϕ(r) = ln(1 +
1

10
r). Moreover, we have

|ξ(t, s, x)| ≤
1
3

+
√

x

and

| f (t, x) − f (t, y)| =
t2

1 + t4

∣∣∣ ln (
1 +

1
10
|x|

)
− ln

(
1 +

1
10
|y|

)
≤ ln

1 +
1
10
|x|

1 +
1
10
|y|

≤ ln
(
1 +

1
10
.
|x| − |y|

1 +
1

10
|y|

)
< ln

(
1 +

1
10
|x − y|

)
= ϕ(|x − y|).

Therefore, we observe that the function Ψ(r) appearing in assumption (V) may be written in the form Ψ(r) =
1
3

+
√

r.

Furthermore, we have L = 1. In addition, we have that ‖q‖ =
1
2e

and L = 1. So the inequality appearing in assumption
(VI) takes the form

ln(1 +
r

10
)(

1
2e

+
1 + 3

√
r

3Γ( 3
2 )

) ≤ r.
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Note Γ( 3
2 ) = 0.8856... so obviously this inequality has a positive solution r0. For example, r0 =

5
100

. Moreover, we
have that

ln(1 +
r0

10
) +

1
2e

+
1 + 3

√
r0

3Γ( 3
2 )

< 1.

Consequently, all the conditions of Theorem 3.3 are satisfied. Hence, Theorem 3.3 guarantees that equation 18 has a
nondecreasing solution in the space C(I).
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[13] M. Başarır, E. E. Kara. On the B-difference sequence space derived by generalized weighted mean and compact operators. Journal

of Mathematical Analysis and Applications, (2012), 391(1), 67-81.
[14] J. Banas, S. Dudek, The technique of measures of noncompactness in Banach algebras and its applications to integral equations.

In Abstract and Applied Analysis (Vol. 2013). Hindawi Publishing Corporation.
[15] J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, vol. 60,

Marcel Dekker, New York, 1980.
[16] J. Banas, M. Lecko, Fixed points of the product of operators in Banach algebra. Panamer. Math. J. 12 (2002), 101-109.
[17] J. Banas, M. Mursaleen. Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral

Equations. (2014). New Delhi: Springer.
[18] J. Banas, L. Olszowy. On a class of measures of noncompactness in Banach algebras and their application to nonlinear integral

equations. Journal of Analysis and its Applications. (2009) 28(4), 475-498.
[19] J. Banas, K. Sadarangani. Monotonicity properties of the superposition operator and their applications. Journal of Mathematical

Analysis and Applications 340.2 (2008): 1385-1394.
[20] J. Caballero, M. A. Darwish, K. Sadarangani, Solvability of a fractional hybrid initial value problem with supremum by using

measures of noncompactness in Banach algebras. Applied Mathematics and Computation. (2013) 224, 553-563.
[21] G. Darbo, Punti uniti in trasformazioni a codominio non compatto. Rendiconti del Seminario Matematico della Universita di

Padova, (1955), 24, 84-92.
[22] B. C. Dhage, S. S. Bellale, Local asymptotic stability for nonlinear quadratic functional integral equations. Electron. J. Qual.

Theory Differ. Equ, (2008) 10, 1-13.
[23] B. Dhage, D. O’Regan, A fixed point theorem in Banach algebras with applications to functional integral equations. Functional

Differential Equations, (2004) 7(3-4), p-259.
[24] M. A. Darwish, On solvability of some quadratic functional-integral equation in Banach algebra. Communications in Applied

Analysis, (2007) 11(3-4), 441-450. Chicago
[25] J. Dugundji , A. Granas, Weakly contractive maps and elementary domain invariance theorem, Bull.Greek.Math.Soc., 19 (1978),

141-151.
[26] S. Hu, M. Khavanin, W. A. N. Zhuang. Integral equations arising in the kinetic theory of gases. Applicable analysis, 34(3-4),

(1989) 261-266.
[27] M.A. Krasnosel’skii, G.M. Vainikko, R.P. Zabreyko, Y.B. Ruticki and V.V. Stet’senko, (2012). Approximate solution of operator

equations. Springer Science and Business Media.



A. Aghajani et al. / Filomat 34:3 (2020), 843–860 860

[28] W. Shatanawi, B. Samet, M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces.
Mathematical and Computer Modelling, (2012) 55(3), 680-687.

[29] J. M. A. Toledano, T. D. Benavides, G. L. Acedo. Measures of noncompactness in metric fixed point theory (Vol. 99). Springer
Science and Business Media. (1997).


