On a Ricci Quarter-Symmetric Metric Recurrent Connection and a Projective Ricci Quarter-Symmetric Metric Recurrent Connection in a Riemannian Manifold

Di Zhao ${ }^{\text {a }}$, Cholyong Jen ${ }^{\text {b }}$, Talyun Ho ${ }^{\text {b }}$
${ }^{a}$ College of Science, University of Shanghai for Science and Technology, 200093 Shanghai, P. R. China
${ }^{b}$ Faculty of Mathematics, Kim Il Sung University, Pyongyang, D. P. R. K.

Abstract

Two new types of connections, Ricci quarter-symmetric metric recurrent connection and projective Ricci quarter-symmetric metric recurrent connection, were introduced and some interesting geometrical and physical characteristics were achieved.

1. Introduction

The concept of the semi-symmetric connection was introduced by Friedman and Schouten in [6] for the first time, Hayden in [11] introduced the metric connection with torsion, and Yano in [21] defined a semi-symmetric metric connection and studied its geometric properties. N. Agache and M. Chafle [1] investigated the semi-symmetric non-metric connection. Recently, De, Han and Zhao in [2] studied the semi-symmetric non-metric connection. On the other hand, the Schur's theorem of a semi-symmetric nonmetric connection is well known ($[12,13]$) based only on the second Bianchi identity. A semi-symmetric metric connection that is a geometrical model for scalar-tensor theories of gravitation was studied ([3]) and a conjugate symmetry condition of the Amari-Chentsov connection with metric recurrent was also studied. Recently in [9] the similar topics were further studied in sub-Riemannian manifolds. A quartersymmetric connection in [8] was defined and studied. Afterwards, several types of a quarter-symmetric metric connection were studied ([4, 10, 19, 22]). In $[7,14,20,23,24]$, the geometric and physic properties of conformal and projective the semi-symmetric metric recurrent connections were studied. And in [17, 18] a projective conformal quarter-symmetric metric connection and a generalized quarter-symmetric metric recurrent connection were studied. In [5] a curvature copy problem of the symmetric connection was studied. And in [18] the mutual connection of a semi-symmetric connection was studied.

Motivated by the previous researches we define newly in this note the Ricci quarter-symmetric metric recurrent connection and the projective Ricci quarter-symmetric metric recurrent connection and study

[^0]their properties. And the Schur's theorem of the Ricci quarter-symmetric metric recurrent connection and the projective Ricci quarter-symmetric metric recurrent connection and several types of these connections with constant curvature are discovered.

2. A Ricci Quarter Symmetric Metric Recurrent Connection

Let (M, g) be a Riemannian manifold ($\operatorname{dim} M \geq 2), g$ be the Riemannian metric on M, and $\widetilde{\nabla}$ be the Levi-Civita connection with respect to g. Let $X(M)$ denote the collection of all vector fields on M.

Definition 2.1. A connection ∇ is called a Ricci quarter-symmetric metric recurrent connection, if it satisfies

$$
\begin{equation*}
\nabla_{Z} g(X, Y)=2 \omega(Z) g(X, Y), T(X, Y)=\pi(Y) U X-\pi(X) U Y \tag{1}
\end{equation*}
$$

where U is a Ricci operator, ω and π are 1-form respectively. If $U(X)=X$, then ∇ is a semi-symmetric metric recurrent connection studied in [24].

Let $\left(x^{i}\right)$ be the local coordinate, then $g, \widetilde{\nabla}, \nabla, \omega, \pi, U$ and T have the local expressions $g_{j i},\left\{{ }_{j i i}^{k}\right\}, \Gamma_{j i}^{k}, \omega_{i}, \pi_{i}, U_{i}^{j}$ and $T_{j i}^{k}$ respectively. At the same time the expression (1) can be rewritten as

$$
\begin{equation*}
\nabla_{k} g_{j i}=2 \omega_{k} g_{j i}, T_{j i}^{k}=\pi_{i} U_{j}^{k}-\pi_{j} U_{i}^{k} \tag{2}
\end{equation*}
$$

The coefficient of ∇ is given as

$$
\begin{equation*}
\Gamma_{i j}^{k}=\left\{\left\{_{i j}^{k}\right\}-\omega_{i} \delta_{j}^{k}-\omega_{j} \delta_{i}^{k}+g_{i j} \omega^{k}+\pi_{j} U_{i}^{k}-U_{i j} \pi^{k}\right. \tag{3}
\end{equation*}
$$

where $U_{i j}$ is a Ricci tensor of the Levi-Civita connection $\widetilde{\nabla}$. From (3), the curvature tensor of ∇, by a direct computation, is

$$
\begin{align*}
R_{i j k}^{l} & =K_{i j k}^{l}+\delta_{i}^{l} a_{j k}-\delta_{j}^{l} a_{i k}+g_{j k} a_{i}^{l}-g_{i k} a_{j}^{l}+U_{j}^{l} b_{i k}-U_{i}^{l} b_{j k} \\
& +U_{i k} b_{j}^{l}-U_{j k} b_{i}^{l}+c_{i j}^{l} \pi_{k}-c_{j i}^{l} \pi_{k}-c_{i j k} \pi^{l}+c_{j i k} \pi^{l}-\delta_{k}^{l}\left(\omega_{i j}-\omega_{j i}\right) \tag{4}
\end{align*}
$$

where $K_{i j k}^{l}$ is the curvature tensor of the Levi-Civita connection $\widetilde{\nabla}$ and other notations are given as

$$
\begin{aligned}
a_{i k} & =\widetilde{\nabla}_{i} \omega_{k}+\omega_{i} \omega_{k}+U_{i k} \omega_{p} \pi^{p}-U_{i}^{p} \omega_{p} \pi_{k}-\frac{1}{2} g_{i k} \omega_{p} \omega^{p} \\
b_{i k} & =\widetilde{\nabla}_{i} \pi_{k}+\pi_{i} \omega_{k}-U_{i}^{p} \pi_{p} \pi_{k}-\frac{1}{2} U_{i k} \pi_{p} \pi^{p} \\
c_{i j k} & =\widetilde{\nabla}_{i} U_{j k} \\
\omega_{i j} & =\widetilde{\nabla}_{i} \omega_{j}
\end{aligned}
$$

Let

$$
A_{i j k}^{l}=\delta_{i}^{l} a_{j k}+a_{i}^{l} g_{j k}-U_{i}^{l} b_{j k}-b_{i}^{l} U_{j k}+c_{i j}^{l} \pi_{k}-c_{i j k} \pi^{l}-\delta_{k}^{l} \omega_{i j}
$$

Then, we get

$$
\begin{equation*}
R_{i j k}^{l}=K_{i j k}^{l}+A_{i j k}^{l}-A_{j i k}^{l} \tag{5}
\end{equation*}
$$

So there exists the following.
Theorem 2.2. When $A_{i j k}^{l}=A_{j i k^{\prime}}^{l}$ then the curvature tensor will keep unchanged under the connection transformation $\widetilde{\nabla} \rightarrow \nabla$.

From (3), the coefficient of dual connection $\widehat{\nabla}$ of the Ricci quarter-symmetric metric recurrent connection ∇ is

$$
\begin{equation*}
\widehat{\Gamma}_{i j}^{k}=\left\{\left\{_{i j}^{k}\right\}+\omega_{i} \delta_{j}^{k}-\omega_{j} \delta_{i}^{k}+g_{i j} \omega^{k}+\pi_{j} U_{i}^{k}-U_{i j} \pi^{k}\right. \tag{6}
\end{equation*}
$$

By using the expression (6), the curvature tensor of dual connection $\widehat{\nabla}$ is

$$
\begin{align*}
\widehat{R}_{i j k}^{l} & =K_{i j k}^{l}+\delta_{i}^{l} a_{j k}-\delta_{j}^{l} a_{i k}+g_{j k} a_{i}^{l}-g_{i k} a_{j}^{l}+U_{j}^{l} b_{i k}-U_{i}^{l} b_{j k} \\
& +U_{i k} b_{j}^{l}-U_{j k} b_{i}^{l}+c_{i j}^{l} \pi_{k}-c_{j i}^{l} \pi_{k}-c_{i j k} \pi^{l}+c_{j i k} \pi^{l}+\delta_{k}^{l}\left(\omega_{i j}-\omega_{j i}\right) \tag{7}
\end{align*}
$$

In the Riemannian manifold (M, g) if $R_{i j k}^{l}=\widehat{R}_{i j k}^{l}$, then the connection ∇ is called a conjugate symmetry and if $R_{j k}=\widehat{R}_{j k}$, then the connection ∇ is called a conjugate Ricci symmetry, and if $P_{i j}=\widehat{P}_{i j}$, then the connection ∇ is called a conjugate quasi-Ricci (or Volume) symmetry, where $P_{j i}=g^{h l} R_{j i h l}$.
Theorem 2.3. In a Riemannian manifold (M, g) with a Ricci quarter-symmetric metric recurrent connection ∇ if a 1-form ω is a closed form, then the Riemannian manifold (M, g, ∇) is a quasi-Ricci flat and the Ricci quarter-symmetric metric recurrent connection is a conjugate symmetric.

Proof. By using the contraction of the indices k and l in the (4) we have

$$
P_{j i}=\widehat{P}_{j i}-n\left(\omega_{j i}-\omega_{i j}\right)
$$

where $\widetilde{P}_{i j}=K_{i j k}{ }^{k}=0$. If a 1-form ω is a closed form, then $\omega_{i j}=\omega_{j i}$. Hence $P_{j i}=0$. Consequently the Riemannian manifold (M, g, ∇) is a quasi-Ricci flat. On the other hand, from the expressions (4) and (7), we obtain

$$
\begin{equation*}
\widehat{R}_{i j k}^{l}=R_{i j k}^{l}+2 \delta_{k}^{l}\left(\omega_{i j}-\omega_{j i}\right) \tag{8}
\end{equation*}
$$

If a 1 -form ω is a closed form, then $\omega_{i j}=\omega_{j i}$. Hence from the expression (8), we have $\widehat{R}_{i j k}^{l}=R_{i j k}^{l}$. Consequently, the Ricci quarter-symmetric metric recurrent connection ∇ is a conjugate symmetry.

Theorem 2.4. The Ricci quarter-symmetric metric recurrent connection ∇ on a Riemannian manifold (M, g) is a conjugate symmetry if and only if It is a conjugate Ricci symmetry or a conjugate volume symmetry.

Proof. By using the contraction of the indices i and l in (8) we have

$$
\widehat{R}_{j k}=R_{j k}-2\left(\omega_{j k}-\omega_{k j}\right)
$$

From this expression, we arrive at

$$
\omega_{j k}-\omega_{k j}=\frac{1}{2}\left(R_{j k}-\widehat{R}_{j k}\right) .
$$

Substituting this expression into (8), we have

$$
\begin{equation*}
\widehat{R}_{i j k}^{l}+\delta_{k}^{l} \widehat{R}_{i j}=R_{i j k}^{l}+\delta_{k}^{l} R_{i j} \tag{9}
\end{equation*}
$$

From the equation (9) it is easy to show that $R_{i j k}^{l}=\widehat{R}_{i j k}^{l}$ if and only if $R_{j k}=\widehat{R}_{j k}$. On the other hand, by using the contraction of the indices k and l in (8), we have

$$
\widehat{P}_{i j}=P_{i j}+2 n\left(\omega_{i j}-\omega_{j i}\right)
$$

From this expression, we arrive at

$$
\omega_{j k}-\omega_{k j}=\frac{1}{2 n}\left(R_{j k}-\widehat{R}_{j k}\right) .
$$

Substituting this expression into (8) we have

$$
\begin{equation*}
\widehat{R}_{i j k}^{l}-\frac{1}{n} \delta_{k}^{l} \widehat{P}_{i j}=R_{i j k}^{l}-\frac{1}{n} \delta_{k}^{l} P_{i j} \tag{10}
\end{equation*}
$$

From the equation (10), it is easy to show that $R_{i j k}^{l}=\widehat{R}_{i j k}^{l}$ if and only if $P_{i j}=\widehat{P}_{i j}$.
It is well known that a sectional curvature at a point p in a Riemannian manifold is independent of Π (a 2-dimensional subspace of $T_{p}(M)$), the curvature tensor is

$$
\begin{equation*}
R_{i j k}^{l}=k(p)\left(\delta_{i}^{l} g_{j k}-\delta_{j}^{l} g_{i k}\right) \tag{11}
\end{equation*}
$$

In this case, if $k(p)=$ const, then the Riemannian manifold is a constant curvature manifold.
Theorem 2.5. Suppose that $(M, g)(\operatorname{dim} M \geq 3)$ is a connected Riemannian manifold associated with an isotropic Ricci quarter-symmetric metric recurrent connection ∇. If there holds

$$
\begin{equation*}
\omega_{h}=-s_{h} \tag{12}
\end{equation*}
$$

then (M, g, ∇) is a constant curvature manifold, where $s_{h}=\frac{1}{n-1} T_{h p}^{p}$ (Schur's theorem for the Ricci quarter-symmetric metric recurrent connection)

Proof. Substituting the expression (11) and using the expression (2) into the second Bianchi identity of the curvature tensor of the Ricci quarter-symmetric metric recurrent connection ∇, we get

$$
\nabla_{h} R_{i j k}^{l}+\nabla_{i} R_{j h k}^{l}+\nabla_{j} R_{h i k}^{l}=T_{h i}^{m} R_{j m k}^{l}+T_{i j}^{m} R_{h m k}^{l}+T_{j h}^{m} R_{i m k}^{l}
$$

then we have

$$
\begin{aligned}
& \left(\nabla_{h} k(p)+2 \omega_{h} k(p)\right)\left(\delta_{i}^{l} g_{j k}-\delta_{j}^{l} g_{i k}\right)+\left(\nabla_{i} k(p)+2 \omega_{i} k(p)\right)\left(\delta_{j}^{l} g_{h k}-\delta_{h}^{l} g_{j k}\right) \\
& \quad+\left(\nabla_{j} k(p)+2 \omega_{j} k(p)\right)\left(\delta_{h}^{l} g_{i k}-\delta_{i}^{l} g_{h k}\right) \\
& =k(p)\left[\pi_{h}\left(\delta_{i}^{l} U_{j k}-\delta_{j}^{l} U_{i k}+U_{i}^{l} g_{j k}-U_{j}^{l} g_{i k}\right)+\pi_{i}\left(\delta_{j}^{l} U_{h k}-\delta_{h}^{l} U_{j k}+U_{j}^{l} g_{h k}-U_{h}^{l} g_{j k}\right)\right. \\
& \left.\quad+\pi_{j}\left(\delta_{h}^{l} U_{i k}-\delta_{i}^{l} U_{h k}+U_{h}^{l} g_{i k}-U_{i}^{l} g_{h k}\right)\right]
\end{aligned}
$$

Contracting the indices i and l, then we obtain

$$
\begin{aligned}
& (n-2)\left(\nabla_{h} k(p)+2 \omega_{h} k(p)\right) g_{j k}-(n-2)\left(\nabla_{j} k(p)+2 \omega_{j} k(p)\right) g_{h k} \\
& =k(p)\left[(n-3)\left(\pi_{h} U_{j k}-\pi_{j} U_{h k}\right)+\left(\pi_{h} U_{i}^{i}-U_{h}^{i} \pi_{i}\right) g_{j k}-\left(\pi_{j} U_{i}^{i}-\pi_{i} U_{j}^{i}\right) g_{h k}\right]
\end{aligned}
$$

Multiplying both sides of this expression by $g^{j k}$, then we have

$$
(n-1)(n-2)\left(\nabla_{h} k(p)+2 \omega_{h} k(p)\right)=2(n-2) k(p)\left(\pi_{h} U_{p}^{p}-U_{h}^{p} \pi_{p}\right)
$$

From this equation above we obtain

$$
\nabla_{h} k(p)=-2\left(\omega_{h}+s_{h}\right) k(p) .
$$

Consequently, from that we know $k(p)=$ const if and only if $\omega_{h}=-s_{h}$.
By Theorem 2.5, the expression (2) for the Ricci quarter-symmetric metric connection with a constant curvature satisfies

$$
\begin{equation*}
\nabla_{k} g_{j i}=-2 s_{k} g_{j i}, T_{i j}^{k}=\pi_{j} U_{i}^{k}-\pi_{i} U_{j}^{k} \tag{13}
\end{equation*}
$$

Similarly, the formula (3) shows

$$
\begin{equation*}
\Gamma_{i j}^{k}=\left\{\left\{_{i j}^{k}\right\}+s_{i} \delta_{j}^{k}+s_{j} \delta_{i}^{k}-g_{i j} s^{k}+\pi_{j} U_{i}^{k}-U_{i j} \pi^{k}\right. \tag{14}
\end{equation*}
$$

If the Riemannian manifold is an Einstein manifold, then we obtain

$$
\begin{equation*}
U_{j k}=\frac{k}{n} g_{j k} \tag{15}
\end{equation*}
$$

From the expression (15), we have

$$
s_{h}=-\frac{k}{n} \pi_{h}
$$

Hence, for an Einstein manifold, the expression (13) shows

$$
\begin{equation*}
\nabla_{k} g_{i j}=\frac{2 k}{n} \pi_{k} g_{i j}, T_{i j}^{k}=\frac{k}{n}\left(\pi_{j} \delta_{i}^{k}-\pi_{i} \delta_{j}^{k}\right) \tag{16}
\end{equation*}
$$

Similarly, the formula (14) shows

$$
\begin{equation*}
\Gamma_{i j}^{k}=\left\{\left\{_{i j}^{k}\right\}-\frac{k}{n} \pi_{i} \delta_{j}^{k}\right. \tag{17}
\end{equation*}
$$

This connection was studied in [3].
From the expression (3), the coefficient of mutual connection ∇^{m} of the Ricci quarter-symmetric metric recurrent connection ∇ is

$$
\stackrel{m^{k}}{\Gamma_{i j}}=\left\{\begin{array}{l}
k j \tag{18}\\
i_{j}
\end{array}\right\}-\omega_{i} \delta_{j}^{k}-\omega_{j} \delta_{i}^{k}+g_{i j} \omega^{k}+\pi_{i} U_{j}^{k}-U_{i j} \pi^{k}
$$

This connection satisfies the relation

$$
\begin{equation*}
\stackrel{m}{\nabla}_{k} g_{i j}=2 \omega_{k} g_{i j}-2 \pi_{k} U_{i j}+U_{k i} \pi_{j}+U_{k j} \pi_{i}, \stackrel{m}{T}_{i j}^{k}=\pi_{i} U_{j}^{k}-\pi_{j} U_{i}^{k} \tag{19}
\end{equation*}
$$

From the expressions (18) and (19), the coefficient of dual connection $\stackrel{\widehat{m}}{\nabla}$ of the mutual connection $\stackrel{m}{\nabla}$ is

$$
\begin{equation*}
\stackrel{\widehat{m}_{\Gamma_{i j}^{k}}^{\Gamma_{i j}}}{ }=\left\{\left\{_{i j}^{k}\right\}+\omega_{i} \delta_{j}^{k}-\omega_{j} \delta_{i}^{k}+g_{i j} \omega^{k}-\pi_{i} U_{j}^{k}+\pi_{j} U_{i}^{k}\right. \tag{20}
\end{equation*}
$$

On the other hand, in a Riemannian manifold the Weyl connection ${ }_{\nabla}^{w}$ satisfies the relation

$$
\begin{equation*}
\stackrel{w}{\nabla}_{k} g_{i j}=2 \omega_{k} g_{i j}, T_{i j}^{w k}=0 \tag{21}
\end{equation*}
$$

and the coefficient of $\stackrel{w}{\nabla}$ is

$$
\begin{equation*}
\stackrel{m^{k}}{\Gamma_{i j}}=\left\{\left\{_{i j}^{k}\right\}-\omega_{i} \delta_{j}^{k}-\omega_{j} \delta_{i}^{k}+g_{i j} \omega^{k}\right. \tag{22}
\end{equation*}
$$

From the expressions (21) and (22), the coefficient of a dual connection $\stackrel{\widehat{w}}{\nabla}$ of the Weyl connection $\stackrel{w}{\nabla}$ is

$$
\begin{equation*}
\stackrel{\stackrel{-k}{m}}{\Gamma_{i j}}=\left\{\left\{_{i j}^{k}\right\}+\omega_{i} \delta_{j}^{k}-\omega_{j} \delta_{i}^{k}+g_{i j} \omega^{k}\right. \tag{23}
\end{equation*}
$$

Theorem 2.6. In a Riemannian manifold (M, g) the dual connection $\stackrel{\widehat{m}}{\nabla}$ of the mutual connection $\stackrel{m}{\nabla}$ of a Ricci quarter-symmetric metric recurrent connection ∇ is projective equivalent to dual connection ∇ of the Weyl connection $\stackrel{w}{\nabla}$.

Proof. From the expressions (20) and (23), we have

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{m}_{\Gamma_{(i j)}}^{\Gamma_{(i j)}}=\stackrel{{\underset{\sim}{w}}^{k}}{\Gamma_{(i j)}}
\end{aligned}
$$

where $(i j)$ expresses the symmetry of the indices. Hence the connection $\stackrel{\widehat{m}}{\nabla}$ has the same geodesic as $\stackrel{\widehat{w}}{\nabla}$. Thus the connection $\stackrel{\widehat{m}}{ }$ is projective equivalent to the connection $\stackrel{\widehat{w}}{\nabla}$.

3. A Projective Ricci Quarter-Symmetric Metric Recurrent Connection

Definition 3.1. In a Riemannian manifold (M, g), a connection $\stackrel{p}{\nabla}$ is called a projective Ricci quarter-symmetric metric recurrent connection, if the $\stackrel{p}{\nabla}$ is projective equivalent to a Ricci quarter-symmetric metric recurrent connection ∇.

In a Riemannian manifold (M, g), a projective Ricci quarter-symmetric metric recurrent connection $\stackrel{p}{\nabla}$ satisfies the relation

$$
\begin{aligned}
\stackrel{p}{\nabla}_{Z} g(X, Y) & =-2[\Psi(Z)-\omega(Z)] g(X, Y)-\Psi(X) g(Y, Z)-\Psi(Y) g(X, Z) \\
\stackrel{p}{T}(X, Y) & =\pi(Y) U Y-\pi(X) U Y .
\end{aligned}
$$

The local expression of this relation is

$$
\left\{\begin{array}{l}
\stackrel{p}{\nabla}_{k} g_{i j}=-2\left(\Psi_{k}-\omega_{k}\right) g_{i j}-\Psi_{j} g_{i k}-\Psi_{i} g_{j k} \tag{24}\\
p^{p k} \\
T_{i j}=\pi_{j} U_{i}^{k}-\pi_{i} U_{j}^{k}
\end{array}\right.
$$

and the coefficient of $\stackrel{p}{\nabla}$ is

$$
\begin{equation*}
\stackrel{p^{k}}{\Gamma_{i j}}=\left\{\left\{_{i j}^{k}\right\}+\left(\Psi_{i}-\omega_{i}\right) \delta_{j}^{k}+\left(\Psi_{j}-\omega_{j}\right) \delta_{i}^{k}+g_{i j} \omega^{k}+\pi_{j} U_{i}^{k}-U_{i j} \pi^{k}\right. \tag{25}
\end{equation*}
$$

where Ψ_{i} is a projective component.
From (25), we find that the curvature tensor of $\stackrel{p}{\nabla}$ is

$$
\begin{align*}
\stackrel{p}{R_{i j k}}{ }^{l} & =K_{i j k}^{l}+\delta_{j}^{l} a_{i k}^{p}-\delta_{i}^{l} a_{j k}^{p}+g_{j k} b_{i}^{l}-g_{i k} b_{j}^{l}+U_{j}^{l} c_{i k}^{p}-U_{i}^{l} c_{j k}^{p} \\
& +{ }^{p l}{ }^{p l}{ }^{p l}{ }_{i k} d_{j}-U_{j k} d_{i}+\left(e_{i j}^{p}-e_{j i}{ }_{j}^{l}\right) \pi_{k}-\left(e_{i j k}^{p}-e_{j i k}\right) \pi^{l} \tag{26}\\
& -\delta_{k}^{l}\left(\omega_{i j}-\omega_{j i}\right)+\delta_{k}^{l}\left(\Psi_{i j}-\Psi_{j i}\right)
\end{align*}
$$

where $K_{i j k}{ }^{l}$ is the curvature tensor of the Levi-Civita connection $\widetilde{\nabla}$, and the other notations are given as

$$
\begin{cases}p \tag{27}\\ a_{i k} & =\widetilde{\nabla}_{i}\left(\Psi_{k}-\omega_{k}\right)-\left(\Psi_{i}-\omega_{k}\right)\left(\Psi_{k}-\omega_{k}\right) \\ & +U_{i k}\left(\Psi_{p}-\omega_{p}\right) \pi^{p}-U_{i}^{p}\left(\Psi_{p}-\omega_{p}\right) \pi_{k}-g_{i k}\left(\Psi_{p}-\omega_{p}\right) \omega^{p} \\ b_{i k} & =\widetilde{\nabla}_{i} \omega_{k}+\omega_{i} \omega_{k}+U_{i k} \omega_{p} \pi^{p}-U_{i}^{p} \omega_{p} \pi_{k} \\ p & =\widetilde{\nabla}_{i k} \pi_{k}-\pi_{i}\left(\Psi_{k}-\omega_{k}\right)-U_{i}^{p} \pi_{p} \pi_{k}+\frac{1}{2} U_{i k} \pi_{p} \pi^{p} \\ c_{i k} & \widetilde{\nabla}_{i} \pi_{k}+\pi_{i} \omega_{k}-U_{i p} \pi^{p} \pi_{k}+\frac{1}{2} U_{i k} \pi_{p} \pi^{p} \\ d_{i k} & =\widetilde{\nabla}_{i j} \\ e_{i j k} & =\widetilde{\nabla}_{i} U_{j k} \\ \Psi_{i j} & =\widetilde{\nabla}_{i} \Psi_{j}\end{cases}
$$

Let

$$
B_{i j k}^{l}=\delta_{i}^{l}{ }_{i}^{p} \stackrel{p l}{a_{j k}}+g_{j k} b_{i}^{l}-U_{i}^{l} \mathcal{C}_{j k}^{p}-U_{j k} d_{i}^{l}+\stackrel{p}{e}_{i j}^{l} \pi_{k}-e_{i j k} \pi^{l}+\delta_{k}^{l} \Psi_{i j}-\delta_{k}^{l} \omega_{i j}
$$

Then we get

$$
\stackrel{p}{R}_{i j k}^{l}=K_{i j k}^{l}+B_{j i k}^{l}-B_{i j k}^{l} .
$$

So there exists the following.

Theorem 3.2. When $B_{j i k}{ }^{l}=B_{i j k}{ }^{l}$, then the curvature tensor will keep unchanged under the connection transformation $\widetilde{\nabla} \rightarrow \stackrel{p}{\nabla}$.

From (25) and (26), the coefficient of dual connection $\widehat{\nabla}$ of the projective Ricci quarter-symmetric metric recurrent connection $\stackrel{p}{\nabla}$ is

$$
\begin{equation*}
\stackrel{\stackrel{p}{p}^{k}}{\Gamma_{i j}}=\left\{\left\{_{i j}^{k}\right\}-\left(\Psi_{i}-\omega_{i}\right) \delta_{j}^{k}-\left(\Psi^{k}-\omega^{k}\right) g_{i j}-\omega_{j} \delta_{i}^{k}+\pi_{j} U_{i}^{k}-U_{i j} \pi^{k}\right. \tag{28}
\end{equation*}
$$

By using the expression (28), the curvature tensor of dual connection $\stackrel{\widehat{p}}{\nabla}$ is

$$
\begin{align*}
{\stackrel{\widehat{p}}{R_{i j k}} l}_{l} & =K_{i j k}^{l}+\delta_{i}^{l} b_{j k}-\delta_{j}^{l} b_{i k}^{p}+g_{i k} a_{j}^{l}-g_{j k}^{p l} a_{i}+U_{j}^{l} d_{i k}^{p}-U_{i}^{l} d_{j k}^{p} \\
& +U_{i k}^{p^{l} c_{j}}-U_{j k}^{p^{l}} c_{i}+\left(e_{i j}^{l}-p_{j i}^{l}\right) \pi_{k}-\left(e_{i j k}^{p}-e_{j i k}\right) \pi^{l} \tag{29}\\
& +\delta_{k}^{l}\left(\omega_{i j}-\omega_{j i}\right)+\delta_{k}^{l}\left(\Psi_{i j}-\Psi_{j i}\right)
\end{align*}
$$

From the expressions (26) and (29), we have

$$
\begin{align*}
& +\quad U_{j}^{l}\left(\stackrel{p}{c_{i k}}+\stackrel{p}{d_{i k}}\right)-U_{i}^{l}\left(c_{j k}^{p} \stackrel{p}{d_{j k}}\right)+U_{i k}\left(\stackrel{p^{l}}{c_{j}}+\stackrel{p l}{d_{j}}\right)-U_{j k}\left(\stackrel{p l}{c_{i}}+\stackrel{p^{l}}{d_{i}}\right) \tag{30}\\
& +2 \delta_{k}^{l}\left(\Psi_{i j}-\Psi_{j i}\right)+2 \delta_{k}^{l}\left(\omega_{i j}-\omega_{j i}\right)
\end{align*}
$$

Let

$$
\left.\left.D_{i j k}^{l}=\delta_{i}^{l}\left(\stackrel{p}{a} \underset{j k}{ }+\stackrel{p}{b_{j k}}\right)+g_{i k} \stackrel{p^{l}}{a_{j}}+\stackrel{p^{l}}{b_{j}}\right)+U_{j}^{l}\left(c_{i k}+\stackrel{p}{d_{i k}}\right)+U_{i k} \stackrel{p^{l} c_{j}}{c_{j}}+\stackrel{p}{d}_{j}\right)+2 \delta_{k}^{l}\left(\Psi_{i j}+\omega_{i j}\right)
$$

Then we get

$$
\begin{equation*}
\widehat{\sim}_{i j k}^{l}=\stackrel{p}{R}_{i j k}^{l}+D_{j i k}^{l}-D_{i j k}^{l} \tag{31}
\end{equation*}
$$

So there exists the following.
Theorem 3.3. In the Riemannian manifold $(M, g, \stackrel{p}{\nabla})$, if 1 -form Ψ and ω are of closed forms, then the Riemannian manifold is a quasi-Ricci(or volume) flat and if $D_{j i k}{ }^{l}=D_{i j k}$, then the projective Ricci quarter-symmetric recurrent connection $\stackrel{p}{\nabla}$ is a conjugate symmetry.

Proof. By using the contraction of the indices k and l in the expression (26) we have

$$
\begin{align*}
\stackrel{p}{P}_{i j} & =\stackrel{\widetilde{P}_{i j}+\stackrel{p}{a_{i j}}-\stackrel{p}{a_{j i}}+\stackrel{p}{b_{i j}}-\stackrel{p}{b_{j i}}+U_{j}^{k} c_{i k}^{p}-U_{i}^{k} c_{j k}^{p}+U_{i k} d_{j}^{k}-U_{j k} d_{i}^{k}}{\stackrel{p}{k}} \\
& \left.+\left(\stackrel{p}{e}_{i j}^{k}-p_{j i}\right)_{j i}^{k}\right) \pi_{k}+\left(e_{j i k}-e_{i j k}\right) \pi^{k}+n\left(\Psi_{i j}-\Psi_{j i}\right)-n\left(\omega_{i j}-\omega_{j i}\right) \tag{32}
\end{align*}
$$

where $P_{i j}=R_{i j k l} g^{k l}, \widetilde{P}_{i j}=K_{i j k l} g^{k l}=0$, and $e_{i j}^{k} \pi_{k}=e_{i j k} \pi^{k}$.

Using the expression (28), there holds the following

$$
\begin{aligned}
{\underset{a}{i j}}^{a_{i j}} \stackrel{p}{j i} & =\left(\Psi_{i j}-\Psi_{j i}\right)-\left(\omega_{i j}-\omega_{j i}\right)-U_{i}^{p}\left(\Psi_{p}-\omega_{p}\right) \pi_{j}+U_{j}^{p}\left(\Psi_{p}-\omega_{p}\right) \pi_{i}, \\
p_{i j}-b_{j i} & =\omega_{i j}-\omega_{j i}-U_{i}^{p} \omega_{p} \pi_{j}+U_{j}^{p} \omega_{p} \pi_{i}, \\
U_{j}^{k} c_{i k}^{p}-U_{i}^{k} c_{j k}^{p} & =U_{j}^{k} \widetilde{\nabla}_{i} \pi_{k}-U_{i}^{k} \widetilde{\nabla}_{j} \pi_{k}-U_{j}^{k}\left(\Psi_{k}-\omega_{k}\right) \pi_{i}+U_{i}^{k}\left(\Psi_{k}-\omega_{k}\right) \pi_{j}, \\
{\underset{p}{p}}^{U_{i k} d_{j}^{k}-U_{j k} d_{i}^{k}} & =U_{i k} \widetilde{\nabla}_{j} \pi^{k}-U_{j k} \widetilde{\nabla}_{i} \pi^{k}+U_{i k} \omega^{k} \pi_{j}-U_{j k} \omega^{k} \pi_{i}, \\
e_{i j}^{k} \pi_{k}-e_{j i}^{k} \pi_{k} & =0, \\
e_{i j k} \pi^{k}-e_{j i k} \pi^{k} & =0 .
\end{aligned}
$$

Substituting these expressions into the expression (32) and using 1-form Ψ and ω are of closed 1-forms, then $\stackrel{p}{P}_{i j}=0$. Hence the Riemannian manifold $(M, g, \stackrel{p}{\nabla})$ is a qusai-Ricci(or volume) flat.

On the other hand, from the expression (31) if $D_{j i k}{ }^{l}=D_{i j k}^{l}$, then $\stackrel{\widehat{p}}{R_{i j k}}{ }^{l}=\stackrel{p}{R}_{i j k}{ }^{l}$. Hence the projective Ricci quarter-symmetric recurrent connection is of conjugate symmetry.

Theorem 3.4. Suppose that $(M, g)(\operatorname{dim} M \geq 3)$ is a connected Riemannian manifold associated with an isotropic Ricci quarter-symmetric metric recurrent projective connection. If there holds

$$
\begin{equation*}
\Psi_{h}=2\left(\omega_{h}+s_{h}\right) \tag{33}
\end{equation*}
$$

then $(M, g, \stackrel{p}{\nabla})$ is a constant curvature manifold, where $s_{h}=\frac{1}{n-1} T_{h p}^{p}$ (the Schur's theorem for the Ricci quartersymmetric metric recurrent projective connection)

Proof. Substituting the expression (11) into the second Bianchi identity of the curvature tensor of the projective Ricci quarter-symmetric metric recurrent connection, we get
then by using the expression (24) we have

$$
\begin{aligned}
& {\left[\nabla_{h}^{p} k(p)+\left(2 \omega_{h}-\Psi_{h}\right) k(p)\right]\left(\delta_{i}^{l} g_{j k}-\delta_{j}^{l} g_{i k}\right)+\left[{ }^{p} \nabla_{i} k(p)+\left(2 \omega_{i}-\Psi_{i}\right) k(p)\right]\left(\delta_{j}^{l} g_{h k}-\delta_{h}^{l} g_{j k}\right)} \\
& \quad+\left[\nabla_{j} k(p)+\left(2 \omega_{j}-\Psi_{j}\right) k(p)\right]\left(\delta_{h}^{l} g_{i k}-\delta_{i}^{l} g_{h k}\right) \\
& = \\
& \quad k(p)\left[\pi_{h}\left(\delta_{i}^{l} U_{j k}-\delta_{j}^{l} U_{i k}+U_{i}^{l} g_{j k}-U_{j}^{l} g_{i k}\right)+\pi_{i}\left(\delta_{j}^{l} U_{h k}-\delta_{h}^{l} U_{j k}+U_{j}^{l} g_{h k}-U_{h}^{l} g_{j k}\right)\right. \\
& \left.\quad+\pi_{j}\left(\delta_{h}^{l} U_{i k}-\delta_{i}^{l} U_{h k}+U_{h}^{l} g_{i k}-U_{i}^{l} g_{h k}\right)\right]
\end{aligned}
$$

Contracting the indices i and l, we obtain

$$
\begin{aligned}
& (n-1)\left[\stackrel{p}{\nabla}{ }_{h} k(p)+\left(2 \omega_{h}-\Psi_{h}\right) k(p)\right] g_{j k}-(n-1)\left[\stackrel{p}{\nabla}{ }_{j} k(p)+\left(2 \omega_{j}-\Psi_{j}\right) k(p)\right] g_{h k} \\
& +\left[\stackrel{p}{\nabla}_{j} k(p)+\left(2 \omega_{j}-\Psi_{j}\right)\right] g_{h k}-\left[\nabla^{p} k(p)+\left(2 \omega_{h}-\Psi_{h}\right)\right] g_{j k} \\
& =k(p)\left\{\pi_{h}\left[(n-2) U_{j k}+g_{j k} U_{s}^{s}\right]-\pi_{j}\left[(n-2) U_{h k}+g_{h k} U_{s}^{s}\right]+\pi_{j} U_{h k}-\pi_{h} U_{j k}\right. \\
& \left.+g_{h k} U_{j}^{s} \pi_{s}-g_{j k} U_{h}^{s} \pi_{s}\right\}
\end{aligned}
$$

Multiplying both sides of this expression by $g^{j k}$, then we have

$$
(n-1)(n-2)\left[\nabla_{h}^{p} k(p)+\left(2 \omega_{h}-\Psi_{h}\right) k(p)\right]=2(n-2) k(p)\left(\pi_{h} U_{s}^{s}-\pi_{s} U_{h}^{s}\right)
$$

From this equation above we obtain

$$
\stackrel{p}{\nabla_{h}} k(p)=\left[\Psi_{h}-2\left(\omega_{h}+s_{h}\right)\right] k(p)
$$

Consequently from that we know $k(p)=$ const if and only if $\Psi_{h}=2\left(\omega_{h}+s_{h}\right)$.
Theorem 3.5. If an Einstein manifold $(M, g)(\operatorname{dimM} \geq 3)$ associated with a projective Ricci quarter-symmetric metric recurrent connection $\stackrel{p}{\nabla}$ has a constant curvature, then the Riemannian manifold $(M, g, \stackrel{p}{\nabla})$ is conformal flat.

Proof. Adding the expressions (26) and (29), we obtain

$$
\begin{align*}
& -\quad U_{j k}\left({ }^{p l}{ }^{l} \stackrel{p}{l}^{l}+d_{i}\right)+2\left(e_{i j}^{p l}-{ }^{p}{ }_{j i}^{l}\right) \pi_{k}-2\left({ }_{\left(e_{i j k}\right.}^{p}-e_{j i k}\right) \pi^{l} \tag{34}
\end{align*}
$$

From the assumption that a Riemannian manifold is an Einstein manifold, we have

$$
U_{j k}=\frac{k}{n} g_{j k} .
$$

Using this expression, from (27) we obtain

$$
\begin{equation*}
{\stackrel{p}{e_{i j k}}}^{\text {a }}=0 . \tag{35}
\end{equation*}
$$

Using these expressions, from the expression (34), we have

$$
\begin{equation*}
\stackrel{\rightharpoonup}{p}_{i j k}^{l}+\stackrel{p}{R}_{i j k}^{l}=2 K_{i j k}^{l}+\delta_{j}^{l} \alpha_{i k}-\delta_{i}^{l} \alpha_{j k}+g_{i k} \alpha_{j}^{l}-g_{j k} \alpha_{i}^{l} \tag{36}
\end{equation*}
$$

where $\alpha_{i k}=a_{i k}-b_{i k}+\frac{k}{n}\left(c_{i k}+d_{i k}\right)$. Contracting the indices i and l of (36), we get

$$
\begin{equation*}
\stackrel{p}{R}_{j k}+\stackrel{\widetilde{p}}{R}_{j k}=2 K_{j k}-(n-2) \alpha_{j k}-g_{j k} \alpha_{i}^{i} \tag{37}
\end{equation*}
$$

Multiplying both sides of (37) by $g^{j k}$, then we arrive at

$$
\stackrel{p}{R}+\stackrel{\widetilde{p}}{R}=2 K-2(n-1) \alpha_{i}^{i}
$$

From this expression above we have

$$
\alpha_{i}^{i}=\frac{1}{2(n-1)}[2 K-(\stackrel{p}{R}+\stackrel{\widetilde{p}}{R})]
$$

Using the expression from (37), we have

$$
\alpha_{j k}=\frac{1}{n-2}\left\{2 K_{j k}-\stackrel{p}{\left(R_{j k}+\stackrel{\widetilde{p}}{R}\right.} j k-\frac{1}{2(n-1)} g_{j k}[2 K-\stackrel{p}{(R+\stackrel{\widetilde{p}}{R})])\}}\right.
$$

Substituting this expression into (36) and putting

$$
\stackrel{p}{C}_{i j k}^{l}=\stackrel{p}{R_{i j k}}-\frac{1}{n-2}\left(\delta_{i}^{l} \stackrel{p}{R}_{j k}-\delta_{j}^{l} \stackrel{p}{R}_{i k}+g_{j k} \stackrel{p^{l}}{R_{i}}-g_{i k} \stackrel{p l}{R_{j}}\right)+\frac{\stackrel{p}{R}}{(n-1)(n-2)}\left(\delta_{i}^{l} g_{j k}-\delta_{j}^{l} g_{i k}\right)
$$

$$
\begin{aligned}
& \widehat{p}_{l}^{l} \stackrel{\widehat{p}}{l}_{C_{i j k}}^{R_{i j k}}-\frac{1}{n-2}\left(\delta_{i}^{l} \widehat{p}_{j k}-\delta_{j}^{l} \widehat{p}_{i k}+g_{j k} \widehat{p}_{i}^{l}-g_{i k} \widehat{p}_{j}^{l}\right)+\frac{\widehat{p}}{(n-1)(n-2)}\left(\delta_{i}^{l} g_{j k}-\delta_{j}^{l} g_{i k}\right) \\
& \widetilde{C}_{i j k}^{l}=K_{i j k}^{l}-\frac{1}{n-2}\left(\delta_{i}^{l} K_{j k}-\delta_{j}^{l} K_{i k}+g_{j k} K_{i}^{l}-g_{i k} K_{j}^{l}\right)+\frac{K}{(n-1)(n-2)}\left(\delta_{i}^{l} g_{j k}-\delta_{j}^{l} g_{i k}\right)
\end{aligned}
$$

then by a direct computation, we obtain

$$
\begin{equation*}
\stackrel{p}{C}_{i j k}^{l}+\stackrel{\rightharpoonup}{\mathrm{C}}_{i j k}^{l}=2 \widetilde{C}_{i j k}^{l} \tag{38}
\end{equation*}
$$

By using the fact that $\stackrel{p}{\nabla}$ has a constant curvature, thus we have $\stackrel{p}{C}_{i j k}^{l}=\stackrel{\rightharpoonup}{p}_{i j k}^{l}=0$. Hence, one gets

$$
\widetilde{C}_{i j k}^{l}=0 .
$$

This means that the Riemannian manifold $(M, g, \widetilde{\nabla})$ is of conformal flat.
Theorem 3.6. The projective Ricci quarter-symmetric metric recurrent connection $\stackrel{p}{\nabla}$ on an Einstein manifold $(M, g)(\operatorname{dim} M \geq 3)$ is a conjugate symmetry if and only if it is a conjugate Ricci symmetry and conjugate volume symmetry.

Proof. From (26) and (29), we get

$$
\begin{equation*}
\stackrel{\widehat{p}}{R}_{i j k}^{l}=\stackrel{p}{R_{i j k}}+\delta_{i}^{l} \beta_{j k}-\delta_{j}^{l} \beta_{i k}+g_{i k} \beta_{j}^{l}-g_{j k} \beta_{i}^{l}+2 \delta_{k}^{l} \gamma_{i j} \tag{39}
\end{equation*}
$$

where $\beta_{j k} \stackrel{p}{a_{j k}} \stackrel{p}{b_{j k}}+\frac{K}{n}\left(\stackrel{p}{c} \stackrel{p}{c} \stackrel{p}{d}{ }_{j k}\right), \gamma_{i j}=\left(\omega_{i j}-\omega_{j i}\right)-\left(\Psi_{i j}-\Psi_{j i}\right)$. By using contraction of indices i and l of (39), we obtain

$$
\begin{equation*}
\widehat{p}_{j k}=\stackrel{p}{R}_{j k}+n \beta_{j k}-g_{j k} \beta_{i}^{i}-2 \gamma_{j k} \tag{40}
\end{equation*}
$$

Alternating the indices k and j of this expression, we obtain

$$
\stackrel{\widehat{p}}{R}_{j k}-\widehat{p}_{R}^{R j}=\stackrel{p}{R}_{j k}-\stackrel{p}{R}_{k j}+n\left(\beta_{j k}-\beta_{k j}\right)-4 \gamma_{j k}
$$

On one hand, contracting the indices k and l of (39) and changing index i for j, index j for k, we get

$$
\stackrel{\widehat{p}}{P}_{j k}=\stackrel{p}{P}_{j k}+2\left(\beta_{j k}-\beta_{k j}\right)-2 n \gamma_{j k}
$$

From these expressions above we have

$$
\left.\left.\gamma_{j k}=\frac{1}{2\left(n^{2}-4\right)}\left\{2\left[\stackrel{\widehat{p}}{(}_{j k}-\stackrel{\widehat{p}}{P}_{k j}\right)-\stackrel{p}{R}_{j k}-\stackrel{p}{R}_{k j}\right)\right]+n\left(\stackrel{\widehat{p}}{\left(R_{j k}\right.}-\stackrel{p}{R}_{j k}\right)\right\}
$$

Using this expression, from (40) we have

Substituting the above two expressions into (39), we obtain

$$
\begin{aligned}
& \stackrel{p}{R_{i j k}^{l}}-\frac{1}{n}\left(\delta_{i}^{l} R_{j k}^{p}-\delta_{j}^{l} R_{i k}^{p}+g_{i k} \stackrel{p l}{R}^{l}-g_{j k} \stackrel{p l}{R_{i}}\right)-\frac{2}{n\left(n^{2}-4\right)}\left[\delta_{i}^{l}\left(\stackrel{p}{R_{j k}}-\stackrel{p}{R_{k j}}\right)\right. \\
& \left.-\delta_{j}^{l}\left(\stackrel{p}{R_{i k}}-\stackrel{p}{R_{k i}}\right)+g_{i k}\left(\stackrel{p}{R}_{j}^{l}-\stackrel{p}{R_{. j}}\right)-g_{j k}\left(\stackrel{p}{R}_{i}^{l}-\stackrel{p}{R_{. i}}\right)+n \delta_{k}^{l}\left(\stackrel{p}{R}_{i j}-\stackrel{p}{R_{j i}}\right)\right] \\
& -\frac{1}{n^{2}-4}\left(\delta_{i}^{l} \stackrel{p}{P}_{j k}-\delta_{j}^{l}{ }_{j}^{p} P_{i k}+g_{i k} P_{j}^{l}-g_{j k} P_{i}^{l}+n \delta_{k}^{l} P_{i j}^{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{n^{2}-4}\left(\delta_{i}^{l}{ }_{i}^{\widehat{p}} P_{j k}-\delta_{j}^{l}{ }_{j}^{\widehat{p}} P_{i k}+g_{i k} P_{j}{ }^{\widehat{p}}-g_{j k}{ }^{\widehat{p}} P_{i}^{l}+n \delta_{k}^{l} P_{i j}\right)
\end{aligned}
$$

From this expression we arrive at $R_{i j k}^{l}=\widehat{R}_{i j k}^{l}$ if and only if $R_{j k}=\widehat{R}_{j k}, P_{j k}=\widehat{P}_{j k}$. Where $\stackrel{p}{R}_{j}^{l}=\stackrel{p}{R}_{j s} g^{s l}, \stackrel{p}{R} \cdot{ }^{l}=$ $\stackrel{p}{R}_{s j} g^{s l}$. This ends the proof of Theorem 3.6.

From the expression (25), the coefficient of mutual connection $\stackrel{\widehat{p}}{\nabla}$ of the projective Ricci quarter-symmetric metric recurrent connection $\stackrel{p}{\nabla}$ is

$$
\begin{equation*}
\stackrel{p m}{\Gamma}_{i j}^{k}=\left\{\left\{_{i j}^{k}\right\}-\left(\Psi_{i}-\omega_{i}\right) \delta_{j}^{k}+\left(\Psi^{j}-\omega^{j}\right) \delta_{i}^{k}+g_{i j} \omega^{k}+\pi_{i} U_{j}^{k}-U_{i j} \pi^{k}\right. \tag{41}
\end{equation*}
$$

This connection satisfies the relation

$$
\begin{align*}
& \stackrel{p m}{\nabla_{k}} g_{i j}=-2\left(\Psi_{k}-\omega_{k}\right) g_{i j}-\Psi_{i} g_{j k}-\Psi_{j} g_{i k}-2 \pi_{k} U_{i j}+U_{i k} \pi_{j}+U_{j k} \pi_{i} \tag{42}\\
& m_{i j}^{k}=\pi_{i} U_{j}^{k}-\pi_{j} U_{i}^{k} \tag{43}
\end{align*}
$$

From the expressions (41) and (42), the coefficient of dual connection $\stackrel{\widehat{p m}}{\nabla}$ of the mutual connection $\nabla^{p m}$ is

$$
{\stackrel{\widehat{p m}}{\Gamma_{i j}}}^{k}=\left\{\begin{array}{l}
k \tag{44}\\
i_{j}
\end{array}\right\}-\left(\Psi_{i}-\omega_{i}\right) \delta_{j}^{k}-\left(\Psi^{k}-\omega^{k}\right) g_{i j}-\omega_{j} \delta_{i}^{k}-\pi_{i} U_{j}^{k}+U_{i j} \pi^{k}
$$

On the other hand, the coefficient of a dual connection $\stackrel{\widehat{p w}}{\nabla}$ of the Weyl projective connection $\nabla^{p w}$ is given as

$$
{\stackrel{\widehat{p w}}{\Gamma_{i j}}}^{k}=\left\{\begin{array}{l}
k \tag{45}\\
i j
\end{array}\right\}-\left(\Psi_{i}-\omega_{i}\right) \delta_{j}^{k}-\left(\Psi^{k}-\omega^{k}\right) g_{i j}-\omega_{j} \delta_{i}^{k}
$$

Theorem 3.7. In a Riemannian manifold the dual connection $\stackrel{\widehat{p m}}{\nabla}$ of the mutual connection $\stackrel{p m}{\nabla}$ of the projective Ricci quarter-symmetric metric recurrent connection $\stackrel{p}{\nabla}$ is projective equivalent to dual connection $\stackrel{p w}{\nabla}$ of the Weyl projective connection ${ }^{p w}$.
Proof. From the expressions (44) and (45), we have

$$
\begin{aligned}
& \widehat{p m}^{k} \widehat{p w}_{\Gamma_{(i j)}}^{=}=\Gamma_{(i j)}
\end{aligned}
$$

Hence, the connection $\stackrel{\widehat{p m}}{\nabla}$ has the same geodesic as $\stackrel{\widehat{p w}}{\nabla}$. Thus the connection $\stackrel{\widehat{p m}}{\nabla}$ is projective equivalent to the connection $\stackrel{\widehat{p w}}{\nabla}$.

4. Ackonowedement

The third authors would like to thank Professors X. Chao, U. C. De and H. Li for their encouragement and help!

References

[1] N. S. Agache and M. R. Chafle: A semi-symmetric non- metric connection in a Riemannian manifold, Idian J. Pure Appl. Math. 1992, 23, 399-409.
[2] U. C. De, Y. L. Han and P. Zhao: A special type of semi-symmetric non-metric connection on a Riemannian manifold, FACTA UNIVERSITATIS, Series: Math and Informatics, 2016, 31(2): 529-541
[3] K. A. Dunn: A Geometric model for scalar-tensor theories of gravitation, Tensor. N. S, 1975, 29, 214-216
[4] M. K. Dwivedi: A Quarter-symmetric non-metric connection in a Kenmotsu manifold, IEJG. 2011, 4, 1, 115-124
[5] S. Brian Edgar:Curvature copies and uniqueness of Bianchi-type equations: the symmetric connection case, Class. Quantum. Grav. 1993, 10, 2445-2555
[6] A. Fridman and A. Schouten:Uber die Geometric der halb-symmetrischen Ubertragungen, Math. Zeitschrift. 1924,21, 211-233
[7] F. Fu, X. Yang and P. Zhao: Geometrical and physical characteristics of a class conformal mapping, J. Geom. Phys. 62(2012), 1467-1479.
[8] S. Golab: On semi-symmetric and quarter-symmetric linear connections, Tensor. N. S. 1975, 29, 249-254
[9] Y. Han, F. Fu and P. Zhao: On a semi-symmetric metric connection in sub-Riemannian manifolds. Tamkang Journal of Mathmatics, 2016, 47(4): 373-384
[10] Y. Han, T. Ho and P. Zhao: Some invariants of quarter-symmetric metric connections under the projective transformation, Filomat, 2013, 27(4): 679-691
[11] H. A. Hayden: Subspace of a space with torsion, Proc, London Math. Soc. 1932, 34, 27-50
[12] T. Ho: On a semi-symmetric non-metric connection satisfying the Schur's theorem on a Riemannian manifold, arXiv : 12124748 V1
[13] T. Ho, C. Jen and G. Jin: A semi-symmetric projective conformal connection satisfying the Schur's theorem on a Riemannian manifold, J. of Yanbian University (Natural Science), 2014, 40(4) : 290-294
[14] M. Z. Petrovic and M.S. Stankovic: A note on F-planar mappings of manifolds with non-symmetric linear connection, International Journal of Geometric Methods in Modern Physics, 16(5), id. 1950078-205
[15] E. S. Stepanova: Dual symmetric statistical manifold. J. of Mathematical Sciences, 2007, 147(1): 6507-6509
[16] I. Suhendro: A New Semi-symmetric unified field theory of the classical fields of gravity and electromagnetism, Progress in physics, 2007, 4:, 47-62
[17] W. Tang, T. Ho, F. Fu and P. Zhao: On a Quarter-symmetric Projective conformal connection, IEJG, 2017, 10, 2, 37-45
[18] W. Tang, T. Ho, K. Ri, F. Fu and P. Zhao: On a Generalized quarter-symmetric metric recurrent connection, Filomat, 2018, 32:1, 207-215
[19] M. M. Tripath: A new connection in a Riemannian manifold, IEJG, 2008, 1, 1, 15-24
[20] N. O. Vesic and M. S. Stankovic: Invariants of Special Second-Type Almost Geodesic Mappings of Generalized Riemannian Space, Mediterranean Journal of Mathematics, 2018, 15:60
[21] K. Yano: On semi-symmetric metric connection, Rev, Roum, Math. Pures. et Appl, 1971, 15, 1679-1586
[22] K. Yano, J. Imai: Quarter-symmetric connection and their curvature tensors, Tensor. N. S, 1982, 38, 13-18
[23] P. Zhao: The invariant of projective transformation of semi-symmetric metric recurrent connections and curvature tensor expression, J of Engineering Math, 2000, 17(2): 105-108
[24] P. Zhao, H. Song and X. Yang: Some invariant properties of semi-symmetric recurrent connections and curvature tensor expression, Chin. Quart. J. of Math, 2004, 14(4): 355-361

[^0]: 2010 Mathematics Subject Classification. Primary 53C20; Secondary 53D11
 Keywords. Ricci quarter-symmetric metric recurrent connection; Ricci quarter-symmetric metric recurrent projective connection; constant curvature; conjugate symmetry.

 Received: 07 October 2019; Accepted: 10 December 2019
 Communicated by Mić a Stanković
 Corresponding author: Di Zhao
 The authors were supported in part by the NNSF of China(No.11671193), Postgraduate Research \& Practice Innovation Program of Jiangsu Province.

 Email addresses: jszhaodi@126.com (Di Zhao), jcy19630320@163. com (Cholyong Jen), 15904330621@163. com (Talyun Ho)

