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Abstract. Two new types of connections, Ricci quarter-symmetric metric recurrent connection and projec-
tive Ricci quarter-symmetric metric recurrent connection, were introduced and some interesting geometrical
and physical characteristics were achieved.

1. Introduction

The concept of the semi-symmetric connection was introduced by Friedman and Schouten in [6] for
the first time, Hayden in [11] introduced the metric connection with torsion, and Yano in [21] defined
a semi-symmetric metric connection and studied its geometric properties. N. Agache and M. Chafle [1]
investigated the semi-symmetric non-metric connection. Recently, De, Han and Zhao in [2] studied the
semi-symmetric non-metric connection. On the other hand, the Schur’s theorem of a semi-symmetric non-
metric connection is well known ([12, 13]) based only on the second Bianchi identity. A semi-symmetric
metric connection that is a geometrical model for scalar-tensor theories of gravitation was studied ([3])
and a conjugate symmetry condition of the Amari-Chentsov connection with metric recurrent was also
studied. Recently in [9] the similar topics were further studied in sub-Riemannian manifolds. A quarter-
symmetric connection in [8] was defined and studied. Afterwards, several types of a quarter-symmetric
metric connection were studied ([4, 10, 19, 22]). In [7, 14, 20, 23, 24], the geometric and physic properties of
conformal and projective the semi-symmetric metric recurrent connections were studied. And in [17, 18]
a projective conformal quarter-symmetric metric connection and a generalized quarter-symmetric metric
recurrent connection were studied. In [5] a curvature copy problem of the symmetric connection was
studied. And in [18] the mutual connection of a semi-symmetric connection was studied.

Motivated by the previous researches we define newly in this note the Ricci quarter-symmetric metric
recurrent connection and the projective Ricci quarter-symmetric metric recurrent connection and study
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their properties. And the Schur’s theorem of the Ricci quarter-symmetric metric recurrent connection and
the projective Ricci quarter-symmetric metric recurrent connection and several types of these connections
with constant curvature are discovered.

2. A Ricci Quarter Symmetric Metric Recurrent Connection

Let (M, 1) be a Riemannian manifold (dimM ≥ 2), 1 be the Riemannian metric on M, and ∇̃ be the
Levi-Civita connection with respect to 1. Let X(M) denote the collection of all vector fields on M.

Definition 2.1. A connection ∇ is called a Ricci quarter-symmetric metric recurrent connection, if it satisfies

∇Z1(X,Y) = 2ω(Z)1(X,Y),T(X,Y) = π(Y)UX − π(X)UY (1)

where U is a Ricci operator, ω and π are 1-form respectively. If U(X) = X, then ∇ is a semi-symmetric metric
recurrent connection studied in [24].

Let (xi) be the local coordinate, then 1, ∇̃,∇, ω, π,U and T have the local expressions 1 ji, {kji},Γ
k
ji, ωi, πi,U

j
i

and Tk
ji respectively. At the same time the expression (1) can be rewritten as

∇k1 ji = 2ωk1 ji,Tk
ji = πiUk

j − π jUk
i (2)

The coefficient of ∇ is given as

Γk
i j = {ki j} − ωiδ

k
j − ω jδ

k
i + 1i jω

k + π jUk
i −Ui jπ

k (3)

where Ui j is a Ricci tensor of the Levi-Civita connection ∇̃. From (3), the curvature tensor of ∇, by a direct
computation, is

Rl
i jk = Kl

i jk + δl
ia jk − δ

l
jaik + 1 jkal

i − 1ikal
j + Ul

jbik −Ul
ib jk

+ Uikbl
j −U jkbl

i + cl
i jπk − cl

jiπk − ci jkπ
l + c jikπ

l
− δl

k(ωi j − ω ji) (4)

where Kl
i jk is the curvature tensor of the Levi-Civita connection ∇̃ and other notations are given as

aik = ∇̃iωk + ωiωk + Uikωpπ
p
−Up

i ωpπk −
1
2
1ikωpω

p

bik = ∇̃iπk + πiωk −Up
i πpπk −

1
2

Uikπpπ
p

ci jk = ∇̃iU jk

ωi j = ∇̃iω j

Let
Al

i jk = δl
ia jk + al

i1 jk −Ul
ib jk − bl

iU jk + cl
i jπk − ci jkπ

l
− δl

kωi j

Then, we get

Rl
i jk = Kl

i jk + Al
i jk − Al

jik (5)

So there exists the following.

Theorem 2.2. When Al
i jk = Al

jik, then the curvature tensor will keep unchanged under the connection transformation

∇̃ → ∇.
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From (3), the coefficient of dual connection ∇̂ of the Ricci quarter-symmetric metric recurrent connection
∇ is

Γ̂k
i j = {ki j} + ωiδ

k
j − ω jδ

k
i + 1i jω

k + π jUk
i −Ui jπ

k (6)

By using the expression (6), the curvature tensor of dual connection ∇̂ is

R̂l
i jk = Kl

i jk + δl
ia jk − δ

l
jaik + 1 jkal

i − 1ikal
j + Ul

jbik −Ul
ib jk

+ Uikbl
j −U jkbl

i + cl
i jπk − cl

jiπk − ci jkπ
l + c jikπ

l + δl
k(ωi j − ω ji) (7)

In the Riemannian manifold (M, 1) if Rl
i jk = R̂l

i jk, then the connection ∇ is called a conjugate symmetry and

if R jk = R̂ jk, then the connection ∇ is called a conjugate Ricci symmetry, and if Pi j = P̂i j, then the connection
∇ is called a conjugate quasi-Ricci (or Volume) symmetry, where P ji = 1hlR jihl.

Theorem 2.3. In a Riemannian manifold (M, 1) with a Ricci quarter-symmetric metric recurrent connection ∇ if a
1-formω is a closed form, then the Riemannian manifold (M, 1,∇) is a quasi-Ricci flat and the Ricci quarter-symmetric
metric recurrent connection is a conjugate symmetric.

Proof. By using the contraction of the indices k and l in the (4) we have

P ji = P̂ ji − n(ω ji − ωi j)

where P̃i j = Ki jk
k = 0. If a 1-form ω is a closed form, then ωi j = ω ji. Hence P ji = 0. Consequently the

Riemannian manifold (M, 1,∇) is a quasi-Ricci flat. On the other hand, from the expressions (4) and (7), we
obtain

R̂l
i jk = Ri jk

l + 2δl
k(ωi j − ω ji) (8)

If a 1-form ω is a closed form, then ωi j = ω ji. Hence from the expression (8), we have R̂l
i jk = Ri jk

l.
Consequently, the Ricci quarter-symmetric metric recurrent connection ∇ is a conjugate symmetry.

Theorem 2.4. The Ricci quarter-symmetric metric recurrent connection ∇ on a Riemannian manifold (M, 1) is a
conjugate symmetry if and only if It is a conjugate Ricci symmetry or a conjugate volume symmetry.

Proof. By using the contraction of the indices i and l in (8) we have

R̂ jk = R jk − 2(ω jk − ωkj).

From this expression, we arrive at

ω jk − ωkj =
1
2

(R jk − R̂ jk).

Substituting this expression into (8), we have

R̂l
i jk + δl

kR̂i j = Ri jk
l + δl

kRi j (9)

From the equation (9) it is easy to show that Ri jk
l = R̂l

i jk if and only if R jk = R̂ jk. On the other hand, by using
the contraction of the indices k and l in (8), we have

P̂i j = Pi j + 2n(ωi j − ω ji)

From this expression, we arrive at

ω jk − ωkj =
1

2n
(R jk − R̂ jk).



D. Zhao et al. / Filomat 34:3 (2020), 795–806 798

Substituting this expression into (8) we have

R̂l
i jk −

1
n
δl

kP̂i j = Ri jk
l
−

1
n
δl

kPi j (10)

From the equation (10), it is easy to show that Ri jk
l = R̂l

i jk if and only if Pi j = P̂i j.

It is well known that a sectional curvature at a point p in a Riemannian manifold is independent of Π (a
2-dimensional subspace of Tp(M)), the curvature tensor is

Ri jk
l = k(p)(δl

i1 jk − δ
l
j1ik) (11)

In this case, if k(p) =const, then the Riemannian manifold is a constant curvature manifold.

Theorem 2.5. Suppose that (M, 1)(dimM ≥ 3) is a connected Riemannian manifold associated with an isotropic
Ricci quarter-symmetric metric recurrent connection ∇. If there holds

ωh = −sh (12)

then (M, 1,∇) is a constant curvature manifold, where sh = 1
n−1 Tp

hp(Schur’s theorem for the Ricci quarter-symmetric
metric recurrent connection)

Proof. Substituting the expression (11) and using the expression (2) into the second Bianchi identity of the
curvature tensor of the Ricci quarter-symmetric metric recurrent connection ∇, we get

∇hRi jk
l + ∇iR jhk

l + ∇ jRhik
l = Tm

hiR jmk
l + Tm

ij Rhmk
l + Tm

jhRimk
l

then we have

(∇hk(p) + 2ωhk(p))(δl
i1 jk − δ

l
j1ik) + (∇ik(p) + 2ωik(p))(δl

j1hk − δ
l
h1 jk)

+(∇ jk(p) + 2ω jk(p))(δl
h1ik − δ

l
i1hk)

= k(p)[πh(δl
iU jk − δ

l
jUik + Ul

i1 jk −Ul
j1ik) + πi(δl

jUhk − δ
l
hU jk + Ul

j1hk −Ul
h1 jk)

+π j(δl
hUik − δ

l
iUhk + Ul

h1ik −Ul
i1hk)]

Contracting the indices i and l, then we obtain

(n − 2)(∇hk(p) + 2ωhk(p))1 jk − (n − 2)(∇ jk(p) + 2ω jk(p))1hk

= k(p)[(n − 3)(πhU jk − π jUhk) + (πhUi
i −Ui

hπi)1 jk − (π jUi
i − πiUi

j)1hk]

Multiplying both sides of this expression by 1 jk, then we have

(n − 1)(n − 2)(∇hk(p) + 2ωhk(p)) = 2(n − 2)k(p)(πhUp
p −Up

hπp)

From this equation above we obtain
∇hk(p) = −2(ωh + sh)k(p).

Consequently, from that we know k(p) =const if and only if ωh = −sh.

By Theorem 2.5, the expression (2) for the Ricci quarter-symmetric metric connection with a constant
curvature satisfies

∇k1 ji = −2sk1 ji,Tk
i j = π jUk

i − πiUk
j (13)

Similarly, the formula (3) shows

Γk
i j = {ki j} + siδ

k
j + s jδ

k
i − 1i jsk + π jUk

i −Ui jπ
k (14)
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If the Riemannian manifold is an Einstein manifold, then we obtain

U jk =
k
n
1 jk (15)

From the expression (15), we have

sh = −
k
n
πh.

Hence, for an Einstein manifold, the expression (13) shows

∇k1i j =
2k
n
πk1i j,Tk

i j =
k
n

(π jδ
k
i − πiδ

k
j) (16)

Similarly, the formula (14) shows

Γk
i j = {ki j} −

k
n
πiδ

k
j (17)

This connection was studied in [3].

From the expression (3), the coefficient of mutual connection
m
∇ of the Ricci quarter-symmetric metric

recurrent connection ∇ is
m
Γ

k

i j = {ki j} − ωiδ
k
j − ω jδ

k
i + 1i jω

k + πiUk
j −Ui jπ

k (18)

This connection satisfies the relation
m
∇k1i j = 2ωk1i j − 2πkUi j + Ukiπ j + Ukjπi,

m
T

k

i j = πiUk
j − π jUk

i . (19)

From the expressions (18) and (19), the coefficient of dual connection
m̂
∇ of the mutual connection

m
∇ is

m̂
Γ

k

i j = {ki j} + ωiδ
k
j − ω jδ

k
i + 1i jω

k
− πiUk

j + π jUk
i . (20)

On the other hand, in a Riemannian manifold the Weyl connection
w
∇ satisfies the relation

w
∇k1i j = 2ωk1i j,

w
T

k

i j = 0. (21)

and the coefficient of
w
∇ is

m
Γ

k

i j = {ki j} − ωiδ
k
j − ω jδ

k
i + 1i jω

k. (22)

From the expressions (21) and (22), the coefficient of a dual connection
ŵ
∇ of the Weyl connection

w
∇ is

m̂
Γ

k

i j = {ki j} + ωiδ
k
j − ω jδ

k
i + 1i jω

k. (23)

Theorem 2.6. In a Riemannian manifold (M, 1) the dual connection
m̂
∇ of the mutual connection

m
∇ of a Ricci

quarter-symmetric metric recurrent connection ∇ is projective equivalent to dual connection
ŵ
∇ of the Weyl connection

w
∇.

Proof. From the expressions (20) and (23), we have

m̂
Γ

k

(i j) =
ŵ
Γ

k

(i j),

where (i j) expresses the symmetry of the indices. Hence the connection
m̂
∇ has the same geodesic as

ŵ
∇. Thus

the connection
m̂
∇ is projective equivalent to the connection

ŵ
∇.
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3. A Projective Ricci Quarter-Symmetric Metric Recurrent Connection

Definition 3.1. In a Riemannian manifold (M, 1), a connection
p
∇ is called a projective Ricci quarter-symmetric

metric recurrent connection, if the
p
∇ is projective equivalent to a Ricci quarter-symmetric metric recurrent connection

∇.

In a Riemannian manifold (M, 1), a projective Ricci quarter-symmetric metric recurrent connection
p
∇

satisfies the relation
p
∇Z1(X,Y) = −2[Ψ(Z) − ω(Z)]1(X,Y) −Ψ(X)1(Y,Z) −Ψ(Y)1(X,Z),

p
T(X,Y) = π(Y)UY − π(X)UY.

The local expression of this relation is
p
∇k1i j = −2(Ψk − ωk)1i j −Ψ j1ik −Ψi1 jk,
p
T

k

i j = π jUk
i − πiUk

j

(24)

and the coefficient of
p
∇ is

p
Γ

k

i j = {ki j} + (Ψi − ωi)δk
j + (Ψ j − ω j)δk

i + 1i jω
k + π jUk

i −Ui jπ
k. (25)

where Ψi is a projective component.

From (25), we find that the curvature tensor of
p
∇ is

p
Ri jk

l

= Ki jk
l + δl

j

p
aik − δ

l
i

p
a jk + 1 jk

p
bi

l

− 1ik

p
b j

l

+ Ul
j

p
cik −Ul

i

p
c jk

+ Uik

p
d

l

j −U jk

p
d

l

i + (
p
e

l

i j −
p
e

l

ji)πk − (
p
ei jk −

p
e jik)πl (26)

− δl
k(ωi j − ω ji) + δl

k(Ψi j −Ψ ji)

where Ki jk
l is the curvature tensor of the Levi-Civita connection ∇̃, and the other notations are given as

p
aik = ∇̃i(Ψk − ωk) − (Ψi − ωk)(Ψk − ωk)

+Uik(Ψp − ωp)πp
−Up

i (Ψp − ωp)πk − 1ik(Ψp − ωp)ωp

p
bik = ∇̃iωk + ωiωk + Uikωpπp

−Up
i ωpπk

p
cik = ∇̃iπk − πi(Ψk − ωk) −Up

i πpπk + 1
2 Uikπpπp

p
dik = ∇̃iπk + πiωk −Uipπpπk + 1

2 Uikπpπp

p
ei jk = ∇̃iU jk

Ψi j = ∇̃iΨ j

(27)

Let

Bi jk
l = δl

i

p
a jk + 1 jk

p
bi

l

−Ul
i

p
c jk −U jk

p
d

l

i +
p
e

l

i jπk −
p
ei jkπ

l + δl
kΨi j − δ

l
kωi j

Then we get
p
Ri jk

l

= Ki jk
l + B jik

l
− Bi jk

l.

So there exists the following.
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Theorem 3.2. When B jik
l = Bi jk

l, then the curvature tensor will keep unchanged under the connection transformation

∇̃ →

p
∇.

From (25) and (26), the coefficient of dual connection
p̂
∇ of the projective Ricci quarter-symmetric metric

recurrent connection
p
∇ is

p̂
Γ

k

i j = {ki j} − (Ψi − ωi)δk
j − (Ψk

− ωk)1i j − ω jδ
k
i + π jUk

i −Ui jπ
k. (28)

By using the expression (28), the curvature tensor of dual connection
p̂
∇ is

p̂
Ri jk

l = Ki jk
l + δl

i

p
b jk − δ

l
j

p
bik + 1ik

p
a j

l
− 1 jk

p
ai

l
+ Ul

j

p
dik −Ul

i

p
d jk

+ Uik
p
c

l

j −U jk
p
c

l

i + (
p
e

l

i j −
p
e

l

ji)πk − (
p
ei jk −

p
e jik)πl (29)

+ δl
k(ωi j − ω ji) + δl

k(Ψi j −Ψ ji)

From the expressions (26) and (29), we have

p̂
Ri jk

l =
p
Ri jk

l + δl
i(

p
a jk +

p
b jk) − δl

j(
p
aik +

p
bik) + 1ik(

p
a

l

j +
p
b

l

j) − 1 jk(
p
a

l

i +
p
b

l

i)

+ Ul
j(

p
cik +

p
dik) −Ul

i(
p
c jk +

p
d jk) + Uik(

p
c

l

j +
p
d

l

j) −U jk(
p
c

l

i +
p
d

l

i) (30)

+ 2δl
k(Ψi j −Ψ ji) + 2δl

k(ωi j − ω ji)

Let

Di jk
l = δl

i(
p
a jk +

p
b jk) + 1ik(

p
a

l

j +
p
b

l

j) + Ul
j(

p
cik +

p
dik) + Uik(

p
c

l

j +
p
d

l

j) + 2δl
k(Ψi j + ωi j)

Then we get

p̂
Ri jk

l =
p
Ri jk

l + D jik
l
−Di jk

l. (31)

So there exists the following.

Theorem 3.3. In the Riemannian manifold (M, 1,
p
∇), if 1-form Ψ and ω are of closed forms, then the Riemannian

manifold is a quasi-Ricci(or volume) flat and if D jik
l = Di jk

l, then the projective Ricci quarter-symmetric recurrent

connection
p
∇ is a conjugate symmetry.

Proof. By using the contraction of the indices k and l in the expression (26) we have

p
Pi j = P̃i j +

p
ai j −

p
a ji +

p
bi j −

p
b ji + Uk

j

p
cik −Uk

i

p
c jk + Uik

p
d k

j −U jk

p
d k

i

+ (
p
e

k

i j −
p
e

k

ji)πk + (e jik − ei jk)πk + n(Ψi j −Ψ ji) − n(ωi j − ω ji) (32)

where Pi j = Ri jkl1
kl, P̃i j = Ki jkl1

kl = 0, and ek
i jπk = ei jkπk.
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Using the expression (28), there holds the following
p
ai j −

p
a ji = (Ψi j −Ψ ji) − (ωi j − ω ji) −Up

i (Ψp − ωp)π j + Up
j (Ψp − ωp)πi,

p
bi j −

p
b ji = ωi j − ω ji −Up

i ωpπ j + Up
jωpπi,

Uk
j

p
cik −Uk

i

p
c jk = Uk

j ∇̃iπk −Uk
i ∇̃ jπk −Uk

j (Ψk − ωk)πi + Uk
i (Ψk − ωk)π j,

Uik

p
d j

k
−U jk

p
di

k = Uik∇̃ jπ
k
−U jk∇̃iπ

k + Uikω
kπ j −U jkω

kπi,

ek
i jπk − ek

jiπk = 0,

ei jkπ
k
− e jikπ

k = 0.

Substituting these expressions into the expression (32) and using 1-form Ψ and ω are of closed 1-forms,

then
p
Pi j = 0. Hence the Riemannian manifold (M, 1,

p
∇) is a qusai-Ricci(or volume) flat.

On the other hand, from the expression (31) if D jik
l = Di jk

l, then
p̂
Ri jk

l =
p
Ri jk

l. Hence the projective Ricci
quarter-symmetric recurrent connection is of conjugate symmetry.

Theorem 3.4. Suppose that (M, 1)(dimM ≥ 3) is a connected Riemannian manifold associated with an isotropic
Ricci quarter-symmetric metric recurrent projective connection. If there holds

Ψh = 2(ωh + sh) (33)

then (M, 1,
p
∇) is a constant curvature manifold, where sh = 1

n−1 Tp
hp (the Schur’s theorem for the Ricci quarter-

symmetric metric recurrent projective connection)

Proof. Substituting the expression (11) into the second Bianchi identity of the curvature tensor of the
projective Ricci quarter-symmetric metric recurrent connection, we get

p
∇h

p
Ri jk

l +
p
∇i

p
R jhk

l +
p
∇ j

p
Rhik

l =
p
Thi

s
p
R jsk

l +
p
Ti j

s
p
Rhsk

l +
p
T jh

s
p
Risk

l

then by using the expression (24) we have

[
p
∇hk(p) + (2ωh −Ψh)k(p)](δl

i1 jk − δ
l
j1ik) + [

p
∇ik(p) + (2ωi −Ψi)k(p)](δl

j1hk − δ
l
h1 jk)

+ [
p
∇ jk(p) + (2ω j −Ψ j)k(p)](δl

h1ik − δ
l
i1hk)

= k(p)
[
πh(δl

iU jk − δ
l
jUik + Ul

i1 jk −Ul
j1ik) + πi(δl

jUhk − δ
l
hU jk + Ul

j1hk −Ul
h1 jk)

+ π j(δl
hUik − δ

l
iUhk + Ul

h1ik −Ul
i1hk)

]
Contracting the indices i and l, we obtain

(n − 1)[
p
∇hk(p) + (2ωh −Ψh)k(p)]1 jk − (n − 1)[

p
∇ jk(p) + (2ω j −Ψ j)k(p)]1hk

+ [
p
∇ jk(p) + (2ω j −Ψ j)]1hk − [

p
∇hk(p) + (2ωh −Ψh)]1 jk

= k(p)
{
πh[(n − 2)U jk + 1 jkUs

s] − π j[(n − 2)Uhk + 1hkUs
s] + π jUhk − πhU jk

+ 1hkUs
jπs − 1 jkUs

hπs

}
Multiplying both sides of this expression by 1 jk, then we have

(n − 1)(n − 2)
[ p
∇hk(p) + (2ωh −Ψh)k(p)

]
= 2(n − 2)k(p)(πhUs

s − πsUs
h)
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From this equation above we obtain

p
∇hk(p) = [Ψh − 2(ωh + sh)]k(p)

Consequently from that we know k(p) =const if and only if Ψh = 2(ωh + sh).

Theorem 3.5. If an Einstein manifold (M, 1)(dimM ≥ 3) associated with a projective Ricci quarter-symmetric metric

recurrent connection
p
∇ has a constant curvature, then the Riemannian manifold (M, 1,

p
∇) is conformal flat.

Proof. Adding the expressions (26) and (29), we obtain

p̃
Ri jk

l +
p
Ri jk

l = 2Ki jk
l + δl

j(
p
aik −

p
bik) − δl

i(
p
a jk −

p
b jk) + 1ik(

p
a j

l
−

p
b j

l

)

− 1 jk(
p
ai

l
−

p
bi

l

) + Ul
j(

p
cik +

p
dik) −Ul

i(
p
c jk +

p
d jk) + Uik(

p
c j

l
+

p
d j

l

) (34)

− U jk(
p
ci

l
+

p
di

l

) + 2(
p
ei j

l
−

p
e ji

l
)πk − 2(

p
ei jk −

p
e jik)πl

From the assumption that a Riemannian manifold is an Einstein manifold, we have

U jk =
k
n
1 jk.

Using this expression, from (27) we obtain
p
ei jk = 0. (35)

Using these expressions, from the expression (34), we have

p̃
Ri jk

l +
p
Ri jk

l = 2Ki jk
l + δl

jαik − δ
l
iα jk + 1ikα

l
j − 1 jkα

l
i (36)

where αik = aik − bik + k
n (cik + dik). Contracting the indices i and l of (36), we get

p
R jk +

p̃
R jk = 2K jk − (n − 2)α jk − 1 jkα

i
i (37)

Multiplying both sides of (37) by 1 jk, then we arrive at

p
R +

p̃
R = 2K − 2(n − 1)αi

i.

From this expression above we have

αi
i =

1
2(n − 1)

[2K − (
p
R +

p̃
R)]

Using the expression from (37), we have

α jk =
1

n − 2

{
2K jk − (

p
R jk +

p̃
R jk −

1
2(n − 1)

1 jk[2K − (
p
R +

p̃
R)])

}
Substituting this expression into (36) and putting

p
Ci jk

l

=
p
Ri jk

l

−
1

n − 2

(
δl

i

p
R jk − δ

l
j

p
Rik + 1 jk

p
R

l

i − 1ik

p
R

l

j

)
+

p
R

(n − 1)(n − 2)
(δl

i1 jk − δ
l
j1ik)
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p̂
C

l

i jk =
p̂
R

l

i jk −
1

n − 2

(
δl

i

p̂
R jk − δ

l
j

p̂
Rik + 1 jk

p̂
R

l

i − 1ik

p̂
R

l

j

)
+

p̂
R

(n − 1)(n − 2)
(δl

i1 jk − δ
l
j1ik)

C̃l
i jk = Ki jk

l
−

1
n − 2

(
δl

iK jk − δ
l
jKik + 1 jkKl

i − 1ikKl
j

)
+

K
(n − 1)(n − 2)

(δl
i1 jk − δ

l
j1ik)

then by a direct computation, we obtain

p
Ci jk

l

+
p̂
C

l

i jk = 2C̃l
i jk (38)

By using the fact that
p
∇ has a constant curvature, thus we have

p
Ci jk

l

=
p̂
C

l

i jk = 0. Hence, one gets

C̃l
i jk = 0.

This means that the Riemannian manifold (M, 1, ∇̃) is of conformal flat.

Theorem 3.6. The projective Ricci quarter-symmetric metric recurrent connection
p
∇ on an Einstein manifold

(M, 1)(dimM ≥ 3) is a conjugate symmetry if and only if it is a conjugate Ricci symmetry and conjugate volume
symmetry.

Proof. From (26) and (29), we get

p̂
R

l

i jk =
p
Ri jk

l

+ δl
iβ jk − δ

l
jβik + 1ikβ

l
j − 1 jkβ

l
i + 2δl

kγi j (39)

where β jk =
p
a jk +

p
b jk + K

n (
p
c jk +

p
d jk), γi j = (ωi j −ω ji)− (Ψi j −Ψ ji). By using contraction of indices i and l of (39),

we obtain

p̂
R jk =

p
R jk + nβ jk − 1 jkβ

i
i − 2γ jk. (40)

Alternating the indices k and j of this expression, we obtain

p̂
R jk −

p̂
Rkj =

p
R jk −

p
Rkj + n(β jk − βkj) − 4γ jk

On one hand, contracting the indices k and l of (39) and changing index i for j, index j for k, we get

p̂
P jk =

p
P jk + 2(β jk − βkj) − 2nγ jk

From these expressions above we have

γ jk =
1

2(n2 − 4)

{
2
[
(̂

p
P jk −

p̂
Pkj) − (

p
R jk −

p
Rkj)

]
+ n(

p̂
R jk −

p
R jk)

}
Using this expression, from (40) we have

β jk =
1
n

( p̂
R jk −

p
R jk + 1 jkβ

i
i +

1
n2 − 4

{
2
[
(̂

p
P jk −

p̂
Pkj) − (

p
R jk −

p
Rkj)

]
+ n(

p̂
R jk −

p
R jk)

})
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Substituting the above two expressions into (39), we obtain

p
Ri jk

l

−
1
n

(δl
i

p
R jk − δ

l
j

p
Rik + 1ik

p
R

l

j − 1 jk

p
R

l

i) −
2

n(n2 − 4)
[δl

i(
p
R jk −

p
Rkj)

−δl
j(

p
Rik −

p
Rki) + 1ik(

p
R j

l
−

p
R· j l) − 1 jk(

p
Ri

l
−

p
R·i l) + nδl

k(
p
Ri j −

p
R ji)]

−
1

n2 − 4
(δl

i

p
P jk − δ

l
j

p
Pik + 1ik

p
P j

l
− 1 jk

p
Pi

l + nδl
k

p
Pi j)

=
p̂
Ri jk

l
−

1
n

(δl
i

p̂
R jk − δ

l
j

p̂
Rik + 1ik

p̂
R l

j − 1 jk

p̂
R l

i) −
2

n(n2 − 4)
[δl

i(
p̂
R jk −

p̂
Rkj)

−δl
j(

p̂
Rik −

p̂
Rki) + 1ik(

p̂
R j

l
−

p̂
R· j l) − 1 jk(

p̂
Ri

l
−

p̂
R·i l) + nδl

k(
p̂
Ri j −

p̂
R ji)]

−
1

n2 − 4
(δl

i

p̂
P jk − δ

l
j

p̂
Pik + 1ik

p̂
P j

l
− 1 jk

p̂
Pi

l + nδl
k

p̂
Pi j)

From this expression we arrive at Ri jk
l = R̂i jk

l if and only if R jk = R̂ jk,P jk = P̂ jk. Where
p
R j

l =
p
R js1

sl,
p
R· j l =

p
Rsj1

sl. This ends the proof of Theorem 3.6.

From the expression (25), the coefficient of mutual connection
p̂
∇ of the projective Ricci quarter-symmetric

metric recurrent connection
p
∇ is

pm
Γ i j

k = {ki j} − (Ψi − ωi)δk
j + (Ψ j

− ω j)δk
i + 1i jω

k + πiUk
j −Ui jπ

k. (41)

This connection satisfies the relation
pm
∇ k1i j = −2(Ψk − ωk)1i j −Ψi1 jk −Ψ j1ik − 2πkUi j + Uikπ j + U jkπi (42)
m
T

k

i j = πiUk
j − π jUk

i (43)

From the expressions (41) and (42), the coefficient of dual connection
p̂m
∇ of the mutual connection

pm
∇ is

p̂m
Γ i j

k = {ki j} − (Ψi − ωi)δk
j − (Ψk

− ωk)1i j − ω jδ
k
i − πiUk

j + Ui jπ
k. (44)

On the other hand, the coefficient of a dual connection
p̂w
∇ of the Weyl projective connection

pw
∇ is given as

p̂w
Γ i j

k = {ki j} − (Ψi − ωi)δk
j − (Ψk

− ωk)1i j − ω jδ
k
i . (45)

Theorem 3.7. In a Riemannian manifold the dual connection
p̂m
∇ of the mutual connection

pm
∇ of the projective Ricci

quarter-symmetric metric recurrent connection
p
∇ is projective equivalent to dual connection

p̂w
∇ of the Weyl projective

connection
pw
∇ .

Proof. From the expressions (44) and (45), we have

p̂m
Γ

k

(i j) =
p̂w
Γ

k

(i j)

Hence, the connection
p̂m
∇ has the same geodesic as

p̂w
∇ . Thus the connection

p̂m
∇ is projective equivalent to the

connection
p̂w
∇ .
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