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Abstract. In this paper, some compression matrix inequalities are applied to the Frobenius companion
matrices of monic polynomials in order to obtain new upper bounds for the zeros of such polynomials.

1. Introduction

Locating the zeros of polynomials is a classical problem, which has attracted the attention of many
mathematicians beginning with Cauchy. This problem, which is still a fascinating topic to both complex
and numerical analysts, has many applications in diverse fields of mathematics. The Frobenius companion
matrix plays an important link between matrix analysis and the geometry of polynomials. It has been used
for the location of the zeros of polynomials by matrix methods (see, e.g., [2], [4], [6], [9], [10], [17]-[23], and
references therein). In Section 2, we employ several matrix inequalities involving the spectral norm, the
spectral radius, and the numerical radius to derive new bounds for the zeros of polynomials.

Suppose that p(z) = zn + anzn−1 + ...+ a2z + a1 is a complex monic polynomial with n ≥ 2 and a1 , 0. Let
z1, z2, z3, ..., zn be the zeros of p arranged in such a way that |z1| ≥ |z1| ≥ ... ≥ |zn| . The Frobenius companion
matrix Cp of p is defined as

Cp =


−an −an−1 ... −a2 −a1

1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 · · · 1 0


.

It is well-known that the characteristic polynomial of Cp is p itself. Thus, the zeros of p are exactly the
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eigenvalues of Cp (see, e.g., [14, p. 316]). Note that

C2
p =


bn bn−1 ... b3 b2 b1
−an −an−1 ... −a3 −a2 −a1

1 0 ... 0 0 0
...

...
. . .

...
...

...
0 0 ... 1 0 0


,

where b j = ana j−a j−1 f or j = 1, 2, ...,n,with a0 = 0.Let p1(z) = (z−an)p(z) = zn+1
−bnzn−1

−bn−1zn−2
−...−b2z−b1.

Then z1, z2, z3, ..., zn and an are the zeros of p1. The corresponding Frobenius companion matrix Cp1 of p1 is
given by

Cp1 =



0 bn bn−1 ... b2 b1
1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
...

...
...

. . .
...

...
0 0 0 ... 1 0


.

We have

C3
p =



cn cn−1 cn−2 ... c4 c3 c2 c1
bn bn−1 bn−2 ... b4 b3 b2 b1
−an −an−1 −an−2 ... −a4 −a3 −a2 −a1

1 0 0 ... 0 0 0 0
0 1 0 ... 0 0 0 0
0 0 1 ... 0 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 ... 1 0 0 0


,

where b j = ana j − a j−1 and c j = −anb j + an−1a j − a j−2 f or j = 1, 2, ...,n, with a0 = a−1 = 0. Let p2 (z) =

(z2
− anz + a2

n − an−1)p(z) = zn+2
− cnzn−1

− ... − c2z − c1 . The corresponding Frobenius companion matrix Cp2

of p2 is given by

Cp2 =



0 0 cn cn−1 cn−2 ... c2 c1
1 0 0 0 0 ... 0 0
0 1 0 0 0 ... 0 0
0 0 1 0 0 ... 0 0
0 0 0 1 0 ... 0 0
0 0 0 0 1 ... 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 ... 1 0


.

We have

C4
p =



dn dn−1 ... d5 d4 d3 d2 d1
cn cn−1 ... c5 c4 c3 c2 c1
bn bn−1 ... b5 b4 b3 b2 b1
−an −an−1 ... −a5 −a4 −a3 −a2 −a1

1 0 ... 0 0 0 0 0
0 1 ... 0 0 0 0 0
...

...
. . .

...
...

...
...

...
0 0 ... 1 0 0 0 0


,



F. Kittaneh et al. / Filomat 34:3 (2020), 1035–1051 1037

where b j = ana j − a j−1, c j = −anb j + an−1a j − a j−2, and d j = −anc j − an−1b j−1 + an−2a j − a j−3 f or j = 1, 2, ...,n, with
a0 = a−1 = a−2 = 0. Let p3(z) =

(
z3
− anz2 +

(
a2

n − an−1

)
z − a3

n + 2anan−1 − an−2

)
p(z) = zn+3

−dnzn−1
− ...−d2z−d1.

The corresponding Frobenius companion matrix Cp3 of p3 is given by

Cp3 =



0 0 0 dn dn−1 ... d2 d1
1 0 0 0 0 ... 0 0
0 1 0 0 0 ... 0 0
0 0 1 0 0 ... 0 0
0 0 0 1 0 ... 0 0
0 0 0 0 1 ... 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 ... 1 0


.

In fact, for k < n, the entries of the first row of Ck
p are the negative of the coefficients of the polynomial

obtained by multiplying p by a polynomial of degree k − 1. We leave the details to the interested reader. It
should be mentioned here that the zeros of p are contained in the zeros of p1, p2, and p3. So, any upper
bound for the zeros of p1, p2, or p3 can be considered as an upper bound for the zeros of p.

Let Mn(C) denote the algebra of all n × n complex matrices. The eigenvalues of A are denoted by
λ1 (A) , λ2 (A) , ..., λn (A) , and are arranged so that |λ1 (A)| ≥ |λ2 (A)| ≥ ... ≥ |λn (A)| . The singular values
of A (i.e., the eigenvalues of |A| = (A∗A)

1
2 ) are denoted by s1 (A) , s2 (A) , ..., sn (A) , and arranged so that

s1 (A) ≥ s2 (A) ≥ ... ≥ sn (A) . Recall that s2
j (A) = λ j (A∗A) = λ j (A A∗) for j = 1, 2, ...,n. For A ∈ Mn(C),

let r (A) , w (A) , and ‖A‖ denote the spectral radius, the numerical radius, and the spectral norm of A,
respectively. Recall that w (A) = max‖x‖=1 |〈 Ax, x 〉| . It is known that∣∣∣ λ j (A)

∣∣∣ ≤ r (A) ≤ w (A) ≤ ‖A‖ = s1 (A) (1)

(see, e.g., [7] or [15]). Let A ∈Mn(C), and let A = U | A| be the polar decomposition of A . The generalized
Aluthge transform of A is defined as

A (t) = | A|t U | A|1−t

for 0 < t < 1 (see, e.g., [3]). This transform is well-defined, as it is independent of the choice of the partial
isometry U in the polar decomposition of A.

A compression of a partitioned block matrix A =
[
Ai j

]
with respect to a certain real-valued function f is

a matrix obtained from A by replacing each of its blocks by f
(
Ai j

)
. Inequalities relating f (A) = f

([
Ai j

])
to

its compression matrix
[

f
(
Ai j

)]
are called compression inequalities.

In this paper, we employ spectral norm, spectral radius, and numerical radius compression inequalities
to obtain new bounds for the zeros of polynomials.

2. Main results

Matrix analysis methods have been successfully utilized to derive several bounds for the zeros of
polynomials. We employ various matrix inequalities to the companion matrices Cp, Cp1 , Cp2 , and Cp3 to
derive new bounds for the zeros of p. This will be accomplished by applying certain lemmas.

The following lemma can be found in [16].

Lemma 2.1. Let A ∈Mn(C) be partitioned as

A =

[
A11 A12
A21 A22

]
,
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where Ai j is an ni × n j matrix f or i, j = 1, 2 with n1 + n2 = n. If

Ã =

[
‖A11‖ ‖A12‖

‖A21‖ ‖A22‖

]
,

then

r (A) ≤ r
(
Ã
)
, (2)

w (A) ≤ w
(
Ã
)
, (3)

and

‖A‖ ≤
∥∥∥Ã

∥∥∥ .
Theorem 2.2. If z is any zero of p1, then

|z| ≤
1
2

max{1, |bn|} + 1 +

√√√√√
(max{1, |bn|} − 1)2 + 4

√√√n−1∑
j=1

∣∣∣b j

∣∣∣2
 .

Proof. Partition Cp1 as

Cp1 =

[
A B
C D

]
,

where A =

[
0 bn
1 0

]
, B =

[
bn−1 ... b2 b1

0 ... 0 0

]
, C =


0 1
0 0
...

...
0 0

 , and D =


0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0


. Using the

inequality (2) in Lemma 2.1, we have

r
(
Cp1

)
≤ r

([
||A|| ||B||
||C|| ||D||

])

=
1
2

(
||A|| + ||D|| +

√
(||A|| − ||D||)2 + 4 ||B|| ||C||

)
.

Since ||A|| = max{1, |bn|}, ||B|| =
√∑n−1

j=1

∣∣∣b j

∣∣∣2, and ||C|| = ||D|| = 1, it follows that

r
(
Cp1

)
≤

1
2

max{1, |bn|} + 1 +

√√√√√
(max{1, |bn|} − 1)2 + 4

√√√n−1∑
j=1

∣∣∣b j

∣∣∣2
 ,

from which the result follows by the inequalities (1).

The following two theorems, however, can be proved similarly as in Theorem 2.2.

Theorem 2.3. If z is any zero of p2, then

|z| ≤ 1 +

 n∑
j=1

∣∣∣c j

∣∣∣2
1
4

.
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Theorem 2.4. If z is any zero of p3, then

|z| ≤ 1 +

 n∑
j=1

∣∣∣d j

∣∣∣2
1
4

.

The following lemma can be found in [11, pp. 8-9].

Lemma 2.5. Let Ln be the n × n matrix given by

Ln =


0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0


.

Then

w (Ln) = cos
π

n + 1
.

The following two lemmas are well-known and they can be found in [24] and [5], respectively. The first
lemma gives a useful formulation of the numerical radius, and the second one is an improvement of the
inequality (3) in Lemma 2.1. Here,Mr×s(C) denotes the space of all r × s complex matrices.

Lemma 2.6. Let A ∈Mn(C). Then

w (A) = max
θ∈R

∣∣∣∣∣∣∣∣Re
(
eiθA

)∣∣∣∣∣∣∣∣ .
Lemma 2.7. Let A ∈Mk(C), B ∈Mk×m(C),C ∈Mm×k(C) and D ∈Mm(C), and let T =

[
A B
C D

]
. Then

w (T) ≤ w
([

w (A) w (To)
w (To) w (D)

])
=

1
2

(
w (A) + w (D) +

√
(w (A) − w (D))2 + 4w2 (To)

)
,

where To =

[
0 B
C 0

]
.

The following lemma [1] gives a bound for the spectral radii of sums of two matrices involving the
Aluthge transforms of these matrices.

Lemma 2.8. Let A,B ∈Mn(C). Then

r (A + B) ≤ r

 w (A (t)) ||AB||
t
2 ||BA||

1−t
2

||AB||
t
2 ||BA||

1−t
2 w (B∗ (t))


for 0 < t < 1.

Theorem 2.9. If z is any zero of p1, then

|z| ≤
1
2

(
cos

π
n + 1

+

√
cos2 π

n + 1
+ 4b

)
,

where b =
(∑n

j=1

∣∣∣b j

∣∣∣2) 1
2

.
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Proof. Write Cp1 as Cp1 = A + B, where A = Ln+1, and

B =



0 bn bn−1 ... b2 b1
0 0 0 ... 0 0
0 0 0 ... 0 0
0 0 0 ... 0 0
...

...
...

. . .
...

...
0 0 0 ... 0 0


.

Note that |A| = In ⊕ 0 and |B∗| = b ⊕ 0n in which b =
(∑n

j=1

∣∣∣b j

∣∣∣2) 1
2

, where In, 0n are, respectively, the identity

and the zero matrices inMn(C). Let U = A and V = 1
b B . Then U and V are partial isometries. Moreover, A

and B can be written, respectively, as A = U |A| and B = V |B| in a polar decomposition. Now, it is easy to
see that A(t) = Ln ⊕ 0 and B∗ (t) = 0n+1 for 0 < t < 1. Consequently, w (B∗ (t)) = 0, and by considering Lemma
2.5, we obtain w (A (t)) = cos π

n+1 . Furthermore, using the inequality |z| ≤ r
(
Cp1

)
and Lemma 2.8, we have

|z| ≤ inf
0<t<1

r

 cos π
n+1 ||AB||

t
2 ||BA||

1−t
2

||AB||
t
2 ||BA||

1−t
2 0


=

1
2

(
cos

π
n + 1

+

√
cos2 π

n + 1
+ 4 inf

0<t<1
||AB||

t
2 ||BA||

1−t
2

)
.

Since ||AB|| = ||BA|| = b, we have inf0<t<1 ||AB||
t
||BA||1−t = b, from which our result follows.

Now, the following two theorems can be proved in a similar manner to Theorem 2.9.

Theorem 2.10. If z is any zero of p2, then

|z| ≤
1
2

(
cos

π
n + 2

+

√
cos2 π

n + 2
+ 4c

)
,

where c =
(∑n

j=1

∣∣∣c j

∣∣∣2) 1
2

.

Theorem 2.11. If z is any zero of p3, then

|z| ≤
1
2

(
cos

π
n + 3

+

√
cos2 π

n + 3
+ 4d

)
,

where d =
(∑n

j=1

∣∣∣d j

∣∣∣2) 1
2

.

The following two lemmas can be found in [15, p. 44] and [25, p. 133], respectively.

Lemma 2.12. Let A =
[
ai j

]
∈Mn(C). Then

w (A) ≤ w
([∣∣∣ai j

∣∣∣]) =
1
2

r
([∣∣∣ai j

∣∣∣ +
∣∣∣a ji

∣∣∣]) . (4)

Moreover, if ai j ≥ 0, then

w (A) = r
([ai j + a ji

2

])
. (5)
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Lemma 2.13. Let Tn be the n × n tridiagonal matrix given by

Tn =



0 1
2 0 ... 0

1
2 0 1

2 ... 0
0 1

2 0 ... 0
...

...
...

. . . 1
2

0 0 ... 1
2 0


.

Then the eigenvalues of Tn are

λ j = cos
jπ

n + 1
for j = 1, 2, ...,n.

Based on Lemma 2.12 and Lemma 2.13, we have the following bounds for the zeros of polynomials.
Related results can be found in [18].

Theorem 2.14. If z is any zero of p1, then

|z| ≤
1
2

cos
π

n + 1
+

√√√
cos2 π

n + 1
+ (1 + |bn|)

2 +

n−1∑
j=1

∣∣∣b j

∣∣∣2
 .

Proof. By applying the inequality (4) in Lemma 2.12 to Cp1 , we obtain

w
(
Cp1

)
= w





0 bn bn−1 ... b2 b1
1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
...

...
...

. . .
...

...
0 0 0 ... 1 0




≤ r

([
0 ut

u Tn

])
, (6)

where u =
[

1
2 (1 + |bn|) , 1

2 |bn−1| , ..., 1
2 |b1|

]t
, and Tn is the n × n tridiagonal matrix given in Lemma 2.13. Since

Tn is Hermitian, we have ||Tn|| = r (Tn) = cos π
n+1 . By using the inequality (6) and the inequality (2) in Lemma

2.1, we obtain

w
(
Cp1

)
≤ r

([
0 ||u||
||u|| cos π

n+1

])
=

1
2

(
cos

π
n + 1

+

√
cos2 π

n + 1
+ 4 ||u||2

)

=
1
2

cos
π

n + 1
+

√√√
cos2 π

n + 1
+ (1 + |bn|)

2 +

n−1∑
j=1

∣∣∣b j

∣∣∣2
 .

Now, the desired result follows from the inequalities (1).

Similarly, we can prove the following two theorems.

Theorem 2.15. If z is any zero of p2, then

|z| ≤
1
2

cos
π

n + 2
+

√√√
cos2 π

n + 2
+ 1 +

n∑
j=1

∣∣∣c j

∣∣∣2 .
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Theorem 2.16. If z is any zero of p3, then

|z| ≤
1
2

cos
π

n + 3
+

√√√
cos2 π

n + 3
+ 1 +

n∑
j=1

∣∣∣d j

∣∣∣2 .
Example 2.17. Consider the polynomial p(z) = z3+z2+ 1

2 z+1. Then the upper bounds for the zeros of this polynomial
p(z) estimated by different mathematicians are as shown in the following table

Bound Value
Montel [9] 3.5

Fujii and Kubo [10] 1.9571
Cauchy [14] 2
Kittaneh [18] 2.0574
Linden [21] 1.9492

But if z is a zero of the polynomial p(z) = z3 + z2 + 1
2 z + 1, then Theorem 2.9 gives |z| ≤ 1.5153, Theorem 2.10 gives

|z| ≤ 1.6333, Theorem 2.14 gives |z| ≤ 1.3536, and Theorem 2.15 gives |z| ≤ 1.3355, which are better than all the
estimates mentioned above.

Now, we are in a position to derive a new bound for the zeros of p1.

Theorem 2.18. If z is any zero of p1, then

|z| ≤

√∑n
j=1

∣∣∣b j

∣∣∣2
2

+ cos
π

n + 1
.

Proof. Let u =
[

1
2 |bn| , 1

2 |bn−1| , ..., 1
2 |b1|

]t
. By (5), ( 6), the triangle inequality for the spectral norm, and the

inequality (3) in Lemma 2.1, we have

w
(
Cp1

)
≤ w

([
0 ut

u 0

]
+ Tn

)
≤ w

([
0 ut

u 0

])
+ w (Tn)

= r
([

0 ut

u 0

])
+ cos

π
n + 1

≤ r
([

0 ||u||
||u|| 0

])
+ cos

π
n + 1

=

√∑n
j=1

∣∣∣b j

∣∣∣2
2

+ cos
π

n + 1
.

Now, the desired bound follows from the fact that |z| ≤ w
(
Cp1

)
.

In a similar manner to Theorem 2.18, we can prove the following two theorems.

Theorem 2.19. If z is any zero of p2, then

|z| ≤

√∑n
j=1

∣∣∣c j

∣∣∣2
2

+ cos
π

n + 2
.
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Theorem 2.20. If z is any zero of p3, then

|z| ≤

√∑n
j=1

∣∣∣d j

∣∣∣2
2

+ cos
π

n + 3
.

The following two lemmas can be found in [10] and [13], respectively. The second lemma is an immediate
consequence of Lemma 2.6.

Lemma 2.21. Let

R =


a1 a2 ... an
0 0 ... 0
...

...
. . .

...
0 0 ... 0

 .
Then

w (R) =

(∑n
j=1

∣∣∣a j

∣∣∣2) 1
2

+ |a1|

2
.

Lemma 2.22. Let A ∈Mk×l(C), B ∈Ml×k(C). Then w
([

0 A
B 0

])
= 1

2 max
θ∈R

∥∥∥eiθA + e−iθB∗
∥∥∥ .

Theorem 2.23. If z is any zero of p with n > 4, then

|z| ≤

(∑n
j=n−2

∣∣∣a j

∣∣∣2) 1
2

+ |an|

2
+

1
2

 1
√

2
+ cos

π
n − 2

+

√(
1
√

2
− cos

π
n − 2

)2

+ 4α2

 ,
where

α =
1
2


1 +

∑n−3
j=1

∣∣∣a j

∣∣∣2 +

√(
1 +

∑n−3
j=1

∣∣∣a j

∣∣∣2)2
− 4

∑n−4
j=1

∣∣∣a j

∣∣∣2
2


1
2

.

Proof. Let L =



−an −an−1 −an−2 0 ... 0
0 0 0 0 ... 0
0 0 0 0 ... 0
0 0 0 0 ... 0
...

...
...

...
. . .

...
0 0 0 0 ... 0


and N =



0 0 0 −an−3 ... −a2 −a1
1 0 0 0 ... 0 0
0 1 0 0 ... 0 0
0 0 1 0 ... 0 0
0 0 0 1 ... 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ... 1 0


. Then Cp =

L + N. So, by the triangle inequality, we have w
(
Cp

)
≤ w (L) + w (N) . By using Lemma 2.21, we have

w (L) =

(∑n
j=n−2

∣∣∣a j

∣∣∣2) 1
2

+ |an|

2
.

By applying Lemma 2.7 to N, partitioned as

N =

[
N11 N12
N21 N22

]
,
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where

N11 =

 0 0 0
1 0 0
0 1 0

 , N12 =

 −an−3 −an−4 ... −a1
0 0 ... 0
0 0 ... 0

 ,

N21 =


0 0 1
0 0 0
...

...
...

0 0 0

 , and N22 =


0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0


,

we have

w (N) ≤ w
([

w (N11) w (To)
w (To) w (N22)

])
=

1
2

(
w (N11) + w (N22) +

√
(w (N11) − w (N22))2 + 4w2 (To)

)
.

According to Lemma 2.22, we have that

w (To) = w
([

0 N12
N21 0

])
= α.

By using Lemma 2.5, we have w (N11) = 1
√

2
and w (N22) = cos π

n−2 , and so

w (N) ≤
1
2

 1
√

2
+ cos

π
n − 2

+

√(
1
√

2
− cos

π
n − 2

)2

+ 4α2

 .
Hence,

w
(
Cp

)
≤

(∑n
j=n−2

∣∣∣a j

∣∣∣2) 1
2

+ |an|

2
+

1
2

 1
√

2
+ cos

π
n − 2

+

√(
1
√

2
− cos

π
n − 2

)2

+ 4α2

 .
Recalling that |z| ≤ w

(
Cp

)
, the result follows.

Theorem 2.24. If z is any zero of p3, then

|z| ≤
1
2

 1
√

2
+ cos

π
n + 1

+

√(
1
√

2
− cos

π
n + 1

)2

+ 4β2

 ,
where

β =
1
2


1 +

∑n
j=1

∣∣∣d j

∣∣∣2 +

√(
1 +

∑n
j=1

∣∣∣d j

∣∣∣2)2
− 4

∑n−1
j=1

∣∣∣d j

∣∣∣2
2


1
2

.

Proof. Partition Cp3 as

Cp3 =

[
C11 C12
C21 C22

]
,
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where

C11 =

 0 0 0
1 0 0
0 1 0

 , C12 =

 dn dn−1 ... d1
0 0 ... 0
0 0 ... 0

 ,

C21 =


0 0 1
0 0 0
...

...
...

0 0 0

 , and C22 =


0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0


.

Then by Lemma 2.7, we have

w
(
Cp3

)
≤ w

([
w (C11) w (To)
w (To) w (C22)

])
=

1
2

(
w (C11) + w (C22) +

√
(w (C11) − w (C22))2 + 4w2 (To)

)
.

According to Lemma 2.22, we have that

w (To) = w
([

0 C12
C21 0

])
= β.

By using simple computations, we have w (C11) = 1
√

2
and w (C22) = cos π

n+1 , and so

w
(
Cp3

)
≤

1
2

 1
√

2
+ cos

π
n + 1

+

√(
1
√

2
− cos

π
n + 1

)2

+ 4β2

 .
Recalling that |z| ≤ w

(
Cp3

)
, the result follows.

The following lemma can be found in [8].

Lemma 2.25. Let T =

[
0 X
Y 0

]
with X ∈Mk×m(C) and Y ∈Mm×k(C). Then

w4 (T) ≤
1
16
‖P‖2 +

1
4

w2 (XY) +
1
8

w (XYP + PXY) ,

where P = |X∗|2 + |Y|2 .

Theorem 2.26. If z is any zero of p3, then

|z| ≤ cos
π

n + 1
+

1
2

(
α2 + |dn|

2 + (1 + α) |dn|
) 1

4 ,

where α =
∑n

j=1

∣∣∣d j

∣∣∣2 .
Proof. Let

C11 =

 0 0 0
1 0 0
0 1 0

 , C12 =

 dn dn−1 ... d1
0 0 ... 0
0 0 ... 0

 ,

C21 =


0 0 1
0 0 0
...

...
...

0 0 0

 , and C22 =


0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0


.
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Then

Cp3 =

[
C11 C12
C21 C22

]
.

So, by the triangle inequality, we have

w
(
Cp3

)
≤ w

([
C11 0
0 C22

])
+ w

([
0 C12

C21 0

])
.

Since w
([

C11 0
0 C22

])
= max {w (C11) ,w (C22)} = cos π

n+1 , by applying Lemma 2.25, we get

w4

([
0 C12

C21 0

])
≤

1
16
‖P‖2 +

1
4

w2 (C12C21) +
1
8

w (C12C21P + PC12C21) ,

where P = C12C∗12 + C∗21C21. Since ‖P‖ =
∥∥∥C12C∗12 + C∗21C21

∥∥∥ = α , and since by Lemma 2.21, we have

w2 (C12C21) = |dn |
2

4 and w (C12C21P + PC12C21) =
(1+α)|dn |

2 , it follows that

w
(
Cp3

)
≤ cos

π
n + 1

+
1
2

(
α2 + |dn|

2 + (1 + α) |dn|
) 1

4 .

Recalling that |z| ≤ w
(
Cp3

)
, the result follows.

The following lemma can be found in [4].

Lemma 2.27. Let A and B ∈Mn(C). Then

w (A + B) ≤
√

w2 (A) + w2 (B) + ‖A‖ ‖B‖ + w (B∗A).

Theorem 2.28. If z is any zero of p, then

|z| ≤

(∑n
j=1

∣∣∣a j − a j−1

∣∣∣2) 1
2

+ |an − an−1|

2
+

√√√√√
δ2 + cos2 π

n + 1
+

√√√n−1∑
j=1

∣∣∣a j

∣∣∣2,

where δ =

(∑n−1
j=1 |a j|

2
) 1

2
+|an−1 |

2 .

Proof. Let A =


an an−1 ... a1
0 0 ... 0
...

...
. . .

...
0 0 ... 0

 and B =


0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0


. Then Cp = B − A. So, by the triangle

inequality, we have w
(
Cp

)
≤ w (A − AB) + w (B − AB) . By using Lemma 2.21, we have

w (A − AB) =

(∑n
j=1

∣∣∣a j − a j−1

∣∣∣2) 1
2

+ |an − an−1|

2
.
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Let B − AB = L + M, where L =


−an−1 −an−2 ... −a1 0

0 0 ... 0 0
0 0 ... 0 0
...

...
. . .

...
...

0 0 ... 0 0


and M =


0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0


. Now, using

Lemma 2.27, we get

w (B − AB) = w (L + M) ≤
√

w2 (L) + w2 (M) + ‖L‖ ‖M‖ + w (M∗L),

where w (L) = δ, w (M) = cos π
n+1 , ‖L‖ =

√∑n−1
j=1

∣∣∣a j

∣∣∣2, ‖M‖ = 1, and w (M∗L) = 0. Consequently,

w
(
Cp

)
≤

(∑n
j=1

∣∣∣a j − a j−1

∣∣∣2) 1
2

+ |an − an−1|

2
+

√√√√√
δ2 + cos2 π

n + 1
+

√√√n−1∑
j=1

∣∣∣a j

∣∣∣2,
which yields the desired inequality.

Proposition 2.29. Let A,B ∈Mn(C). Then

r (A + B) ≤
1
2

w (A) + w (B) +

√
(w (A) − w (B))2 + 4w2

([
0 I

BA 0

]) .
Proof. We have

r (A + B) = r
([

A + B 0
0 0

])
= r

([
A I
0 0

] [
I 0
B 0

])
= r

([
I 0
B 0

] [
A I
0 0

])
= r

([
A I

BA B

])
≤ w

([
A I

BA B

])

=
1
2

w (A) + w (B) +

√
(w (A) − w (B))2 + 4w2

([
0 I

BA 0

]) (by Lemma 2.7),

as required.

Theorem 2.30. If z is any zero of p, then

|z| ≤
1
2

cos
π

n + 1
+ ξ +

√(
cos

π
n + 1

− ξ
)2

+ 4w2

([
0 I
S 0

]) ,

where ξ =

(∑n
j=1|a j|

2
) 1

2
+|an |

2 , and S =


−an−1 −an−2 ... −a1 0

0 0 ... 0 0
0 0 ... 0 0
...

...
. . .

...
...

0 0 ... 0 0


.
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Proof. Let M =


0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0


and N =


−an −an−1 ... −a2 −a1

0 0 ... 0 0
0 0 ... 0 0
...

...
. . .

...
...

0 0 ... 0 0


. Then Cp = M + N. By using

Proposition 2.29, we have

r
(
Cp

)
≤

1
2

w (M) + w (N) +

√
(w (M) − w (N))2 + 4w2

([
0 I

NM 0

]) .
By using Lemma 2.5, we have w (M) = cos π

n+1 , and applying Lemma 2.21, we have

w (N) = ξ,

and so

r
(
Cp

)
≤

1
2

cos
π

n + 1
+ ξ +

√(
cos

π
n + 1

− ξ
)2

+ 4w2

([
0 I

NM 0

]) ,
where NM = S. Consequently,

|z| ≤
1
2

cos
π

n + 1
+ ξ +

√(
cos

π
n + 1

− ξ
)2

+ 4w2

([
0 I
S 0

]) .
Recalling that |z| ≤ r

(
Cp

)
, the result follows.

Remark 2.31. It is well-known that if T ∈Mn(C) is nilpotent of index 2, i.e., if T2 = 0, then

w (T) =
1
2
‖T‖ .

An estimate for the numerical radius of a nilpotent matrix has been given by Haagerup and de. la Harpe
[12]. This says that if T ∈Mn(C) such that Tk = 0 for some k ≥ 1, then

w (T) ≤ ‖T‖ cos
π

k + 1
.

Using this result of Haagerup and de. la Harpe, we have the following estimates for the numerical radii of
2 × 2 off diagonal block matrices with certain conditions.

Proposition 2.32. Let A ∈Mk×m(C), B ∈Mm×k(C) such that AB = 0. If T =

[
0 A
B 0

]
, then

w (T) ≤
max {‖A‖ , ‖B‖}

√
2

.

Proof. Since T3 =

[
0 ABA

BAB 0

]
= 0, it follows that

w (T) ≤ ‖T‖ cos
π
4

=
max {‖A‖ , ‖B‖}

√
2

,

as required.
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Proposition 2.33. Let A ∈Mk×m(C), B ∈Mm×k(C) such that AB = BA = 0. If T =

[
0 A
B 0

]
, then

w (T) =
1
2

max {‖A‖ , ‖B‖} .

Proof. We have T2 =

[
AB 0
0 BA

]
= 0. Then w (T) = 1

2 ‖T‖ = 1
2 max {‖A‖ , ‖B‖} , as required.

Theorem 2.34. If z is any zero of p3, then

|z| ≤
1
2

max


√√√n−1∑

j=1

∣∣∣d j

∣∣∣2, 1
 +

1
√

2
+ cos

π
n + 1

+

√(
1
√

2
− cos

π
n + 1

)2

+ |dn|
2

 .

Proof. Let L =



0 0 0 0 dn−1 dn−2 ... d2 d1
0 0 0 0 0 0 ... 0 0
0 0 0 0 0 0 ... 0 0
0 0 1 0 0 0 ... 0 0
0 0 0 0 0 0 ... 0 0
0 0 0 0 0 0 ... 0 0
0 0 0 0 0 0 ... 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 ... 0 0


and N =



0 0 0 dn 0 ... 0 0
1 0 0 0 0 ... 0 0
0 1 0 0 0 ... 0 0
0 0 0 0 0 ... 0 0
0 0 0 1 0 ... 0 0
0 0 0 0 1 ... 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 ... 1 0


. Then

Cp3 = L + N. So, by the triangle inequality, we have w
(
Cp3

)
≤ w (L) + w (N) . By applying Proposition 2.33 to

L, partitioned as

L =

[
L11 L12
L21 L22

]
,

where

L11 =

 0 0 0
0 0 0
0 0 0

 , L12 =

 0 dn−1 ... d1
0 0 ... 0
0 0 ... 0

 ,

L21 =


0 0 1
0 0 0
...

...
...

0 0 0

 , and L22 =


0 0 ... 0 0
0 0 ... 0 0
0 0 ... 0 0
...

...
. . .

...
...

0 0 ... 0 0


,

we have

w (L) = w
([

0 L12
L21 0

])
=

1
2

max {‖L12‖ , ‖L21‖} .

=
1
2

max


√√√n−1∑

j=1

∣∣∣d j

∣∣∣2, 1
 .

Also, by applying Lemma 2.7 to N, partitioned as

N =

[
N11 N12
N21 N22

]
,
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where

N11 =

 0 0 0
1 0 0
0 1 0

 , N12 =

 dn 0 ... 0
0 0 ... 0
0 0 ... 0

 ,

N21 =


0 0 0
0 0 0
...

...
...

0 0 0

 , and N22 =


0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0


,

we have

w (N) ≤ w
([

w (N11) w (To)
w (To) w (N22)

])
=

1
2

(
w (N11) + w (N22) +

√
(w (N11) − w (N22))2 + 4w2 (To)

)
.

By using Lemma 2.5, we have w (N11) = 1
√

2
and w (N22) = cos π

n+1 . Since w2 (To) = w2

([
0 N12
0 0

])
=

1
4 ‖N12‖

2 = 1
4 |dn|

2 , it follows that

w (N) ≤
1
2

 1
√

2
+ cos

π
n + 1

+

√(
1
√

2
− cos

π
n + 1

)2

+ |dn|
2

 .
Consequently,

w
(
Cp3

)
≤

1
2

max


√√√n−1∑

j=1

∣∣∣d j

∣∣∣2, 1
 +

1
√

2
+ cos

π
n + 1

+

√(
1
√

2
− cos

π
n + 1

)2

+ |dn|
2

 .
Now, the desired bound follows from the fact |z| ≤ w

(
Cp3

)
.

Finally, we remark that lower bound counterparts of the upper bounds obtained in this paper can be
derived by considering the polynomial zn

a1
p
(

1
z

)
whose zeros are the reciprocals of those of p. This enables

us to describe annuli in the complex plane containing all the zeros of p. Moreover, for k < n, compression
matrix inequalities may be applied to Ck

p in order to obtain further bounds for the zeros of p. Thus, by the

spectral mapping theorem and the inequalities (1), if z is any zero of p, then |z| ≤
(
w

(
Ck

p

)) 1
k
≤

∥∥∥Ck
p

∥∥∥ 1
k .
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