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Abstract. Let G be a simple connected graph of order n and size m, vertex degree sequence d1 ≥ d2 ≥ · · · ≥

dn > 0, and let µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 be the eigenvalues of its Laplacian matrix. Laplacian energy
LE, Laplacian-energy-like invariant LEL and Kirchhoff index K f , are graph invariants defined in terms of
Laplacian eigenvalues. These are, respectively, defined as LE(G) =

∑n
i=1

∣∣∣µi −
2m
n

∣∣∣, LEL(G) =
∑n−1

i=1
√
µi and

K f (G) = n
∑n−1

i=1
1
µi

. A vertex–degree–based topological index referred to as degree deviation is defined as

S(G) =
∑n

i=1

∣∣∣di −
2m
n

∣∣∣. Relations between K f and LE, K f and LEL, as well as K f and S are obtained.

1. Introduction

Let G = (V,E), V = {1, 2, . . . ,n}, be a simple connected graph with n vertices, m edges, vertex degree
sequence ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0, di = d(i). Denote by A the adjacency matrix of G, and by
D = diag(d1, d2, . . . , dn) the diagonal matrix of its vertex degrees. Then Laplacian matrix of G is defined as
L = D −A. Eigenvalues of matrix L, µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0, form the so-called Laplacian spectrum
of G.

A graph invariant, or topological index, is a numeric quantity associated with a graph which characterize
the topology of graph and is invariant under graph automorphism. Very often in chemistry the aim is the
construction of chemical compounds with certain properties, which not only depend on the chemical
formula but also strongly on the molecular structure. That’s where various topological indices come into
consideration.

The Wiener index, W(G), originally termed as a ”path number”, is a topological graph index defined by

W(G) =
∑
i< j

di j,

where di j is the the shortest path between vertices i and j in G. The first investigations into the Wiener
index were made by Harold Wiener in 1947 [32] who realized that there are correlations between the boiling
points of paraffin and the structure of the molecules. Since then it has become one of the most frequently
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used topological indices in chemistry, as molecules are usually modeled as undirected graphs. Based on its
success, many other topological indices of chemical graphs have been developed.

In [16], Klein and Randić, introduced the notion of resistance distance, ri j, as the second distance function
on the vertex set of a graph. It is defined as the resistance between the nodes i and j in an electrical network
corresponding to the graph G in which all edges are replaced by unit resistors. The sum of resistance
distances of all pairs of vertices of a graph G is named as the Kirchhoff index, i.e.

K f (G) =
∑
i< j

ri j .

There are several equivalent ways to define the resistance distance. As Gutman and Mohar in [14] (see also
[34]) proved, the Kirchhoff index can also be represented as

K f (G) = n
n−1∑
i=1

1
µi
,

which is more appropriate formula from the computational point of view.
In 2006 Gutman and Zhou [10] introduced another quantity based on the eigenvalues of the Laplacian

matrix of G and called it Laplacian energy, LE. It is defined as

LE = LE(G) =

n∑
i=1

∣∣∣∣∣µi −
2m
n

∣∣∣∣∣ .
In 2008, Liu and Liu [18] conceived a new Laplacian-spectrum-based graph invariant

LEL = LEL(G) =

n−1∑
i=1

√
µi ,

and named it Laplacian-energy-like invariant.
Details of the theory of these Laplacian-spectrum-based invariants can be found, for example, in [11, 17,

19, 21–25, 30].
Historically, the first vertex-degree-based (VDB) structure descriptors were the graph invariants that

nowadays are called Zagreb indices. The first Zagreb index, M1, is defined as [12]

M1 = M1(G) =

n∑
i=1

d2
i .

Since

M1 =

n−1∑
i=1

µi(µi − 1),

M1 can be also considered as Laplacian-spectrum-based graph invariant.
A modification of the first Zagreb index, defined as the sum of third powers of vertex degrees, that is

F = F(G) =

n∑
i=1

d3
i ,

was first time encountered in 1972, in the paper [12], but was eventually disregarded. Recently, it was
re-considered in [9] and named the forgotten index.

The inverse degree of a graph G with no isolated vertices is defined as [8]

ID = ID(G) =

n∑
i=1

1
di
.
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The inverse degree first attracted attention through conjectures of the computer program Graffiti [8].
A graph is said to be regular if all its vertices are of the same degree. Otherwise, it is irregular. As

the quantitative topological characterization of irregularity of graphs Nikiforov [27] proposed a measure
defined as

S(G) =

n∑
i=1

∣∣∣∣∣di −
2m
n

∣∣∣∣∣ .
which is usually referred to as the degree deviation. More on this and other irregularity measures of graph
one can find, for example in [1–3, 15].

Before we proceed, let us define one special class of d-regular graphs Γd (see [28]). Let N(i) be a set of all
neighbors of the vertex i, i.e. N(i) = {k | k ∈ V, k ∼ i}, and d(i, j) the distance between vertices i and j. Denote
by Γd a set of all d-regular graphs, 1 ≤ d ≤ n − 1, with diameter 2, and |N(i) ∩N( j)| = d for i / j. With Ck(G),
3 ≤ k ≤ n, we denote the number of cycles of length k in graph G.

In this paper we obtain relations between K f (G) and LE(G), K f (G) and LEL(G), K f (G) and S(G).

2. Preliminary results

In this section we recall some results from the literature that are of interest for our work.
In [6] Das and Gutman proved the following result.

Lemma 2.1. [6] Let G be a graph of order n with m edges. Then(
LE(G) −

2m
n

)2

≤ 4m2
(2m

n3 K f (G) −
n − 2

n

)
(1)

with equality if and only if G � Kn, or µ1 = µ2 = · · · = µp, µp+1 = µp+2 = · · · = µn−1 (1 ≤ p ≤ n − 2) with
1
µ1

+ 1
µn−1

= n
m .

Lemma 2.2. [6] Let G be a graph of order n > 2 and size m. Then

K f (G) (M1(G) + 2m) ≥ nLEL2(G) (2)

with equality if and only if G � Kn.

Let us note that inequality (2) is a corollary of one more general result proven in [6].

Wang and Luo [31] proved the following result.

Lemma 2.3. [31] If G has n vertices, m ≥ 1 edges and maximum vertex degree ∆, then

LEL(G) ≥

√
8m3

n∆2 + 2m
, (3)

with equality if and only if G � Kn.

In [13] (see also [19]) the following lower bound for LEL was established.

Lemma 2.4. For a graph G with n vertices and m edges

LEL(G) ≥
2m
√

n
, (4)

with equality if and only if G � Kn or G � Kn.
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As observed in [31], the lower bounds given by (3) and (4) are not comparable. Therefore, it follows

LEL(G) ≥ max
{

2m
√

n
,

2m
√

2m
√

n∆2 + 2m

}
. (5)

This lower bound is correct, but we will show that it is not optimal in the class of lower bounds depending
on parameters n, m and ∆.

Zhou and Trinajstić [33] determined the following lower bound for K f (G).

Lemma 2.5. [33] Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

K f (G) ≥ −1 + (n − 1)
n∑

i=1

1
di

= −1 + (n − 1)ID(G). (6)

Equality holds if and only if G � Kn, or G � K1,n−1.

Let us note that equality in (6) also holds if G ∈ Γd.

In [29] Radon proved the following analytic inequality for real number sequences.

Lemma 2.6. [29] Let x = (xi) and a = (ai), i = 1, 2, . . . ,n − 1, be positive real number sequences. Then for any r,
r ≥ 0, holds

n−1∑
i=1

xr+1
i

ar
i
≥

n−1∑
i=1

xi


r+1

n−1∑
i=1

ai


r . (7)

Equality holds if and only if x1
a1

= x2
a2

= · · · = xn−1
an−1

or r = 0.

3. Main results

In the following theorem we prove the inequality that establishes relation between the Kirchhoff index
and Laplacian energy in terms of parameters n, m, invariants F, M1 and number of cycles C3.

Theorem 3.1. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

n
(
LE(G) −

2m
n

)2

≤ K f (G)
(
F(G) +

3n − 4m
n

M1(G) − 6C3(G) +
8m2(m − n)

n2

)
.

(8)

Equality holds if and only if G � Kn, or µ1 = µ2 = · · · = µp, µp+1 = µp+2 = · · · = µn−1 (1 ≤ p ≤ n − 2) with
n(µ2

1 + µ2
n−1) = 2m(µ1 + µn−1).

Proof. For r = 1, xi :=
∣∣∣µi −

2m
n

∣∣∣, ai := 1
µi

, i = 1, 2, . . . ,n − 1, the inequality (7) becomes

n−1∑
i=1

(
µi −

2m
n

)2

µi =

n−1∑
i=1

∣∣∣∣∣µi −
2m
n

∣∣∣∣∣2
1
µi

≥

n−1∑
i=1

∣∣∣∣∣µi −
2m
n

∣∣∣∣∣


2

n−1∑
i=1

1
µi

,
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that is

n−1∑
i=1

(
µi −

2m
n

)2

µi ≥

n
(
LE(G) −

2m
n

)2

K f (G)
. (9)

The following identities are valid for the Laplacian eigenvalues µi

n−1∑
i=1

µi = 2m,
n−1∑
i=1

µ2
i = tr(D − A)2 =

n∑
i=1

d2
i +

n∑
i=1

di = M1(G) + 2m,

and
n−1∑
i=1

µ3
i = tr(D − A)3 = tr(D3 + 3DA2

− A3) = F(G) + 3M1(G) − 6C3(G) .

Therefore it follows
n−1∑
i=1

(
µi −

2m
n

)2

µi = F(G) + 3M1(G) − 6C3(G) −
4m
n

(M1(G) + 2m) +
8m3

n2 .

From the above and (9) we arrive at (8).
Since the equality in (9) holds if and only if

∣∣∣µi −
2m
n

∣∣∣µi =
∣∣∣µ j −

2m
n

∣∣∣µ j, for every 1 ≤ i , j ≤ n − 1,
we conclude that the equality in (8) holds if and only if µ1 = µ2 = · · · = µn−1, or µ1 = µ2 = · · · = µp,
µp+1 = µp+2 = · · · = µn−1 (1 ≤ p ≤ n − 2) with n(µ2

1 + µ2
n−1) = 2m(µ1 + µn−1).

Since for the graph without triangles, i.e. cycles of length 3, holds C3(G) = 0, we have the following
corollary of Theorem 3.1.

Corollary 3.2. Let G be a simple connected graph with n ≥ 3 vertices and m edges without triangles. Then

n
(
LE(G) −

2m
n

)2

≤ K f (G)
(
F(G) +

3n − 4m
n

M1(G) +
8m2(m − n)

n2

)
.

Equality holds if and only if G � Kn, or µ1 = µ2 = · · · = µp, µp+1 = µp+2 = · · · = µn−1 (1 ≤ p ≤ n − 2) with
n(µ2

1 + µ2
n−1) = 2m(µ1 + µn−1).

Theorem 3.3. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

nLEL4(G) ≤ 8m3K f (G). (10)

Equality holds if and only if G � Kn.

Proof. Setting r = 3, xi :=
√
µi, ai := µi, i = 1, 2, . . . ,n − 1, in (7), we get

n−1∑
i=1

1
µi

=

n−1∑
i=1

µ2
i

µ3
i

=

n−1∑
i=1

(√
µi

)4

µ3
i

≥

n−1∑
i=1

√
µi


4

n−1∑
i=1

µi


3 ,

i.e.

1
n

K f (G) ≥
LEL4(G)

8m3 , (11)

wherefrom (10) is obtained.
Equality in (11) holds if and only if

√
µ1

µ1
=
√
µ2

µ2
= · · · =

√
µn−1

µn−1
, that is if and only if µ1 = µ2 = · · · = µn−1.

Therefore equality in (10) is attained if and only if G � Kn (see [7]).
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Remark 3.4. In [13] it was proven

LEL2(G) ≥
8m3

M1(G) + 2m
. (12)

It can be easily verified that this inequality can simply be obtained from the inequality (see e.g. [26])n−1∑
i=1

pi


2 n−1∑

i=1

piaibici ≥

n−1∑
i=1

piai

n−1∑
i=1

pibi

n−1∑
i=1

pici

by setting pi = ai = bi = ci =
√
µi, i = 1, 2, . . . ,n − 1.

From (12) follows
nLEL4(G)

8m3 ≥
nLEL2(G)

M1(G) + 2m
,

therefore the inequality (10) is stronger than (2).

Remark 3.5. Since
M1(G) + 2m ≤ n∆2 + 2m,

the inequality (3) is a direct consequence of (12).
Also, since

M1(G) + 2m =

n∑
i=1

d2
i + 2m ≤ ∆

n∑
i=1

di + 2m = 2m(∆ + 1) ≤ n∆2 + 2m,

according to (12) we get

LEL(G) ≥
2m
√

1 + ∆
. (13)

The inequality (13) is stronger than the inequalities (3) and (4). Therefore it is stronger than the inequality (5).
This means that lower bound of LEL given by (5) is not optimal.

In the next theorems we prove several inequalities that establish relationships between S(G) and K f (G).

Theorem 3.6. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

K f (G) ≥
n2(n − 1) − 2m

2m
+

n − 1
4m2

(
(n∆ − 2m)2

∆
+

(nS(G) + 2m − n∆)2

2m − ∆

)
. (14)

Equality holds if and only if G � Kn, or G � K1,n−1, or G ∈ Γd.

Proof. The inequality (7) can be considered as

n∑
i=2

xr+1
i

ar
i
≥

 n∑
i=2

xi


r+1

 n∑
i=2

ai


r .

For r = 1, xi :=
∣∣∣di −

2m
n

∣∣∣, ai := di, i = 2, 3, . . . ,n, this inequality transforms into

n∑
i=2

∣∣∣∣∣di −
2m
n

∣∣∣∣∣2
di

≥

 n∑
i=2

∣∣∣∣∣di −
2m
n

∣∣∣∣∣


2

n∑
i=2

di

,
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that is

n∑
i=2

∣∣∣∣∣di −
2m
n

∣∣∣∣∣2
di

≥

(
S(G) − ∆ +

2m
n

)2

2m − ∆
. (15)

On the other hand we have

n∑
i=2

(
di −

2m
n

)2

di
=

n∑
i=1

(
di −

2m
n

)2

di
−

(
∆ −

2m
n

)2

∆

=
4m2

n2 ID(G) − 2m −
(n∆ − 2m)2

n2∆
.

According to the above and (15) we get

4m2

n2 ID(G) ≥ 2m +
(n∆ − 2m)2

n2∆
+

(nS(G) + 2m − n∆)2

n2(2m − ∆)
,

i.e.

ID(G) ≥
n2

2m
+

(n∆ − 2m)2

4m2∆
+

(nS(G) + 2m − n∆)2

4m2(2m − ∆)
.

From the above and (6) follows

K f (G) ≥ −1 +
n2(n − 1)

2m
+

n − 1
4m2

(
(n∆ − 2m)2

∆
+

(nS(G) + 2m − n∆)2

2m − ∆

)
,

wherefrom (14) is obtained.
Equality in (6) holds if and only if G � Kn, or G � Kt,n−t, 1 ≤ t ≤ b n

2 c, or G ∈ Γd. Equality in (15) is
attained if and only if d2 = d3 = · · · = dn, or d2 = d3 = · · · = dp, dp+1 = dp+2 = · · · = dn, 2 ≤ p ≤ n − 1,

with |
d2−

2m
n |

d2
=
|dn−

2m
n |

dn
. These conditions together give that equality in (14) holds if and only if G � Kn, or

G � K1,n−1, or G ∈ Γd.

Since
(n − 1)(nS(G) + 2m − n∆)2

4m2(2m − ∆)
≥ 0, we have the following corollary of Theorem 3.6.

Corollary 3.7. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

K f (G) ≥
n2(n − 1) − 2m

2m
+

(n − 1)(n∆ − 2m)2

4m2∆
. (16)

Equality holds if and only if G � Kn, or G ∈ Γd.

Remark 3.8. The inequality (16) is stronger than inequalities

K f (G) ≥
n2(n − 1) − 2m

2m
and

K f (G) ≥
n(n − 1) − ∆

∆
,

proven in [21].
In the case of d-regular graphs, 1 ≤ d ≤ n − 1, the inequality (16) transforms into

K f (G) ≥
n(n − 1) − d

d
,

which was proven in [28].



P. Milošević et al. / Filomat 34:3 (2020), 1025–1033 1032

By the similar arguments as in case of Theorem 3.6, the following results can be proved.

Theorem 3.9. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

K f (G) ≥
n2(n − 1) − 2m

2m
+

n − 1
4m2

(
(nδ − 2m)2

δ
+

(nS(G) − 2m + nδ)2

2m − δ

)
.

Equality holds if and only if G � Kn, or G ∈ Γd.

Theorem 3.10. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then

K f (G) ≥
n2(n − 1) − 2m

2m

+
n2(n − 1)

4m2


(
∆ − 2m

n

)2

∆
+

(
δ − 2m

n

)2

δ
+

(S(G) − ∆ + δ)2

2m − ∆ − δ

 .
Equality holds if and only if G � Kn, or G � K1,n−1, or G ∈ Γd.

Theorem 3.11. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

8m3(K f (G) + 1) − n2(n − 1)S2(G) ≥ 4n2(n − 1)m2.

Equality holds if and only if G � Kn, or G ∈ Γd.

Theorem 3.12. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

(K f (G) + 1)
(
F(G) −

4m
n

M1(G) +
8m3

n2

)
≥ (n − 1)S2(G). (17)

Equality holds if and only if G is a regular graph.

Proof. For r = 1, xi :=
∣∣∣di −

2m
n

∣∣∣, ai := 1
di

, i = 1, 2, . . . ,n, the inequality (7) becomes

n∑
i=1

∣∣∣∣∣di −
2m
n

∣∣∣∣∣2 di ≥

 n∑
i=1

∣∣∣∣∣di −
2m
n

∣∣∣∣∣


2

n∑
i=1

1
di

,

that is
n∑

i=1

∣∣∣∣∣di −
2m
n

∣∣∣∣∣2 di ≥
S2(G)
ID(G)

. (18)

On the other hand we have
n∑

i=1

∣∣∣∣∣di −
2m
n

∣∣∣∣∣2 di =

n∑
i=1

(
d3

i −
4m
n

d2
i +

4m2

n2 di

)
= F(G) −

4m
n

M1(G) +
8m3

n2 .

According to the above and (18) we get(
F(G) −

4m
n

M1(G) +
8m3

n2

)
ID(G) ≥ S2(G). (19)



P. Milošević et al. / Filomat 34:3 (2020), 1025–1033 1033

From (6) follows

ID(G) ≤
K f (G) + 1

n − 1
. (20)

Now, (17) is obtained from (19) and (20).
Equality in (19) holds if and only if G is a regular graph for any value of invariant ID(G). Therefore

equality in (17) is attained if and only if G is a regular graph.

References

[1] M. O. Albertson, The irregularity of a graph, Ars Comb. 46 (1997) 219–225.
[2] F. K. Bell, A note on the irregularity of graphs, Linear Algebra Appl. 161 (1992) 45–54.
[3] L. Collatz, U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg 21 (1957) 63–77.
[4] K. Ch. Das, K. Xu, On relation between Kirchhoff index, Laplacian-energy-like invariant and Laplacian energy of graphs, Bull. Malays.

Math. Sci. Soc. 39 (2016) S59–S75.
[5] K. C. Das, K. Xu, I. Gutman, Comparison between Kirchhoff index and the Laplacian-energy-like invariant, Linear Algebra Appl. 436

(2012) 3661–3671.
[6] K. Ch. Das, I. Gutman, On Laplacian energy, Laplacian-energy-like invariant and Kirchhoff index of graphs, Linear Algebra Appl. 554

(2018) 170–184.
[7] K. C. Das, A sharp upper bound for the number of spanning trees of a graph, Graphs Combin. 23 (2007) 625–632.
[8] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer. 60 (1987) 187–197.
[9] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184–1190.

[10] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006) 29–37.
[11] I. Gutman, X. Li (Eds.), Energies of graphs – Theory and Applications, Mathematical Chemistry Monographs, MCM 17, Univ.

Kragujevac, Kragujevac, 2016.
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