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Abstract. We first define a new consequence of the (restricted) wreath product for arbitrary two monoids.
After that we give a generating and relator set for this new wreath product. Then we denote some finite
and infinite applications about it. At the final part of this paper we show that this product satisfies the
periodicity and regularity under some conditions.

1. Introduction and Preliminaries

Throughout this paper A and B will always denote arbitrary monoids unless stated otherwise.
In [7, Theorem 2.2], it has been defined a standard presentation for the wreath product of A by B in the

meaning of restricted. Also, in [14, Theorem 7.1], it has been showed that the wreath product of semigroups
satisfies the periodicity when these semigroups are periodic. In here, we purpose to introduce a new
derivation for the wreath product of A and B. Also, we aim to give a presentation for this new type of
wreath products. Finally, we will show that this product satisfies the property of periodicity (as in [14]) and
regularity (as in [12, 15]) under some conditions.

For the monoids A and B, it is well known that while A×B denotes the cartesian product of the number
of B copies of the monoid A, the set A⊕B defines the corresponding direct product. Recall that A⊕B can be
thought as the set of whole functions f with finite support (in other words, functions with the property
(x) f = 1A for all but finitely many x in B). Then the (un)restricted wreath product of A by B is defined on
the set A⊕B

× B (or the set A×B
× B for unrestricted case) with the operation ( f , b)(1, b′ ) = ( f b1, bb′ ) such that

b1 : B → A is given by (x)b1 = (xb)1 where x ∈ B. With the identity (1, 1B), where (x)1 = 1A for all x ∈ B, it
is not hard to show that wreath products are monoids. Throughout this paper we will assume restricted
when we refer the term wreath products. For more preliminaries and properties over these products, we
may refer [4, 8, 11, 13, 14].
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2. A new type of wreath products over monoids

Let A and B be monoids. We recall that A⊕B and B⊕A are the sets of all functions having finite support.
Now to use in our calculations at the rest of this paper, for a ∈ A and b ∈ B, let us define ab : B→ A by

cab =

{
a ; if c = b

1A ; otherwise . (1)

Let us consider the classical operation P1P2 = (a1a2, b1b2) of any two elements P1 = (a1, b1) and P2 = (a2, b2)
in A×B. The new consequence (or type) for the wreath product of A and B, notated by A Z B, is defined on
the set A⊕B

× (A × B) × B⊕A with the multiplication ( f ,P1, 1)(h,P2, k) = ( f b1 h,P1P2, 1a2 k), where b1 h : B → A
and 1a2 : A → B are defined by (y)b1 h = (yb1)h (y ∈ B) and (x)1a2 = (a2x)1 (x ∈ A). Actually it is not a big
deal to show that A Z B is a monoid with the identity element (1, (1A, 1B), 1̃), where 1 and 1̃ are defined by
(b)1 = 1A and (a)̃1 = 1B, respectively, for all b ∈ B and a ∈ A.Now, in the following, we will state and proof a
generating set (Lemma 2.1 below) and a relator set (Theorem 2.2 below) of the product A Z B as one of the
results in this paper.

Lemma 2.1. Assume that the sets X and Y generate the monoids A and B, respectively. Also, for each a ∈ A and
b ∈ B, let us denote

Xb = {(xb, (1A, 1B), 1̃) : x ∈ X} , Ỹa = {(1, (1A, 1B), ỹa) : y ∈ Y} and P = {(1, (c, d), 1̃) : c ∈ A, d ∈ B} .

Therefore the monoid A Z B is generated by the set (
⋃
b∈B

Xb) ∪ (
⋃
a∈A

Ỹa) ∪ P.

Proof. Let us consider a function xb from B to A as defined in (1), and with a similar approach let us also
define a function ỹa : A→ B by

cỹa =

{
y ; if a = c

1B ; otherwise .

For x, x′ ∈ X, y, y′ ∈ Y, a1, a2 ∈ A, b1, b2 ∈ B, P1, P2 ∈ A × B, we can easily show that the proof follows from
the equalities

(xb1 , (1A, 1B), 1̃)(x′b2
, (1A, 1B), 1̃) = (xb1

1B x′b2
, (1A, 1B), 1̃1A 1̃) = (xb1 x′b2

, (1A, 1B), 1̃), (2)

(1, (1A, 1B), ỹa1 )(1, (1A, 1B), ỹa2 ) = (1 1B 1, (1A, 1B), ỹ1A
a1

ỹa2 ) = (1, (1A, 1B), ỹa1 ỹa2 ), (3)

(1,P1, 1̃)(1,P2, 1̃) = (1 1B 1,P1P2, 1̃1A 1̃) = (1,P1P2, 1̃), (4)

(xb, (1A, 1B), 1̃)(1, (c, d), 1̃)(1, (1A, 1B), ỹa) = (xb,P, ỹa) ,

as required.

We then prove the following result.

Theorem 2.2. Assume [X; R] and [Y; S] are presentations of A and B, respectively. For any elements a ∈ A and
b ∈ B, let Xb = {xb : x ∈ X} and Ya = {ya : y ∈ Y} be the corresponding copies of the sets X and Y whereas Rb and Sa
be the corresponding copies of the sets R and S, respectively. Then the product A Z B is defined by generators

Z = (
⋃
b∈B

Xb) ∪ (
⋃
a∈A

Ya) ∪ {zc,d : c ∈ A, d ∈ B}

and relations

Rb (b ∈ B), Sa (a ∈ A); (5)
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xbx′e = x′exb (x, x′ ∈ X, b, e ∈ B, b , e); (6)
yay′c = y′cya (y, y′ ∈ Y, a, c ∈ A, a , c); (7)
xbya = yaxb (x ∈ X, y ∈ Y, a ∈ A, b ∈ B); (8)

zc,dxb = (
∏

m′∈bd−1

xm′ )zc,d (x ∈ X, c ∈ A, b, d ∈ B); (9)

yazc,d = zc,d(
∏

n′∈c−1a

yn′ ) (y ∈ Y, a, c ∈ A, d ∈ B) . (10)

Before giving the proof we first recall that, for a set of alphabet Z, the monoid of all words in Z is notated
by Z∗. Now, for just simplicity, let us denote the set {m′ ∈ B : b = m′d} by bd−1 and the set {n′ ∈ A : a = cn′}
by c−1a, where b, d ∈ B and a, c ∈ A.

Proof. Let us consider a monoid homomorphism θ : Z∗ −→ A Z B defined by (xb)θ = (xb, (1A, 1B), 1̃)
(x ∈ X, b ∈ B), (ya)θ = (1, (1A, 1B), ỹa) (y ∈ Y, a ∈ A) and (zc,d)θ = (1, (c, d), 1̃) (c ∈ A, d ∈ B). In fact θ is onto by
Lemma 2.1. Now we need to show that A Z B satisfies relations from (5) to (10). However, it is clear that
relations (5), (6) and (7) follow from (2), (3) and (4).

Now consider again the operation in Section 2 to obtain the remaining relations. For the relation in (8),
we have (xb, (1A, 1B), 1̃)(1, (1A, 1B), ỹa) = (xb, (1A, 1B), ỹa) = (1, (1A, 1B), ỹa)(xb, (1A, 1B), 1̃). On the other hand,
to show the existence of relations (9) and (10), we need to use the equalities (1, (c, d), 1̃)(xb, (1A, 1B), 1̃) =

(dxb, (c, d), 1̃) and (1, (1A, 1B), ỹa)(1, (c, d), 1̃) = (1, (c, d), ỹc
a). In fact, for each e ∈ B, we can write

(e) dxb = (ed)xb =

{
x , b = ed
1B , otherwise =

{
x , e ∈ bd−1

1B , otherwise =
∏

m′∈bd−1

exm′ = e(
∏

m′∈bd−1

xm′ ) .

So we have dxb =
∏

m′∈bd−1

xm′ . Hence (1, (c, d), 1̃)(xb, (1A, 1B), 1̃) = (
∏

m′∈bd−1 (xb, (1A, 1B), 1̃))(1, (c, d), 1̃), for all

x ∈ X, c ∈ A, b, d ∈ B.
By a similar argument, we also obtain (1, (1A, 1B), ỹa)(1, (c, d), 1̃) = (1, (c, d), 1̃)(

∏
n′∈c−1a(1, (1A, 1B), ỹa)).

Hence we obtain that there exists an epimorphism θ : M → A Z B induced by θ which is defined by the
relations given in (5)-(10). Let us consider a nontrivial word w ∈ Z∗. Using relations from (6) to (10), we can
see that there exist some words w(b) in X∗ (b ∈ B), w(a) in Y∗ (a ∈ A) and w′

∈ {zc,d : c ∈ A, d ∈ B}∗ such that
w = (

∏
b∈B

(w(b))b)w′

(
∏
a∈A

(w(a))a) in M. We note that relations from (6) to (10) can be used to show that there

exists a set Tw ⊆ A × B such that w′ =
∏

zc,d
(c,d)∈Tw

. Depending on that, let us define Pw =
∏

(c, d)
(c,d)∈Tw

. As a result of

this, for any word w ∈ Z∗, we have

(w)θ = ((
∏
b∈B

(w(b))b)w
′

(
∏
a∈A

(w(a))a))θ = (
∏
b∈B

(w(b))b, (1A, 1B), 1̃)(1,Pw, 1̃)(1, (1A, 1B),
∏
a∈A

˜(w(a))a)

= (
∏
b∈B

(w(b))b,Pw,
∏
a∈A

˜(w(a))a)).

For each w ∈ X∗ ∪ Y∗ and for each c ∈ A, d ∈ B, we then have dwb =

{
w ; if d = b
ι ; otherwise and cw̃a ={

w ; if c = a
ι ; otherwise , where ιdenotes empty word. Hence d(

∏
b∈B

(w(b))b) =
∏
b∈B

d(w(b))b = w(d) and c(
∏
a∈A

˜(w(a))a) =∏
a∈A

c ˜(w(a))a = w(c). Therefore, for some w1,w2 ∈ Z∗, if (w1)θ = (w2)θ then, by the equality of these compo-

nents, we deduce that w1(d) = w2(d) in A for every d in B, w1(c) = w2(c) in B for every c in A, and Pw1 = Pw2 .
Relations in (5) imply that w1(d) = w2(d) and w1(c) = w2(c) hold in M, so that w1 = w2 holds as well.
Therefore θ is injective. These complete the proof.
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3. Some other applications

As an application of the Theorem 2.2, our aim in this section is to give an explicit presentation for this
new type of wreath product while A and B are some special monoids.

3.1. Case I: A finite example

In this case, we actually will consider out new product on finite cyclic (monogenic) monoids in which
some examples, applications and algebraic structures about these monoids can be found, for instance, in [2].
So let A and B be two such monoids having presentationsPA = [x ; xk = xl(k > l)] andPB = [y ; ys = yt(s > t)],
respectively. Therefore we have the following result as an application of Theorem 2.2.

Corollary 3.1. The product A Z B has a presentation

P
′

AZB = [x(i), y( j), zxm,yn ; x(i)x(p) = x(p)x(i) (i < p), y( j)y(q) = y(q)y( j) ( j < q),

x(i)k
= x(i)l

, y( j)s
= y( j)t

, x(i)y( j) = y( j)x(i) (0 ≤ i,n, p ≤ s − 1, 0 ≤ j, q,m ≤ k − 1),
zxm,yn x(i) = x(i−n)zxm,yn (0 ≤ n ≤ i ≤ t − 1),

zxm,yn x(t+i) = x(s+i−n)zxm,yn (i = 0, 1, · · · , s − t − 1), zxm,yn x(i) = zxm,yn (0 ≤ i ≤ t − 1 < n),

y( j)zxm,yn = zxm,yn y( j−m) (0 ≤ m ≤ j ≤ l − 1),

y(l+ j)zxm,yn = zxm,yn y(k+ j−m) ( j = 0, 1, · · · , k − l − 1), y( j)zxm,yn = zxm,yn (0 ≤ j ≤ l − 1 < m)].

Proof. Now let us consider the relators (9) and (10) in Theorem 2.2. For the sake of simplicity, let us label yxq

by y(q), where each xq is the representative element A, and label xyp by x(p), where each yp is the representative
element B such that 0 ≤ q ≤ k − 1 and 0 ≤ p ≤ s − 1.

We note that since d ∈ B in (9), we can take it as yn in this case. So, for 0 ≤ n ≤ i ≤ t − 1, let us think the
relator zc,dxb = (

∏
m′∈bd−1 xm′ )zc,d, where c = xm, d = yn and b = yi. Since we have m′ ∈ bd−1 such that b = m′d,

we get yi = m′yn. So we have m′ = yi−n. Thus we obtain the relator zxm,yn x(i) = x(i−n)zxm,yn . Moreover, for the
monoid B, since we have ys = yt inPB as a relator, we have ys+i = yt+i where i = 0, 1, · · · , s− t−1. Let us think
yt+i = ys+i−nyn. In here, if we take b = yt+i and m = ys+i−n then we certainly have zxm,yn x(t+i) = x(s+i−n)zxm,yn .
Also let us consider the elements

∏
m′∈bd−1

xm′ , where 0 ≤ i ≤ t − 1 < n. In fact, we do not have any b = m′d,

since we do not have any element m′ that satisfies yi = m′yn. Thus the element
∏

m′∈bd−1

xm′ actually represents

identity. So we only have zxm,yn x(i) = zxm,yn . Furthermore, for c = xm, d = yn and a = x j, by considering
the relator yazc,d = zc,d(

∏
n′∈c−1a

yn′ ) and then applying similar argument as in the above paragraph, we get the

remaining relations in P′AZB, as required.

3.2. Case II: Infinite examples

For a free abelian group of rank 2, say A, and a finite cyclic monoid B, let PA = [x1, x2 ; x1x2 = x2x1] and
PB = [y ; ys = yt (s > t)] be their monoid presentations, respectively. For a representative element yn in the
monoid B, let us label xyn by x(n) where 0 ≤ n ≤ s − 1 (as in the previous section) and for a representative
element xk

1xl
2 in the monoid A, let us label yxk

1xl
2

by y(k,l) where 0 ≤ k, l. Again, by considering Theorem 2.2,
we then have the following corollary which can be proved quite similarly as in Corollary 3.1.
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Corollary 3.2. The product A Z B has a presentation with generators x(i1)
1 , x(i2)

2 , y( j1, j2), zxk
1xl

2,y
n (0 ≤ i1, i2,n ≤

s − 1, 0 ≤ j1, j2) and relators

x(i1)
p x(i2)

q = x(i2)
q x(i1)

p (0 ≤ i1 < i2 ≤ s − 1, p, q ∈ {1, 2}), y( j1, j2)y( j3, j4) = y( j3, j4)y( j1, j2) ( j1, j2) < ( j3, j4),

y( j1, j2)s
= y( j1, j2)t

( j1, j2 ≥ 0), x(i1)y( j1, j2) = y( j1, j2)x(i1) (0 ≤ i1 ≤ s − 1), (0 ≤ j1, j2)

zxk
1xl

2,y
n x(i1)

1 = x(i1−n)
1 zxk

1xl
2,y

n (0 ≤ n ≤ i1 ≤ t − 1), zxk
1xl

2,y
n x(t+i1)

1 = x(s+i1−n)
1 zxk

1xl
2,y

n (i1 = 0, 1, · · · , s − t − 1)

zxk
1xl

2,y
n x(i1)

1 = zxk
1xl

2,y
n (0 ≤ i1 ≤ t − 1 < n), zxk

1xl
2,y

n x(i2)
2 = x(i2−n)

2 zxk
1xl

2,y
n (0 ≤ n ≤ i2 ≤ t − 1)

zxk
1xl

2,y
n x(t+i2)

2 = x(s+i2−n)
2 zxk

1xl
2,y

n (i2 = 0, 1, · · · , s − t − 1), zxk
1xl

2,y
n x(i2)

2 = zxk
1xl

2,y
n (0 ≤ i2 ≤ t − 1 < n)

y( j1, j2)zxk
1xl

2,y
n = zxk

1xl
2,y

n y( j1−k, j2−l) (0 ≤ k ≤ j1, 0 ≤ l ≤ j2), y( j1, j2)zxk
1xl

2,y
n = zxk

1xl
2,y

n (0 ≤ j1 < k or 0 ≤ j2 < l).

In fact the above corollary can be generalized for the free abelian group A rank n > 2.

Another application of Theorem 2.2 is the following. Let A be the free group with a presentation
PA = [x; ] and let B be the direct product monoid Zs × Zm with a presentation PB = [y1, y2 ; y1y2 =
y2y1, ys

1 = yt
1, ym

2 = yn
2 (s > t,m > n)] . For a representative element yk

1yl
2 in the monoid B, let us label xyk

1 yl
2

by x(k,l) where 0 ≤ k ≤ s − 1, 0 ≤ l ≤ m − 1. Then we have a generating set {x(i1,i2), y( j1)
1 , y( j2)

2 , zxr,yk
1 yl

2
} for the

monoid A Z B. Therefore, applying suitable changes in Theorem 2.2, the following corollary is obtained.

Corollary 3.3. For the monoids A and B as given above, the set of relators for the monoid A Z B is

{y( j1)s

1 = y( j1)t

1 , y( j2)m

2 = y( j2)n

2 , x(i1,i2)x(i3,i4) = x(i3,i4)x(i1,i2) ((i1, i2) < (i3, i4)),

y( j1)
p y( j2)

q = y( j2)
q y( j1)

p , (0 ≤ i1, i3 ≤ s − 1, 0 ≤ i2, i4 ≤ m − 1, 0 ≤ j1 < j2),

zxr,yk
1 yl

2
x(i1,i2) = x(i1−k, i2−l)zxr,yk

1 yl
2

(0 ≤ k ≤ i1 ≤ s − 1, 0 ≤ l ≤ i2 ≤ m − 1),

zxr,yk
1 yl

2
x(t+i1,n+i2) = x(s+i1−k,m+i2−l)zxr,yk

1 yl
2

(i1 = 0, 1, · · · , s − t − 1, i2 = 0, 1, · · · ,m − n − 1),

zxr,yk
1 yl

2
x(i1,i2) = zxr,yk

1 yl
2

(0 ≤ i1 < k or 0 ≤ i2 < l),

y( j1)
1 zxr1 ,yk

1 yl
2

= zxr1 ,yk
1 yl

2
y( j1−r1)

1 (0 ≤ r1 ≤ j1), y( j2)
2 zxr2 ,yk

1 yl
2

= zxr2 ,yk
1 yl

2
y( j2−r2)

2 (0 ≤ r2 ≤ j2)},

y( j1)
1 zxr1 ,yk

1 yl
2

= zxr1 ,yk
1 yl

2
(0 ≤ j1 < r1), y( j2)

2 zxr2 ,yk
1 yl

2
= zxr2 ,yk

1 yl
2

(0 ≤ j2 < r2).

4. Periodicity

In this part of the paper, our aim is to prove that this special wreath product satisfies the periodicity.
Recall that a monoid A is called periodic if every element a ∈ A has finite order.

For arbitrary monoids A and B, we can give the following periodicity result for A Z B.

Theorem 4.1. The product A Z B is periodic if and only if both A and B are periodic.

Proof. (⇒) By the assumption, the element (1, (a, b), 1̃) has finite order where a ∈ A and b ∈ B. Thus there
exist m,n ∈ N with m < n such that (1, (a, b), 1̃)m = (1, (a, b), 1̃)n. By equating first components, we have
am = an and bm = bn which gives both A and B are periodic.

(⇐) Let ( f , (a, b), 1) be an arbitrary element of A Z B. Since A and B are periodic, we may assume that
a = d1 and b = d2 are idempotents. It is known that f and 1 have finite images X ⊆ A and Y ⊆ B, respectively,
for f ∈ A⊕B, 1 ∈ B⊕A. Since X and Y are finite sets of periodic elements, we may find positive integers
m < n such that xm = xn, for all x ∈ X, and ym = yn, for all y ∈ Y. Therefore, for all a′ ∈ A, b′ ∈ B, we have
(b′d2) f ∈ X and (d1a′)1 ∈ Y, and so

(b′)( f ( d2 f )m) = (b′) f ((b′) d2 f )m = (b′) f ((b′d2) f )m = (b′) f ((b′d2) f )n = (b′) f ((b′) d2 f )n = (b′)( f ( d2 f )n),

(a′)(1(1d1 )m) = (a′)1((a′)1d1 )m = (a′)1((d1a′)1)m = (a′)1((d1a′)1)n = (a′)1((a′)1d1 )n = (a′)(1(1d1 )n).

It follows that ( f , (a, b), 1)m+1 = ( f , (a, b), 1)n+1 which proves that A Z B is periodic, as required.
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5. Regularity

In [15], the question of the regularity of the wreath product of monoids has been explained. After that,
in [12], it has been investigated the regularity of semidirect products of monoids. In this part we purpose
to give necessary and sufficient conditions of A Z B to be regular where both A and B are any monoids. We
recall that a monoid M is called regular if, for every a ∈M, there exists b ∈M such that aba = a and bab = b.

Theorem 5.1. Let A and B be monoids. The wreath product A Z B is regular if and only if A and B are regular, and
also for every x ∈ B, y ∈ A, f ∈ A⊕B and 1 ∈ B⊕A, there exist e1 ∈ B and e2 ∈ A such that e2

1 = e1, e2
2 = e2 with

(x) f ∈ A(xe1) f and (y)1 ∈ (e2y)1B.

Proof. Let us suppose that A Z B is regular. Thus, for (1, (a, b), 1̃) ∈ A Z B, there exists (1, (c, d), 1̃) such
that (1, (a, b), 1̃) = (1, (a, b), 1̃)(1, (c, d), 1̃)(1, (a, b), 1̃) and (1, (c, d), 1̃) = (1, (c, d), 1̃)(1, (a, b), 1̃)(1, (c, d), 1̃). We then
have a = aca, c = cac, b = bdb and d = dbd. This implies that both A and B are regular. Moreover, by the
assumption, for ( f , (a, b), 1) ∈ A Z B, we have (h, (c, d), k) ∈ A Z B such that

( f , (a, b), 1) = ( f , (a, b), 1)(h, (c, d), k)( f , (a, b), 1) = ( f bh bd f , (aca, bdb), 1caka1).

Hence, by equating the components, f = f bh bd f and 1 = 1caka1. Clearly we had already obtained a = aca
and b = bdb since A and B are regular by (i). These show that, for every x ∈ B and y ∈ A,

(x) f = (x) f (x)bh (x)bd f = (x) f (xb)h (xbd) f ∈ A(xbd) f and (y)1 = (y)1ca (y)ka (y)1 = (cay)1 (ay)k (y)1 ∈ (cay)1B.

If we take e1 = bd and e2 = ca then condition (ii) becomes true.
Conversely, let us suppose that the monoids A and B satisfy conditions (i) and (ii). For x, b, d ∈ B and

f , h ∈ A⊕B, consider (x) f (x)bh (x)bd f , where dbd = d. By condition (ii), for a ∈ A, we have (x) f = a(xbd) f
where bd = e1. Thus

(x) f (x)bh (x)bd f = a(xbd) f (x)bh (x)bd f = a(x)bd f (x)bh (x)bd f . (11)

Since A is regular, A⊕B is regular [12]. Thus we can take h = dv such that f v f = f and v f v = v. Hence
(11) becomes a(x)bd f (x)bh (x)bd f = a(x)bd f (x)bdv (x)bd f = a(x)bd( f v f ) = a(x)bd f = (x) f . This implies that
f = f bh bd f . On the other hand, similarly as in the above procedure, we obtain h d f dbh = dv d f dbdv =
dv d f dv = d(v f v) = dv = h. Furthermore, by condition (ii), let us take (y)1 = (cay)1b where cac = c and

b ∈ B such that ca = e2. Also, let us consider

(y)1ca (y)ka (y)1 = (y)1ca (y)ka (cay)1b = (y)1ca (y)ka (y)1cab. (12)

Again, by [12], regularity of B implies regularity of B⊕A. Hence we may take k = uc such that u1u = u
and 1u1 = 1. Thus (12) becomes (y)1ca (y)ka (y)1cab = (y)1ca (y)uca (y)1cab = (y)(1u1)cab = (y)1cab = (y)1. This
conclude that 1ca ka 1 = 1. Similarly, we also get kac1ck = ucac1cuc = uc1cuc = (u1u)c = uc = k. Therefore, for
every ( f , (a, b), 1) ∈ A Z B, there exists (h, (c, d), h) ∈ A Z B such that

( f , (a, b), 1) = ( f bh bd f , (aca, bdb), 1caka1) and (h, (c, d), k) = (h d f dbh, (cac, dbd), kac1ck)

with the equalities obtained above. Hence the result.

Theorem 5.2. Let A and B be regular monoids. Then the wreath product A Z B is regular if and only if either A or
B is a group.

Proof. Let A Z B be regular. Now let us assume that A is not a group. (By this assumption we will show
that the group B must be a group). So there is an element t ∈ A such that At , A, for otherwise every
element of A would have an inverse since 1 ∈ A. Choose x ∈ B and define fx : B→ A (as in the proof of [15,

Proposition 3.2]) such that (u) fx =

{
1, u = x
t, otherwise . By the regularity of A Z B, for ( fx, (a, b), 1) ∈ A Z B,

we have (h, (c, d), k) ∈ A Z B such that b = bdb and (u) f (ub)h(ubd) f = (u) f , for all u ∈ B. Letting u = x, we
see that this can be only happen if (xbd) f = 1 since 1 < At. But, for e = bd, this shows that xe = x. Thus, by
taking x = 1, we have 1e = 1. So bd = 1. This implies that B is a group.

The converse part of the proof is clear. Hence the result.
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6. Conclusions and Open Problems

This paper mainly deals with a new monoid obtained by advanced version of the standard (restricted)
wreath products, and so presents some new results and applications in terms of this subject. Since the
unrestricted version of this new product also defines a monoid (see the last paragraph of Section 1), one
may generalize the whole results in here for unrestricted case for a future study.

In the light of the idea used in here, in fact there might also be studied such new products not only wreath
products based extensions but also, for instance, Zappa-Szep products based monoids (cf. [3, 5, 6, 9, 16, 17]).
It is known that this product is also defined on mutual actions between monoids and can be obtained some
other interesting results as well.

Finally, by considering the new extension just on groups rather than monoids and also taking into
account A and B (in Lemma 2.1, Theorem 2.2 and Corollary 3.1) are maximal subgroups of the Sylow
subgroups of a finite group G, it would be worth to study the characterization of the generalized Fitting
subgroup of some normal subgroup of G. We may refer [1, 10] for the fundamentals of those classifications.
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