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Abstract. The recurrence relations have a very important place for the special polynomials such as q-
Appell polynomials. In this paper, we give some recurrence formulas that allow us a better understanding
of q-Appell polynomials. We investigate the q-Bernoulli polynomials and q-Euler polynomials, which are
q-Appell polynomials, and we obtain their recurrence formulas by using the methods of the q-umbral
calculus and the quantum calculus. Our methods include some operators which are quite handy for
obtaining relations for the q-Appell polynomials. Especially, some applications of q-derivative operator are
used in this work.

1. Introduction

Throughout of this paper, we use the notation

[x]q =

{ 1−qx

1−q , q , 1
x, q = 1,

where 0 < q < 1 when q ∈ R and
∣∣∣q∣∣∣ < 1 when q ∈ C.

Let P be the algebra of polynomials in the single variable x over the field of complex numbers C.
Derivative operator t is defined by

tp (x) =
p (x) − p

(
qx

)
x − qx

, (1)

for all p (x) ∈ P. Specially,

txn =
xn
−

(
qx

)n

x − qx
= [n]q xn−1.

The q-analogue of the exponential series is defined by

εq
(
yt

)
=

∞∑
k=0

(
yt

)k

[k]q!
.
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One must notice that εq
(
yt

)
is well defined for all

∣∣∣yt
∣∣∣ < 1
|1−q|

if
∣∣∣q∣∣∣ < 1 and for all yt ∈ C if

∣∣∣q∣∣∣ > 1 or q = 1.
For detailed information about the q-calculus, see [9], [10], [13], [14].
Let

〈
L | p(x)

〉
be the action of a linear functional L on a polynomial p(x). Let F denote the algebra of

formal power series

f (t) =

∞∑
k=0

ak

[k]q!
tk.

This algebra is called q-umbral algebra. Each f ∈ F defines a linear functional on P and for all k > 0,
ak =

〈
f (t) | xk

〉
.

In the special case,〈
tk
| xn

〉
= [n]q!δn,k,

where

δn,k =

{
0 if n , k
1 if n = k.

Let f (t), 1(t) be in F, we have〈
f (t)1(t) | p (x)

〉
=

〈
f (t) | 1(t)p (x)

〉
.

The order o
(

f (t)
)

of a power series f (t) is the smallest integer k for which the coefficient of tk does not
vanish. A series f (t) for which o

(
f (t)

)
= 1 is called a delta series. And a series f (t) for which o

(
f (t)

)
= 0 is

called a invertible series.
Let f (t) be a delta series and let 1 (t) be an invertible series. Then there exist a unique sequence Sn (x) of

polynomials satisfying the orthogonality conditions〈
1(t) f (t)k

| Sn(x)
〉

= [n]q!δn,k (2)

for all n, k ≥ 0.
The sequence Sn(x) in (2) is the q-Sheffer polynomials for pair (1(t), f (t)), where 1(t) must be invertible

series and f (t) must be delta series. In particular, the q-Sheffer polynomials for pair (1(t), t) is the q-Appell
polynomial for 1(t).

Because of (1), we have the following recurrence formula for every q-Sheffer polynomials:

Sn (x) − Sn
(
qx

)
=

(
1 − qn) xSn−1 (x) , (3)

q-Sheffer polynomials (cf. [13]).
Every q-Appell polynomials satisfy the identities listed below:
The polynomial Sn (x) is q-Appell for 1 (t) if and only if

1
1 (t)

εq
(
yt

)
=

∞∑
k=0

Sk
(
y
)

[k]q!
tk (4)

for all constants y ∈ C.
The polynomial Sn (x) is q-Appell for 1 (t) if and only if

Sn (x) = 1 (t)−1 xn (5)

The polynomial Sn (x) is q-Appell for 1 (t) if and only if

tSn (x) = [n]q Sn−1 (x) . (6)
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By using (6), one obtain

1
t

Sn (x) =
1

[n + 1]q
Sn+1 (x) . (7)

For detailed information about the q-Appell polynomials, see [14], [13], [4], [5], [6]
q-derivative operator is defined by Dt,q : tn

−→ [n]q tn−1,

Dt,q f (t) =
f (t) − f

(
qt
)

t − qt
, (8)

where q , 1 (cf. [14]).

Remark 1.1. There are two kind of notation of q-derivative operator in the q-calculus theory. Operator t, which is
defined by (1), can be aplicable for only all p(x) ∈ P. On the other hand, operator Dt,q, which is defined by (8), is
usable for all arbitrary functions. Of course, one can see that the action of these two operators are exactly same on
any polynomials. But to avoid any confusion, we use operator Dt,q on all f (t) ∈ F and we use operator t on any
polynomials in this paper.

We have

Dn
t,q

(
f (t) 1 (t)

)
=

n∑
k=0

(
n
k

)
q
q−k(n−k)Dk

t,q f (t) Dn−k
t,q 1

(
qkt

)
, (9)

(cf. [14]),

Dt,q

(
f (t)
1 (t)

)
=
1 (t) Dt,q f (t) − f (t) Dt,q1 (t)

1 (t) 1
(
qt
) , (10)

(cf. [10]).
Higher-order q-Bernoulli polynomials are defined by means of the following generating function:

∞∑
k=0

B(α)
k,q (x)

tk

[k]q!
=

(
t

εq (t) − 1

)α
εq (xt) ,

where α ∈N (cf. [8]).
For α = 1, the higher-order q-Bernoulli polynomials reduced to q-Bernoulli polynomials by

B(1)
n,q (x) = Bn,q (x) .

Higher-order q-Bernoulli polynomials are q-Appell polynomials for 1 (t) =
( εq(t)−1

t

)α
. Then, by (5), the

following relationship holds true:

B(α)
n,q (x) =

(
t

εq (t) − 1

)α
xn, (11)

(cf. [11]).
Higher-order q-Euler polynomials are defined by means of the following generating function:

∞∑
k=0

E(α)
k,q (x)

tk

[k]q!
=

(
2

εq (t) + 1

)α
εq (xt) ,
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where α ∈N (cf. [8]).
For α = 1, the higher-order q-Euler polynomials reduced to q-Euler polynomials by

E(1)
n,q (x) = En,q (x) .

Higher-order q-Euler polynomials are also q-Appell polynomials for 1 (t) =
( εq(t)+1

2

)α
. Then, by (5), the

following relationship holds true:

E(α)
n,q (x) =

(
2

εq (t) + 1

)α
xn, (12)

(cf. [12]).

2. Some Relations for q-Appell polynomials

Roman [14] gave some introduction about the nonclassical umbral calculi. His results include some
identities for generalized Sheffer polynomials which are the generalization of q-Appell polynomials. In
this section, we obtain a recurrence formula for q-Appell polynomials by using the identities of generalized
Sheffer polynomials which are given by Roman [14]. θ operator is defined by

θ : xn
−→

n + 1
[n + 1]q

xn+1.

Observe that

θtxn = [n]q θxn−1 = nxn,

and so

θt = xD

where D is the ordinary derivative (cf. [14]).
If we investigate the relationship between operators θ and Dx,q, we get

θt =
n

[n]q
xDx,q. (13)

Lemma 2.1. Let Sn (x) be a q-Appell polynomial. Then

θSn (x) =
n

[n]q
xSn (x) . (14)

Proof. It follows from the equation (6) that

θSn (x) = θ
1

[n + 1]q
tSn+1 (x) .

By using (13) and (6), we get

θSn (x) =
n

[n]q
xSn (x) ,

which gives the desired result (cf. [7]).
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Let cn be a sequence of nonzero constants. Roman ([14]) gave a recurrence formula for generalized (cn)
Sheffer polynomials. By taking

cn =

(
1 − q

) (
1 − q2

)
· · ·

(
1 − qn)(

1 − q
)n ,

one can get the following result:
Let Sn (x) be a q-Appell polynomials for 1 (t). Then

(n + 1) Sn+1 (x) = [n + 1]q

(
θ −

Dt,q
(
1 (t)

)
1 (t)

)
Sn (x) , (15)

[7].

3. q-Bernoulli Polynomials Case

In this section, we investigate some operator action on the higher-order q-Bernoulli polynomials. Then
we obtain some recurrence formulas for these polynomials.

By using (11)and (6), we get(
εq (t) − 1

)
B(α)

n,q (x) = [n]q B(α−1)
n−1,q (x) .

By linearity, one can easily have

εq (t) B(a)
n,q (x) = [n]q B(a−1)

n−1,q (x) + B(a)
n,q (x) . (16)

Using (11), (7) and (16), we obtain the following equation:

εq (t)
εq (t) − 1

B(a)
n,q (x) = B(a)

n,q (x) +
1

[n + 1]q
B(a+1)

n+1,q (x) . (17)

A recurrence formula for B(α)
n,q (x) is obtained by using (3):

B(α)
n,q (x) = B(α)

n,q
(
qx

)
+

(
1 − qn) xB(α)

n−1,q (x) .

We give a recurrence formula for the q-Bernoulli polynomials by the following theorem:

Theorem 3.1.(
q (n + 1) − 1

)
Bn+1,q (x) = [n + 1]q

(
qnx
[n]q
− 1

)
Bn,q (x) − B(2)

n+1,q (x) .

Proof. Firstly, by using (10), we calculate the q-derivative of

1 (t) =
εq (t) − 1

t
.

Dt,q1 (t) =
tεq (t) −

(
εq (t) − 1

)
t2q

.

Hence, we obtain

Dt,q1 (t)
1 (t)

=
1
q

 εq (t)(
εq (t) − 1

) − 1
t

 .
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From (15), we get

(n + 1) Bn+1,q (x) = [n + 1]q

(
θ −

1
q

(
εq (t)

εq (t) − 1
−

1
t

))
Bn,q (x) .

By using (14), (17) and (7), we complete the proof.

4. q-Euler Polynomials Case

Similar to the previous section, we study some operator action on the higher-order q-Euler polynomials.
Then we get some recurrence formulas.

By using (12), we have(
εq (t) + 1

)
E(α)

n,q (x) = 2E(α−1)
n,q (x) .

By linearity, we get the action of εq (t) on E(α)
n,q (x):

εq (t) E(α)
n,q (x) = 2E(α−1)

n,q (x) − E(α)
n,q (x) . (18)

Then, by using (12) and (18), we obtain

εq (t)
εq (t) + 1

E(a)
n,q (x) = E(a)

n,q (x) +
1
2

E(a+1)
n,q (x) . (19)

A recurrence formula for E(α)
n,q (x) is obtained by using (3):

E(α)
n,q (x) = E(α)

n,q
(
qx

)
+

(
1 − qn) xE(α)

n−1,q (x) .

We have a recurrence formula for the q-Euler polynomials by the following theorem:

Theorem 4.1.

(n + 1)
[n + 1]q

En+1,q (x) =

(
nx

[n]q
− 1

)
En,q (x) −

1
2

E(2)
n,q (x) .

Proof. We calculate the q-derivative of

1 (t) =
εq (t) + 1

2
,

and we get

Dt,q1 (t)
1 (t)

=
εq (t)

εq (t) + 1

By using (15), we obtain

(n + 1) En+1,q (x) = [n + 1]q

(
θ −

εq (t)
εq (t) + 1

)
En,q (x)

= [n + 1]q

(
θEn,q (x) −

εq (t)
εq (t) + 1

En,q (x)
)
.

By using (14) and (19), we arrive the desired result.
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