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Connectedness Criteria for Graphs by Means of Omega Invariant

Utkum Sanlia, Feriha Celika, Sadik Delena, Ismail Naci Cangula

aDepartment of Mathematics, Faculty of Arts and Science, Bursa Uludag University, Gorukle 16059, Bursa, Turkey

Abstract. A realizable degree sequence can be realized in many ways as a graph. There are several tests for
determining realizability of a degree sequence. Up to now, not much was known about the common proper-
ties of these realizations. Euler characteristic is a well-known characteristic of graphs and their underlying
surfaces. It is used to determine several combinatorial properties of a surface and of all graphs embedded
onto it. Recently, last two authors defined a number Ω which is invariant for all realizations of a given de-
gree sequence. Ω is shown to be related to Euler characteristic and cyclomatic number. Several properties of
Ω are obtained and some applications in extremal graph theory are done by authors. As already shown, the
number Ω gives direct information compared with the Euler characteristic on the realizability, number of
realizations, being acyclic or cyclic, number of components, chords, loops, pendant edges, faces, bridges etc.

In this paper, another important topological property of graphs which is connectedness is studied by
means of Ω. It is shown that all graphs with Ω(G) ≤ −4 are disconnected, and if Ω(G) ≥ −2, then the
graph could be connected or disconnected. It is also shown that if the realization is a connected graph
and Ω(G) = −2, then certainly the graph should be acyclic. Similarly, it is shown that if the realization is
a connected graph G and Ω(G) ≥ 0, then certainly the graph should be cyclic. Also, the fact that when
Ω(G) ≤ −4, the components of the disconnected graph could not all be cyclic, and that if all the components
of a graph G are cyclic, then Ω(G) ≥ 0 are proven.

1. Introduction

Let G = (V,E) be a graph with | V(G) |= n vertices and | E(G) |= m edges. For a vertex v ∈ V(G), we
denote the degree of v by dv or dG(v). A vertex with degree one is called a pendant vertex. With slight
abuse of language, we shall use the term ”pendant edge” for an edge having a pendant vertex. If u and v
are adjacent vertices of G, then the edge e connecting them will be denoted by e = uv. In such a case, the
vertices u and v are called adjacent vertices and the edge e is said to be incident with u and v.

The degree sequence DS(G) of a graph G which is a non-decreasing sequence of non-negative integers
which are the degrees of the vertices of G. Written with multiplicities, a degree sequence in general is writ-
ten as DS(G) = {d1

(a1), d2
(a2), d3

(a3), · · · ,∆(a∆)
}, where ∆ denotes the biggest vertex degree and ai’s are positive
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integers. It is sometimes useful to state a degree sequence as DS(G) = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)
},where some

of ai’s could be zero.

Let D = {d1, d2, d3, · · · ,∆} be a set of non-decreasing non-negative integers. We say that a graph G is
a realization of the set D if the degree sequence of G is equal to D. It is clear from the definition that for
a realizable degree sequence, there is at least one graph having this degree sequence. For example, the
completely different two graphs in Fig. 1 have the same degree sequence:

Figure 1 Graphs with the same DS

There are some tests for determining realizability of a given set such as Havel-Hakimi and Sierksma and
Hoogeveen criteria, [5], [6], [9]. But these tests so far only help to determine the realizability of the given
degree sequence and do not give any information on the topological and combinatorial properties of them.

A graph is called connected when there is a path between every pair of vertices. In a connected graph,
there are no unreachable vertices. A graph that is not connected is disconnected. There are partial results
for determining the connectedness of a given graph. In this paper, we shall give the criteria to determine
the connectedness just by means of the degree sequence DS(G) of a graph G. In fact we shall give results
which help to determine the connectedness of all realizations of a given sequence.

It is well-known that the number a1 of leaves of a tree T is given by a1 = 2+a3+2a4+3a5+4a6+· · ·+(∆−2)a∆,
where ∆ is the largest vertex degree in T and ai denotes the number of vertices of degree i. Note that this
equation can be rearranged as

a3 + 2a4 + 3a5 + 4a6 + · · · + (∆ − 2)a∆ − a1 = −2. (1)

The third and fourth authors recently realized that the left hand side of Eqn. (1) is taking other integer
values as well resulting in numerous applications and gave the following definition:

Definition 1.1 ([2]). Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)
} be the degree sequence of a graph G. The Ω(G) of the graph

G is defined only in terms of the degree sequence as

Ω(G) = a3 + 2a4 + 3a5 + · · · + (∆ − 2)a∆ − a1 =

∆∑
i=1

(i − 2)ai.

With slight abuse of language, we shall use Ω(D) for the Ω of a given degree sequence. For several well-
known graph classes the path Pn, cycle Cn, star Sn, complete Kn, tadpole Tr,s, complete bipartite Kr,s with
n = r + s, and tree Tn with n vertices, the Ω values are Ω(Cn) = 0, Ω(Pn) = −2, Ω(Sn) = −2, Ω(Tn) = −2,
Ω(Kn) = n(n − 3), Ω(Kr,s) = 2[rs − (r + s)] and Ω(Tr,s) = 0. Note that the Ω of a path, star or tree is equal to
−2. This is in fact true for all connected acyclic graphs as we shall see in Theorem 4.1.

2. Some Properties of Ω

We now recall some basic properties of Ω from [2]. The following relation is a very useful tool in
calculating Ω(G) for a given graph G and will be used in the proofs of many results on Ω:
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Theorem 2.1 ([2]). For any graph G,
Ω(G) = 2(m − n).

The following important property of Ω can be used as another test to determine the realizability of a
given degree sequence:

Theorem 2.2 ([2]). For any graph G, Ω(G) is even.

Therefore if Ω(G) is odd, then we have the following obvious result:

Corollary 2.3 ([2]). Let D be a set of non-negative integers. If Ω(D) is odd, then D is not realizable.

The following result giving the number of regions of a graph is also very useful in obtaining our results:

Theorem 2.4 ([2]). Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)
}. If D is realizable as a connected planar graph G, then the

number r of closed regions in G is given by

r =
Ω(G)

2
+ 1.

In many cases, we shall face with disconnected graphs. The following result shows the additivity of Ω on
the set of the components of G:

Theorem 2.5 ([2]). Let G be a disconnected graph with c components G1,G2, · · · ,Gc. Then

Ω(G) =

c∑
i=1

Ω(Gi).

In the case of a disconnected graph, we obtain the following direct generalization of Theorem 2.4 to
disconnected graphs:

Corollary 2.6 ([2]). Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)
} be realizable as a graph G with c components. The number

r of faces of G is given by

r =
Ω(G)

2
+ c.

As r ≥ 0, we reach the following very useful property:

Corollary 2.7. For each graph G, we have

c ≥ −
Ω(G)

2
.

Equivalently, for all graphs, we have c ≥ n −m.

The following is a useful property of Ω:

Theorem 2.8. Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)
} and let Ω(D) ≥ 0. If D is realizable as a connected graph G, then

Ω(G)
2

= l + ch + em,

where l is the number of loops, ch is the number of chords and em is the number of multiple edges in G.
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3. Relation Between Ω and Euler Characteristic

Compact orientable surfaces are classified according to their genus and the classification theorem states
that any compact orientable surface is homeomorphic to one of the sphere (1 = 0), torus (1 = 1), double
torus (1 = 2), · · · , n-holed torus (1 = n). The Euler characteristic χ(S) of a compact orientable surface S of
genus 1 is defined as the number χ(S) = n −m + r where n, m and r are the numbers of the vertices, edges
and faces of a given graph embedded on the surface S. As it is a fixed number for all graphs embedded in
some certain surface, it is a topological invariant. This invariant was independently discovered by Euler
and Descartes, and therefore it is also known as the Descartes-Euler polyhedral formula. See [7] for the
results concerning the Theory of Algebraic Topology of Surfaces. It is well-known that χ(S) = 2 − 21 for an
orientable surface S of genus 1. If G is a graph embedded in a surface S, then the number n−m + r is called
the Euler characteristic of the graph G and denoted by χ(G).

For non-planar graphs which are graphs embedded in a surface of positive genus, the outside region
is a bounded region as the surface is compact and therefore we count the region outside the graph when
calculationg the number r. For planar graphs, the region outside the graph is non bounded and therefore
does not form a face of the graph. That is, for planar graphs, we take the number of regions surrounded
by the edges of a given planar graph as r = m − n + 1. Note that a closed region could be bounded by any
n-cycle (n-gon) where n ≥ 3, a loop (1-gon) or a pair of multiple edges (2-gon). Therefore, the number r
is equal to the so-called cyclomatic number of a graph which counts basically the number of independent
(non-overlapping) cycles in a given graph.

In case of planar graphs where 1 = 0, we have χ(G) = n−m + r = 2. That is, in such a graph, the number
r of regions is equal to m− n + 2. This can be seen from the fact that n = a1 + a2 + · · ·+ a∆, m = 1·a1+2·a2+···+∆·a∆

2

and r =
Ω(G)

2 + 2 =
a3+2·a4+···+(∆−2)a∆

2 + 2, counting the region outside the graph as well. For example, in a tree,
as n = m + 1, we conclude that r = 1. Indeed a tree does not divide the plane into two closed regions. There
is only one region surrounding the tree which is the whole plane. The relation between χ and Ω was given
in [2]:

Lemma 3.1. For any graph, we have
Ω(G) = 2(r − χ(G)).

4. Connectedness of Realizations

Given a set D of non-negative integers. If D is realizable, then the realization of it may not be unique
in most cases. To be able to decide on the connectedness or disconnectedness of these realizations is an
important problem. There are two notions which shall be mentioned here related to the connectedness. D
is called forcibly connected if every realization of it is connected and potentially connected if at least one
realization of it is connected. Although there is no complete result on the forcibly connectedness, there are
some on potentially connectedness. The next two results are very important in the characterization of being
cyclic or acyclic of a connected graph:

Theorem 4.1. The necessary and sufficient condition for a simple connected planar graph G to be a tree is Ω(G) = −2.

Proof.
Ω(G) = −2 ⇐⇒ 2(m − n) = −2

⇐⇒ n −m = 1
⇐⇒ χ(G) = 1 + r = 1
⇐⇒ r = 0
⇐⇒ G is a tree.

Theorem 4.2. Let G be a connected graph. Ω(G) ≥ 0 iff G is cyclic.
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Proof. By Theorem 2.4, we get
G is cyclic ⇔ r ≥ 1

⇔
Ω(G)

2 + 1 ≥ 1
⇔ Ω(G) ≥ 0.

The following result says that any realization of a degree sequence with Ω ≤ −4 must be disconnected:

Theorem 4.3. If Ω(D) ≤ −4, D cannot be forcibly or potentially connected.

Proof. Let, on the contrary, at least one realization, say G, of D be connected. G is either cyclic or acyclic. If
it is a connected acyclic graph, then by Theorem 4.1, we know that Ω(G) = −2 which is impossible. If it is a
connected cyclic graph, then by Theorem 4.2, we know that Ω(G) ≥ 0 which is impossible.

An alternative proof is as follows: By Corollary 2.7, we know that the number c of components of G
satisfies the inequality

c ≥ −
Ω(G)

2
.

As Ω ≤ −4, these two inequalities give c ≥ 2 giving the result.

The following result is one of the main results in this paper which shows that every degree sequence D
with Ω(D) ≥ 0 is potentially connected:

Theorem 4.4. Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)
}. If Ω(D) ≥ 0, then D is potentially connected and its connected

realization with the longest cycle is the one having a cycle of length a2 + a3 + a4 + · · ·+ a∆ together with loops, chords,
multiple edges and a1 pendant edges. Also when Ω(D) ≥ 0, every connected realization of D must be cyclic.

Proof. To show the potential connectedness of D, we just need to find a connected realization of it. We
construct the realization having the longest cycle by means of the following steps to obtain the required
graph: Any cycle with this degree sequence could have maximum length a2 + a3 + a4 + · · · + a∆ as every
vertex of degree at least two can be used in constructing this cycle. Draw a cycle with a2 + a3 + · · · + a∆

edges. Then we have a graph with degree sequence {2(a2+a3+···+a∆)
}. If a1 > 0, then add a1 pendant edges to

the vertices of the constructed cycle. Hence we have added maximum one pendant edge to each vertex of
degree 3, two pendant edges to each vertex of degree 4, three pendant edges to each vertex of degree 5, · · · ,
∆ − 2 pendant edges to each vertex of degree ∆. If Ω(D) = 0, then as a3 + 2a4 + 3a5 + · · · + (∆ − 2)a∆ − a1 = 0,
we have a3 + 2a4 + 3a5 + · · · + (∆ − 2)a∆ = a1. That is, all pendant vertices are used. If Ω(D) > 0, then we
have used all a1 pendant vertices and to get the required degrees for all vertices on the main cycle, we
need to add total of a3 + 2a4 + 3a5 + · · · + (∆ − 2)a∆ − a1 degrees. As all pendant vertices are already used,
we need to add chords, loops and multiple edges to get all the required degrees. As each such edge has
two vertices and adding each of them reduces the total degree we should add by two, we need to add
(a3 +2a4 +3a5 + · · ·+ (∆−2)a∆−a1)/2 edges. By Theorem 2.8, this number is equal to Ω(D)/2 and the required
graph is obtained. If Ω ≥ 0, by Theorem 2.8, as Ω(D)/2 chords, loops or multiple edges are added to the
vertices of the main cycle, the realized graph will be cyclic.

As we have already mentioned, there are some results on potentially connectedness of a given degree
sequence. In [4], the following test is given:

Theorem 4.5. Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)
} be a degree sequence. Then D is potentially connected if and only

if
∑n

i=1 di ≥ 2(n − 1).

Note that the condition for being potentially connected can be restated in terms of Ω:

Theorem 4.6. Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)
} be a degree sequence. Then D is potentially connected if and only

if Ω(D) ≥ −2.
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Proof. Replacing
∑n

i=1 di with 2m in Theorem 4.5 gives 2m ≥ 2(n − 1). As Ω(D) = 2(m − n) by Theorem 2.1,
the result follows.

We have seen that when Ω(D) ≤ −4, we can certainly say that the realization G of D is disconnected.
When Ω(D) ≥ −2, we cannot decide about the connectedness of G that easily. G could be connected or
disconnected. By the above results, the following are obvious:

Corollary 4.7.

i) If all components of a graph G are cyclic, then Ω(G) ≥ 0.

ii) If all components of a graph G are acyclic, then Ω(G) ≤ −2.

iii) If the components of a graph G are both cyclic and acyclic, then Ω(G) could be any even integer.
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