Filomat 34:2 (2020), 631-638 https://doi.org/10.2298/FIL2002631O

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Generalization of the Suborbital Graphs Generating Fibonacci Numbers for the Subgroup Γ^3

Seda Öztürk^a

^aKaradeniz Technical University, Faculty of Sciences, Department of Mathematics, Trabzon-Turkey

Abstract. The Modular group Γ is the most well-known discrete group with many applications. This work investigates some subgraphs of the subgroup Γ^3 , defined by

 $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : ab + cd \equiv 0 \pmod{3} \right\}$

In [1], the subgraph $F_{1,1}$ of the subgroup $\Gamma^3 \subset \Gamma$ is studied, and Fibonacci numbers are obtained by means of the subgraph of $F_{1,1}$. In this paper, we give a generalization of the subgraphs generating Fibonacci numbers for the subgroup Γ^3 and some subgraphs having special conditions.

1. Introduction and Preliminaries

The Modular group Γ is a subgroup of the automorphism group of the upper half plane, and defined as

$$\Gamma = PSL(2, \mathbb{Z}) = \{K : z \to \frac{az+b}{cz+d} : a, b, c, d \in \mathbb{Z}, ad-bc=1\}$$

The elements of the Modular group can also be taken as matrices $\mp \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in \mathbb{Z}$ and ad - bc = 1,

since the Modular group is isomorphic to $SL(2,\mathbb{Z})/\{\pm I\}$. It is generated by matrices $U = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $V = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ with defining relationships $U^2 = V^3 = I$, where *I* is the identity matrix. The Modular group

acts on the extended rational numbers $\hat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$ with the action defined by

$$\mp \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \frac{x}{y} = \frac{ax + by}{cx + dy}$$

where $a, b, c, d \in \mathbb{Z}$, and ad - bc = 1 [2]. Some more information about the modular group Γ can be found in [3, 4, 5, 6].

²⁰¹⁰ Mathematics Subject Classification. 05CXX, 11B39, 11F06, 20H05, 22E40

Keywords. Modular group, Suborbital graph, Fibonacci numbers, The subgroup Γ^3

Received: 19 March 2019; Revised: 11 May 2019; Accepted: 16 July 2019

Communicated by Yilmaz Simsek

Email address: seda.ozturk@ktu.edu.tr (Seda Öztürk)

The subgroup Γ^3 is defined as a subgroup of Γ generated by third power of all elements of Γ in [4, 5]. In ([6], p.33), it is shown that

$$\Gamma^3 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : ab + cd \equiv 0 \pmod{3} \right\}$$

In [7], it follows from the definition that the elements of Γ^3 are one of the forms $\begin{pmatrix} 3a & b \\ c & 3d \end{pmatrix}$, $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where, in third matrix, $a, b, c, d \neq 0 \pmod{3}$. Hence, the subgroup Γ^3 acts transitively on the set of $\hat{\mathbb{Q}}$ and the stabilizer of ∞ is the group $\{ \mp \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} : m \in \mathbb{Z} \}$. We take the subgroup $\Gamma_0^3(n) = \{g \in \Gamma^3 : c \equiv 0 \pmod{n}\}$ and the stabilizer Γ_{∞}^3 , and now we can set up Γ^3 – invariant equivalence relation. Since the group Γ^3 is transitive, any reduced fraction $\frac{r}{s} \in \hat{\mathbb{Q}}$ equals $g(\infty)$ for some $g \in \Gamma^3$. The diagonal action, given by $g(\alpha, \beta) = (g\alpha, g\beta)$, of the group Γ^3 on $\hat{\mathbb{Q}} \times \hat{\mathbb{Q}}$ defines the suborbitals, which are actually orbits. The orbit $O^3(\alpha, \beta)$ containing (α, β) gives the suborbital graph $G^3(\alpha, \beta)$ defined as follows:

As in [2], the set of vertices is $\hat{\mathbb{Q}}$, and there is an edge $\gamma \to \delta$ in $G^3(\alpha, \beta)$ if and only if $(\gamma, \delta) \in O^3(\alpha, \beta)$. Due to the transitivity, every suborbital contains a pair $(\infty, \frac{u}{n})$ for some $\frac{u}{n} \in \hat{\mathbb{Q}}$, (u, n) = 1, n > 0. The congruence subgroup $\Gamma_0^3(n)$ defines the following equivalence relation on $\hat{\mathbb{Q}}$ by $g_1(\infty) \simeq g_2(\infty)$ for $g_1, g_2 \in \Gamma^3$ if and only if $g_1\Gamma_0^3(n) = g_2\Gamma_0^3(n)$. If $g_1(\infty) = \frac{r}{s}$ and $g_2(\infty) = \frac{x}{y}$, we have $\frac{r}{s} \simeq \frac{x}{y} \Leftrightarrow ry - sx \equiv 0 \pmod{n}$. We will denote the suborbital graph by $G_{u,n}^3$ for short. By virtue of the permuting the blocks transitively

We will denote the suborbital graph by $G_{u,n}^3$ for short. By virtue of the permuting the blocks transitively all subgraphs corresponding to the blocks are isomorphic. Hence, we will only consider the subgraph $F_{u,n}^3$ of $G_{u,n}^3$ whose vertice set is just the equivalence class or the block

$$[\infty] = \left\{ \frac{x}{y} \in \hat{\mathbb{Q}} : y \equiv 0 \pmod{n} \right\}$$

In [7], the author studied the connectivity properties of all subgraphs of the subgroup Γ^3 except of the subgraph $F_{1,1}$ and in [1], the authors showed that the subgraph $F_{1,1}$ is disconnected and for all natural numbers m, the natural numbers b that make the numbers $(9m^2-4)b^2+4$ square are $0, 1, 3m, 9m^2-1, 3m(9m^2-1)-3m, \cdots, a, b, 3mb-a, \cdots$.

In this work, we will investigate some number theoretical problems and give a generalization of the subgraphs generating Fibonacci numbers for the subgroup Γ^3 and subgraphs with some special conditions by means of some special matrices.

2. Main Results

Theorem 1. [7] $F_{u,n}^3 = F_{u',n'}^3$ if and only if n = n' and $u \equiv u' \pmod{3n}$

Theorem 2. [7] There is an edge $\frac{r}{s} \rightarrow \frac{x}{y}$ in $F_{n,1}^3$ if and only if either (*i*) if $r \equiv 0 \pmod{3}$, then $y \equiv \mp ns \pmod{3}$ and $ry - sx = \mp 1$, or (*ii*) if $s \equiv 0 \pmod{3}$, then $x \equiv \mp nr \pmod{3}$ and $ry - sx = \mp 1$, or (*iii*) if $r, s \not\equiv 0 \pmod{3}$, then $x \not\equiv \mp nr \pmod{3}$, $y \not\equiv \mp ns \pmod{3}$ and $ry - sx = \mp 1$

Theorem 3. Let $n \in \mathbb{N}$. Then, $A = \begin{pmatrix} -n & n^2 + 3n + 1 \\ -1 & n + 3 \end{pmatrix}$ is in Γ^3 .

Proof. We have $-n.(n^2 + 3n + 1) - 1.(n + 3) \equiv -(n^3 + 2n) \mod (3)$ for every $n \in \mathbb{N}$. To prove that the matrix A is in Γ^3 , we must show that, for any n,

$$n^3 + 2n \equiv 0 \mod (3) \tag{1}$$

If $n \equiv 0 \mod (3)$, then (1) is true. Otherwise, we have that $n \equiv 1 \mod (3)$ or $n \equiv -1 \mod (3)$, and so $n^2 \equiv 1 \mod (3)$. Therefore, in any case, $n^3 + 2n = n(n^2 + 2) \equiv 0 \mod (3)$ for every natural number *n*. This gives the proof.

We give following straightforward corollary without proof.

Corollary 4. If $m \in \mathbb{N}$, $m \not\equiv 0 \mod (3)$, then there exists some natural number k such that $3k - 2 = m^2$. That is, the number $3k - 2 = m^2$ is a perfect square number. Some of the values of the number k are 1, 2, 6, 9, 17, 22, \cdots .

Theorem 5. Let $n \in \mathbb{N}$ and $A = \begin{pmatrix} -n & n^2 + 3n + 1 \\ -1 & n + 3 \end{pmatrix}$. Then, for all $m \in \mathbb{N}$ (*i*) $A^m(\frac{1}{0}) \to A^m(\frac{n}{1})$ in $F^3_{n,1}$, (*ii*) $A^m(\frac{1}{0}) \to A^{m+1}(\frac{1}{0})$ in $F^3_{n,1}$.

Proof. (i) We will use mathematical induction principle. For m = 1, $A^1(\frac{1}{0}) = A(\frac{1}{0}) = \frac{n}{1} \rightarrow \frac{3n+1}{3} = A(\frac{n}{1}) = A^1(\frac{n}{1})$ is true. Let it be true for $m \in \mathbb{N}$. Hence, we must show that the hypothesis is true for $m + 1 \in \mathbb{N}$. From the assumption, we get that $A(A^m(\frac{1}{0})) = A^{m+1}(\frac{1}{0}) \rightarrow A(A^m(\frac{n}{1})) = A^{m+1}(\frac{n}{1})$.

(ii)Using (i), we have $A^m(\frac{1}{0}) \to A^m(\frac{n}{1}) = A^m(A(\frac{1}{0})) = A^{m+1}(\frac{1}{0}).$

Corollary 6. The sequence $\{A^m\}_{m \in \mathbb{N}}$ is strictly monotone increasing and the path

$$A(\frac{1}{0}) \rightarrow A^2(\frac{1}{0}) \rightarrow A^3(\frac{1}{0}) \rightarrow \cdots$$

is an infinite path.

Proof. For all $z \in \mathbb{R} \setminus \{n+3\}$, $A(z) = \frac{-nz + (n^2 + 3n + 1)}{-z + n + 3}$ and A'(z) > 0. This shows that A is strictly monotone increasing. Also, the path is an infinite. Because, if for some positive integers m and k such that m > k, $A^k(\frac{1}{0}) = A^m(\frac{1}{0})$, then put m = k + l gives $A^l(\frac{1}{0}) = \frac{1}{0}$. In this case, the element A^l has three fixed points as $\frac{(2n+3) \mp \sqrt{5}}{2}$ and $\frac{1}{0}$, which gives A^l to be the identity. This gives a contradiction, since A is hyperbolic.

Theorem 7. Let
$$A = \begin{pmatrix} -n & n^2 + 3n + 1 \\ -1 & n+3 \end{pmatrix}$$
, which is in Γ^3 and $a, b \in \mathbb{N}$ such that $\frac{n}{1} \le \frac{a}{b} < \frac{(2n+3) - \sqrt{5}}{2}$. Then,
(i) $\frac{a}{b} < A(\frac{a}{b}) < \frac{(2n+3) - \sqrt{5}}{2}$,
(ii) $\frac{a}{b} \to A(\frac{a}{b})$ is an edge in $F_{n,1}^3$ if and only if $a = \frac{(2n+3)b - \sqrt{5b^2 + 4}}{2}$ and there exists some $k \in \mathbb{N}$ such that $5b^2 + 4 = k^2$.
Proof.(i) Since $\frac{a}{b} < \frac{(2n+3) - \sqrt{5}}{2}$, we get that $2a < 2nb + 3b - \sqrt{5b}, 5b^2 < (2n+3)^2b^2 + 4a^2 - 4ab(2n+3)$

Then, $-a^2 + abn + 3ab < -anb + b^2(n^2 + 3n + 1)$ and $\frac{a}{b} < \frac{-na + (n^2 + 3n + 1)b}{-a + b(n + 3)} = A(\frac{a}{b})$. Further, we show that $A(\frac{a}{b}) < \frac{(2n+3) - \sqrt{5}}{2}$. From the above, $a^2 - 2abn - 3ab + b^2(n^2 + 3n + 1) > 0$ and so $\sqrt{5} < \frac{a - (n+3)b}{3a - (3n + 7)b}$ and

$$\sqrt{5} - (2n+3) < -2\frac{-an+b(n^2+3n+1)}{-a+(n+3)b}, \frac{(2n+3)-\sqrt{5}}{2} > A(\frac{a}{b})$$

Consequently, we have $\frac{a}{b} < A(\frac{a}{b}) < \frac{(2n+3) - \sqrt{5}}{2}$. (ii) Let $\frac{a}{b} \to A(\frac{a}{b})$ be an edge in $F_{n,1}^3$. By (i) and by Theorem 2, we have

1

$$a^{2} - (2n+3)ab + (n^{2} + 3n + 1)b^{2} > 0$$

and $a^2 - (2n + 3)ab + (n^2 + 3n + 1)b^2 = 1$. Hence, we multiply the equation by 4 and add $5b^2$, we get $4a^2 - 4ab(2n+3) + 4b^2(n^2 + 3n + 1) + 5b^2 = 4 + 5b^2$. Also, since (2n+3)b - 2a > 0, we have $a = \frac{(2n+3)b - \sqrt{5b^2 + 4}}{2}$. Furthermore, since $4 + 5b^2$ is a natural number, there exists some $k \in \mathbb{N}$ such that $5b^2 + 4 = k^2$. Conversely, let $a = \frac{(2n+3)b - \sqrt{5b^2 + 4}}{2}$. Then, after some calculations it is easily seen that

iversely, let
$$a = \frac{2}{2}$$
. Then, after some calculations it is easily seen

$$\frac{-b^2(n^2+3n+2)(2n+3)+nb(n+3)\sqrt{5b^2+4}}{2} \equiv 0 \mod (3)$$

Therefore, the matrix

$$B = \begin{pmatrix} \frac{-(2n+3)b + \sqrt{5b^2 + 4}}{2} & (n^2 + 3n + 1)b \\ -b & \frac{(2n+3)b + \sqrt{5b^2 + 4}}{2} \end{pmatrix}$$

is in Γ^3 . Also, $B(\frac{1}{0}) = \frac{a}{b}$, $B(\frac{n}{1}) = \frac{a}{b}$. Hence by Theorem 5, we get that $\frac{a}{b} \to A(\frac{a}{b})$ is an edge in $F_{n,1}^3$.

Corollary 8. Let $k, n \in \mathbb{N}$. Then,

(i) The path

$$\frac{1}{0} \to n + \frac{0}{1} \to n + \frac{1}{3} \to \dots \to n + \frac{a_k}{b_k} \to n + \frac{b_k}{3b_k - a_k} \to \dots$$

is an infinite path under the matrix A.

(*ii*) All vertices in (*i*) are less than $\frac{(2n-3) + \sqrt{5}}{2}$.

(iii) For the numbers
$$a_k$$
, b_k in (i), $a_k = \frac{3b_k - \sqrt{5b_k^2 + 4}}{2}$ and the numbers $5a_k^2 + 4$, $5b_k^2 + 4$ are perfect squares.

Proof. (i) From the Theorem 5, we get that $A^m(\frac{1}{0}) = \frac{x_m}{y_m} \to A^{m+1}(\frac{1}{0}) = n + \frac{y_m}{3y_m - (x_m - ny_m)} \to A^{m+2}(\frac{1}{0}) = n + \frac{3y_m - (x_m - ny_m)}{3(3y_m - (x_m - ny_m)) - y_m}$ for $m \in \mathbb{N}$, and so this gives the proof.

(ii) It is clear from (i) of the Theorem 7.

(iii) From (ii) of the Theorem 7, if $\frac{a_k}{b_k} \to A(\frac{a_k}{b_k})$, then $a_k = \frac{(2n+3)b_k - \sqrt{5b_k^2 + 4}}{2}$. Hence, we have

$$\frac{a_k}{b_k} = \frac{\frac{(2n+3)b_k - \sqrt{5b_k^2 + 4}}{2}}{b_k} \to n + \frac{b_k}{3b_k - \left(\frac{(2n+3)b_k - \sqrt{5b_k^2 + 4}}{2} - nb_k\right)} = n + \frac{b_k}{3b_k - \left(\frac{3b_k - \sqrt{5b_k^2 + 4}}{2}\right)}.$$
 There-

Let $S = \begin{pmatrix} n+3 & -(n^2+3n+1) \\ 1 & -n \end{pmatrix}$ be the inverse matrix of the above matrix A. **Theorem 9.** Let $a, b \in \mathbb{N}$ such that $\frac{2n+1}{1} \leq \frac{a}{b} < \frac{(2n+3) + \sqrt{5}}{2}$. Then,

$$(i) \frac{a}{b} < S(\frac{a}{b}) < \frac{(2n+3) + \sqrt{5}}{2},$$

$$(ii) \frac{a}{b} \rightarrow S(\frac{a}{b}) \text{ is an edge in } F^3_{n+3,1} \text{ if and only if } a = \frac{(2n+3)b + \sqrt{5b^2 - 4}}{2} \text{ and there exists } l \in \mathbb{N} \text{ such that } 5b^2 - 4 = l^2.$$

Proof. (i) Since $\frac{a}{b} < \frac{(2n+3) + \sqrt{5}}{2}$, $2a - b(2n+3) < \sqrt{5}b$. From this, $4a^2 - 4ab(2n+3) + (2n+3)b^2 < 5b^2$, and so $a^2 - (2n+3)ab + (n^2+3n+1)b^2 < 0$. Therefore,

$$\frac{a}{b} < \frac{(n+3)a - b(n^2 + 3n + 1)}{a - nb} = S(\frac{a}{b})$$
(2)

Also, since *S* is increasing on $\left[\frac{(2n+1)}{1}, \frac{(2n+3)+\sqrt{5}}{2}\right) \cap \mathbb{Q}$ and $S\left(\frac{(2n+3)+\sqrt{5}}{2}\right) = \frac{(2n+3)+\sqrt{5}}{2}$ we obtain that

$$S(\frac{a}{b}) < \frac{(2n+3) + \sqrt{5}}{2}$$
 (3)

By (2) and (3), we get that $\frac{a}{h} < S(\frac{a}{h}) < \frac{(2n+3) + \sqrt{5}}{2}$.

(ii) Let $\frac{a}{b} \to S(\frac{a}{b})$ be an edge in $F_{n+3,1}^3$. So, $a^2 - 2nab - 3ab + n^2b^2 + 3nb^2 + b^2 < 0$ and from Theorem 5, $a^2 - (2n+3)ab + (n^2 + 3n + 1)b^2 = -1$. Then, $(2a - (2n+3)b)^2 = -4 + 5b^2$ and taking square root, we get $|2a - (2n + 3)b| = \sqrt{-4 + 5b^2}$. Since 2a - (2n + 3)b > 0, this shows that $a = \frac{(2n + 3)b + \sqrt{5b^2 - 4}}{2}$. For $2a - (2n + 3)b \in \mathbb{N}$, there exists some $w \in \mathbb{N}$ such that $5b^2 - 4 = w^2$. Conversely, let $a = \frac{(2n + 3)b + \sqrt{5b^2 - 4}}{2}$

and let *w* be in **N** such that $5b^2 - 4 = w^2$. Then, $\frac{a}{b} = \frac{(2n+3)b + \sqrt{5b^2 - 4}}{\frac{2}{b}}$, $S(\frac{a}{b}) = \frac{(n+3)\frac{(2n+3)b + \sqrt{5b^2 - 4}}{2} - b(n^2 + 3n + 1)}{\frac{3b + \sqrt{5b^2 - 4}}{2}}$ 635

From Theorem 5, we have that $\frac{a}{b} \to S(\frac{a}{b})$ is an edge in $F^3_{n+3,1}$.

Corollary 10. Let $k \in \mathbb{N}$. Then,

(i) The path $(2n+3) - \frac{1}{1} \rightarrow (2n+3) - \frac{1}{2} \rightarrow (2n+3) - \frac{2}{5} \rightarrow \cdots \rightarrow (2n+3) - \frac{a_k}{b_k} \rightarrow (2n+3) - \frac{b_k}{(3b_k - a_k)} \rightarrow \cdots$ is an infinite path under the matrix S.

(ii) The vertices in (i)are less than
$$\frac{(2n+3) + \sqrt{5}}{2}$$
.
(iii) For the numbers a_k in (i) a_k $3b_k - \sqrt{5b_k^2 - 4}$ and then

(iii) For the numbers a_k , b_k in (i), $a_k = \frac{5b_k - \sqrt{5b_k} - 4}{2}$ and the numbers $5a_k^2 - 4$, $5b_k^2 - 4$ are perfect squares.

From the Corollaries 8-(i) and 10-(i), we get that the following two corollaries.

Corollary 11. The numbers $b_k \in \mathbb{Z}^+$ making $5b_k^2 + 4$ perfect square are $0, 1, 3, 8, \dots, x, y, 3y - x, \dots$

Corollary 12. The numbers $b_k \in \mathbb{Z}^+$ making $5b_k^2 - 4$ perfect square are $1, 2, 5, \dots, x, y, 3y - x, \dots$

Corollary 13. Let the sequences $\{a_k\}_{k\in\mathbb{N}}$, $\{b_k\}_{k\in\mathbb{N}}$ be $(0, 1, 3, 8, \dots, x, y, 3y - x, \dots)$ and $(1, 2, 5, \dots, r, s, 3s - r, \dots)$, respectively. Then, the sequence $\{c_k\}_{k\in\mathbb{N}}$, defined by $(0, 1, 1, 2, 3, 5, 8, \dots, a_k, b_k, a_{k+1}, b_{k+1}, \dots)$ is the Fibonacci sequence.

Proof. We must show that $a_k + b_k = a_{k+1}$ and $b_k + a_{k+1} = b_{k+1}$ for all $k \in \mathbb{N}$. By the mathematical induction principle, for k = 1, $a_1 + b_1 = a_2$ and $b_1 + a_2 = b_2$ are true. Let it true be for $k \in \mathbb{N}$. Let us see that $a_{k+1} + b_{k+1} = a_{k+2}$ and $b_{k+1} + a_{k+2} = b_{k+2}$. Since, $a_{k+1} = 3a_k - a_{k-1}$ and $b_{k+1} = 3b_k - b_{k-1}$, we get that $a_{k+1} + b_{k+1} = 3(a_k + b_k) - (a_{k-1} + b_{k-1}) = 3a_{k+1} - a_k = a_{k+2}$ and $b_{k+1} + a_{k+2} = 3(b_k + a_{k+1}) - (b_{k-1} + a_k) = 3b_{k+1} - b_k = b_{k+2}$.

Theorem 14. [7] There is an edge $\frac{r}{s} \rightarrow \frac{x}{y}$ in $F_{1,n}^3$ if and only if either

(*i*) if $r \equiv 0 \pmod{3}$, then $x \equiv \mp r \pmod{3}$, $y \equiv \mp s \pmod{3n}$ and $ry - sx = \mp n$, or

(*ii*) *if* $s \equiv 0 \pmod{3}$, *then* $x \equiv \mp r \pmod{3n}$, $y \equiv \mp s \pmod{n}$ *and* $ry - sx = \mp n$, *or*

(*iii*) *if* $r, s \neq 0 \pmod{3}$, *then* $x \equiv \mp r \pmod{n}$, $y \equiv \mp s \pmod{n}$, $x \not\equiv \mp r \pmod{3n}$, $y \not\equiv \mp s \pmod{3n}$ and $ry - sx = \mp n$

Now, we consider a new matrix $K = \begin{pmatrix} -1 & 1 \\ -n & n-1 \end{pmatrix}$ for $n \in \mathbb{N}$, $n \ge 4$. It is easily proved that the matrix K is in Γ^3 if and only if $n \equiv 2 \mod (3)$.

Theorem 15. Let $n \in \mathbb{N}$, $n \ge 4$, and $K = \begin{pmatrix} -1 & 1 \\ -n & n-1 \end{pmatrix}$ be in Γ^3 . Then,

(*i*) $\forall m \in \mathbb{N}, K^m(\frac{1}{0}) \to K^m(\frac{1}{n}) \text{ in } F^3_{1,n}.$ (*ii*) $\forall m \in \mathbb{N}, K^m(\frac{1}{0}) \to K^{m+1}(\frac{1}{0}) \text{ in } F^3_{1,n}.$

(iii) The sequence $\{K^m\}_{m \in \mathbb{N}}$ is increasing and the path

$$K(\frac{1}{0}) \rightarrow K^2(\frac{1}{0}) \rightarrow K^3(\frac{1}{0}) \rightarrow \cdots$$

is infinite path.

(iv) The fixed points of K are $z_{1,2} = \frac{n \pm \sqrt{(n-4)n}}{2n}$.

636

From (ii) of Theorem 15, we obtain the following result $K^m(\frac{1}{0}) := \frac{a_m}{nb_m}$, then $\frac{1}{n} + \frac{a_m - b_m}{nb_m} \rightarrow \frac{1}{n} + \frac{b_m}{n((n-2)b_m - (a_m - b_m))}$.

Theorem 16. Let $n \in \mathbb{N}$, $n \ge 4$, and $K = \begin{pmatrix} -1 & 1 \\ -n & n-1 \end{pmatrix} \in \Gamma^3$ and $a, b \in \mathbb{N}$ such that $\frac{1}{n} \le \frac{a}{nb} < \frac{n - \sqrt{(n-4)n}}{2n}$. Then,

(i)
$$\frac{a}{nb} < K(\frac{a}{nb}) < \frac{n - \sqrt{(n-4)n}}{2n}$$

 $(ii)\frac{a}{nb} \rightarrow K(\frac{a}{nb})$ is an edge in $F_{1,n}^3$ if and only if $a = \frac{nb - \sqrt{n(n-4)b^2 + 4}}{2}$ and there exists some $t \in \mathbb{N}$ such that $n(n-4)b^2 + 4 = t^2$.

Proof. (i) Since $\frac{a}{nb} < \frac{n - \sqrt{(n-4)n}}{2n}$, $a^2 - nab + nb^2 > 0$. From this, we have $na^2 - n^2ab + n^2b^2 > 0$, and so

$$\frac{a}{nb} < \frac{-a+nb}{-an+(n-1)b} = K(\frac{a}{nb}) \tag{4}$$

On the other hand, for the mapping *K* is increasing on $\left[\frac{1}{n}, \frac{n-\sqrt{n(n-4)}}{2n}\right) \cap \mathbb{Q}$ and $K\left(\frac{n-\sqrt{n(n-4)}}{2n}\right) = \frac{n-\sqrt{n(n-4)}}{2n}$, we get that

$$K(\frac{a}{nb}) < \frac{n - \sqrt{(n-4)n}}{2n} \tag{5}$$

From (4) and (5), we have $\frac{a}{nb} < K(\frac{a}{nb}) < \frac{n - \sqrt{(n-4)n}}{2n}$.

(ii) Let $\frac{a}{nb} \to K(\frac{a}{nb})$ be an edge in $F_{1,n}^3$. So, $a^2 - nab + nb^2 > 0$ and from Theorem 7, $a^2 - nab + nb^2 = 1$. Then, $(2a - nb)^2 = 4 + n(n-4)b^2$ and taking square root, we have $|2a - nb| = \sqrt{4 + n(n-4)b^2}$. Since 2a - nb < 0, this shows that $a = \frac{nb - \sqrt{n(n-4)b^2 + 4}}{2}$. Also, since $nb - 2a \in \mathbb{N}$, there exists some $t \in \mathbb{N}$ such that $n(n-4)b^2 + 4 = t^2$.

Conversely, $a = \frac{nb - \sqrt{n(n-4)b^2 + 4}}{2}$ and there exists some $t \in \mathbb{N}$ such that $n(n-4)b^2 + 4 = t^2$. $\frac{nb - \sqrt{n(n-4)b^2 + 4}}{2}$ $\frac{nb - \sqrt{n(n-4)b^2 + 4}}{2}$

Then,
$$\frac{a}{nb} = \frac{2}{nb}$$
, $K(\frac{a}{nb}) = \frac{2}{n(\frac{(n-2)b - \sqrt{n(n-4)b^2 + 4}}{2})}$. From Theorem 7, we get that

 $\frac{a}{nb} \to K(\frac{a}{nb}) \text{ is an edge in } F^3_{1,n}.$

Now, we give the following two corollaries without a proof.

Corollary 17. Let $k, n \in \mathbb{N}$; $n \ge 4$. Then,

(*i*)The path $\frac{1}{0} \rightarrow \frac{1}{n} \rightarrow \frac{1}{n} + \frac{1}{n(n-2)} \rightarrow \cdots \rightarrow \frac{1}{n} + \frac{a_k}{nb_k} \rightarrow \frac{1}{n} + \frac{b_k}{n((n-2)b_k - a_k)} \rightarrow \cdots$ is an infinite path under the matrix K.

(*ii*) All above vertices are less than
$$\frac{n - \sqrt{(n-4)n}}{2n}$$
.

(*iii*) For the numbers a_k , b_k in (*i*), $a_k = \frac{(n-2)b_k - \sqrt{n(n-4)b_k^2 + 4}}{2}$ and the numbers $n(n-4)a_k^2 + 4$, $n(n-4)b_k^2 + 4$ are perfect squares.

Corollary 18. The integers $b \in \mathbb{Z}^+ \cup \{0\}$ in the equality $n(n-4)b^2 + 4 = t^2$ are

$$0, 1, (n-2), \cdots, x, y, (n-2)y - x, \cdots$$

Proof. It is easily seen from (i) of the Corollary 17.

Note. By the Corollary 18, we get that the number $(9m^2 - 4)b^24 = t^2$ in [1] for n = 3m + 2.

Acknowledgements

The author thanks the referees for their valuable supports.

References

- [1] M. Akbaş, T. Kör and Y. Kesicioğlu, *Disconnectedness of the subgraph* F^3 *for the group* Γ^3 , Journal of Inequalities and Applications, 2013.
- [2] G. A. Jones, D. Singerman, and K. Wicks, *The Modular Group and Generalized Farey Graphs*, London Mathematical Society Lecture Note Series, Cambridge University Press, 160, 1991.
- [3] G. A. Jones and D. Singerman, Complex Functions, An algebraic and geometric viewpoint, Cambridge university press, 1987.
- [4] M. Newman, The Structure of some subgroups of the modular group, Illinois J. Math., 6,(1962) 480-487.
- [5] M. Newman, *Classification of normal subgroups of the modular group*, Transactions of the American Math Society, Vol.126, 2,(1967) 267-277.
- [6] R.A. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge, 1978.
- [7] Y. Kesicioğlu, Suborbital graphs of Hecke groups Γ^3 and G_5 , PhD thesis, Karadeniz Technical University, Trabzon, 2011.