A Generalization of the Suborbital Graphs Generating Fibonacci Numbers for the Subgroup Γ^{3}

Seda Öztürk ${ }^{\text {a }}$
${ }^{a}$ Karadeniz Technical University, Faculty of Sciences, Department of Mathematics, Trabzon-Turkey

Abstract

The Modular group Γ is the most well-known discrete group with many applications. This work investigates some subgraphs of the subgroup Γ^{3}, defined by $$
\left\{\left(\begin{array}{l} a \\ c \\ c \end{array}\right) \in \Gamma: a b+c d \equiv 0 \quad(\bmod 3)\right\}
$$

In [1], the subgraph $F_{1,1}$ of the subgroup $\Gamma^{3} \subset \Gamma$ is studied, and Fibonacci numbers are obtained by means of the subgraph of $F_{1,1}$. In this paper, we give a generalization of the subgraphs generating Fibonacci numbers for the subgroup Γ^{3} and some subgraphs having special conditions.

1. Introduction and Preliminaries

The Modular group Γ is a subgroup of the automorphism group of the upper half plane, and defined as

$$
\Gamma=P S L(2, \mathbb{Z})=\left\{K: z \rightarrow \frac{a z+b}{c z+d}: a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

The elements of the Modular group can also be taken as matrices $\mp\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in \mathbb{Z}$ and $a d-b c=1$, since the Modular group is isomorphic to $S L(2, \mathbb{Z}) /\{ \pm I\}$. It is generated by matrices $U=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $V=\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$ with defining relationships $U^{2}=V^{3}=I$, where I is the identity matrix. The Modular group acts on the extended rational numbers $\hat{\mathbb{Q}}=\mathbb{Q} \cup\{\infty\}$ with the action defined by

$$
\mp\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \frac{x}{y}=\frac{a x+b y}{c x+d y}
$$

where $a, b, c, d \in \mathbb{Z}$, and $a d-b c=1$ [2]. Some more information about the modular group Γ can be found in [3, 4, 5, 6].

[^0]The subgroup Γ^{3} is defined as a subgroup of Γ generated by third power of all elements of Γ in [4, 5]. In ([6],p.33), it is shown that

$$
\Gamma^{3}=\left\{\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in \Gamma: a b+c d \equiv 0 \quad(\bmod 3)\right\}
$$

In [7], it follows from the definition that the elements of Γ^{3} are one of the forms $\left(\begin{array}{ccc}3 a & b \\ c & 3 d\end{array}\right),\left(\begin{array}{lll}a & 3 b \\ 3 c & d\end{array}\right),\left(\begin{array}{l}a \\ c \\ c\end{array}\right)$ where, in third matrix, $a, b, c, d \not \equiv 0(\bmod 3)$. Hence, the subgroup Γ^{3} acts transitively on the set of $\hat{\mathbb{Q}}$ and the stabilizer of ∞ is the group $\left\{\mp\left(\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right): m \in \mathbb{Z}\right\}$. We take the subgroup $\Gamma_{0}^{3}(n)=\left\{g \in \Gamma^{3}: c \equiv 0(\bmod n)\right\}$ and the stabilizer Γ_{∞}^{3}, and now we can set up Γ^{3} - invariant equivalence relation. Since the group Γ^{3} is transitive, any reduced fraction $\frac{r}{s} \in \hat{\mathbb{Q}}$ equals $g(\infty)$ for some $g \in \Gamma^{3}$. The diagonal action, given by $g(\alpha, \beta)=(g \alpha, g \beta)$, of the group Γ^{3} on $\hat{\mathbb{Q}} \times \hat{\mathbb{Q}}$ defines the suborbitals, which are actually orbits. The orbit $O^{3}(\alpha, \beta)$ containing (α, β) gives the suborbital graph $G^{3}(\alpha, \beta)$ defined as follows:

As in [2], the set of vertices is $\hat{\mathbb{Q}}$, and there is an edge $\gamma \rightarrow \delta$ in $G^{3}(\alpha, \beta)$ if and only if $(\gamma, \delta) \in O^{3}(\alpha, \beta)$. Due to the transitivity, every suborbital contains a pair $\left(\infty, \frac{u}{n}\right)$ for some $\frac{u}{n} \in \hat{\mathbb{Q}},(u, n)=1, n>0$. The congruence subgroup $\Gamma_{0}^{3}(n)$ defines the following equivalence relation on $\hat{\mathbb{Q}}$ by $g_{1}(\infty) \simeq g_{2}(\infty)$ for $g_{1}, g_{2} \in \Gamma^{3}$ if and only if $g_{1} \Gamma_{0}^{3}(n)=g_{2} \Gamma_{0}^{3}(n)$. If $g_{1}(\infty)=\frac{r}{s}$ and $g_{2}(\infty)=\frac{x}{y}$, we have $\frac{r}{s} \simeq \frac{x}{y} \Leftrightarrow r y-s x \equiv 0(\bmod n)$

We will denote the suborbital graph by $G_{u, n}^{3}$ for short. By virtue of the permuting the blocks transitively all subgraphs corresponding to the blocks are isomorphic. Hence, we will only consider the subgraph $F_{u, n}^{3}$ of $G_{u, n}^{3}$ whose vertice set is just the equivalence class or the block

$$
[\infty]=\left\{\frac{x}{y} \in \hat{\mathbb{Q}}: y \equiv 0 \quad(\bmod n)\right\}
$$

In [7], the author studied the connectivity properties of all subgraphs of the subgroup Γ^{3} except of the subgraph $F_{1,1}$ and in [1], the authors showed that the subgraph $F_{1,1}$ is disconnected and for all natural numbers m, the natural numbers b that make the numbers $\left(9 m^{2}-4\right) b^{2}+4$ square are $0,1,3 m, 9 m^{2}-1,3 m\left(9 m^{2}-\right.$ 1) $-3 m, \cdots, a, b, 3 m b-a, \cdots$.

In this work, we will investigate some number theoretical problems and give a generalization of the subgraphs generating Fibonacci numbers for the subgroup Γ^{3} and subgraphs with some special conditions by means of some special matrices.

2. Main Results

Theorem 1. [7] $F_{u, n}^{3}=F_{u^{\prime}, n^{\prime}}^{3}$ if and only if $n=n^{\prime}$ and $u \equiv u^{\prime}(\bmod 3 n)$
Theorem 2. [7] There is an edge $\frac{r}{s} \rightarrow \frac{x}{y}$ in $F_{n, 1}^{3}$ if and only if either
(i) if $r \equiv 0(\bmod 3)$, then $y \equiv \mp n s(\bmod 3)$ and $r y-s x=\mp 1$, or
(ii) if $s \equiv 0(\bmod 3)$, then $x \equiv \mp n r(\bmod 3)$ and $r y-s x=\mp 1$, or
(iii) if $r, s \not \equiv 0(\bmod 3)$, then $x \not \equiv \mp n r(\bmod 3), y \not \equiv \mp n s(\bmod 3)$ and
$r y-s x=\mp 1$
Theorem 3. Let $n \in \mathbb{N}$. Then, $A=\left(\begin{array}{cc}-n & n^{2}+3 n+1 \\ -1 & n+3\end{array}\right)$ is in Γ^{3}.
Proof. We have $-n .\left(n^{2}+3 n+1\right)-1 .(n+3) \equiv-\left(n^{3}+2 n\right) \bmod (3)$ for every $n \in \mathbb{N}$.To prove that the matrix A is in Γ^{3}, we must show that, for any n,

$$
\begin{equation*}
n^{3}+2 n \equiv 0 \bmod (3) \tag{1}
\end{equation*}
$$

If $n \equiv 0 \bmod (3)$, then (1) is true. Otherwise, we have that $n \equiv 1 \bmod (3)$ or $n \equiv-1 \bmod (3)$, and so $n^{2} \equiv 1 \bmod (3)$. Therefore, in any case, $n^{3}+2 n=n\left(n^{2}+2\right) \equiv 0 \bmod (3)$ for every natural number n. This gives the proof.

We give following straightforward corollary without proof.
Corollary 4. If $m \in \mathbb{N}, m \not \equiv 0 \bmod (3)$, then there exists some natural number k such that $3 k-2=m^{2}$. That is, the number $3 k-2=m^{2}$ is a perfect square number. Some of the values of the number k are $1,2,6,9,17,22, \cdots$.

Theorem 5. Let $n \in \mathbb{N}$ and $A=\left(\begin{array}{cc}-n & n^{2}+3 n+1 \\ -1 & n+3\end{array}\right)$. Then, for all $m \in \mathbb{N}$
(i) $A^{m}\left(\frac{1}{0}\right) \rightarrow A^{m}\left(\frac{n}{1}\right)$ in $F_{n, 1^{\prime}}^{3}$
(ii) $A^{m}\left(\frac{1}{0}\right) \rightarrow A^{m+1}\left(\frac{1}{0}\right)$ in $F_{n, 1}^{3}$.

Proof. (i) We will use mathematical induction principle. For $m=1, A^{1}\left(\frac{1}{0}\right)=A\left(\frac{1}{0}\right)=\frac{n}{1} \rightarrow \frac{3 n+1}{3}=A\left(\frac{n}{1}\right)=$ $A^{1}\left(\frac{n}{1}\right)$ is true. Let it be true for $m \in \mathbb{N}$. Hence, we must show that the hypothesis is true for $m+1 \in \mathbb{N}$. From the assumption, we get that $A\left(A^{m}\left(\frac{1}{0}\right)\right)=A^{m+1}\left(\frac{1}{0}\right) \rightarrow A\left(A^{m}\left(\frac{n}{1}\right)\right)=A^{m+1}\left(\frac{n}{1}\right)$.
(ii)Using (i), we have $A^{m}\left(\frac{1}{0}\right) \rightarrow A^{m}\left(\frac{n}{1}\right)=A^{m}\left(A\left(\frac{1}{0}\right)\right)=A^{m+1}\left(\frac{1}{0}\right)$.

Corollary 6. The sequence $\left\{A^{m}\right\}_{m \in \mathbb{N}}$ is strictly monotone increasing and the path

$$
A\left(\frac{1}{0}\right) \rightarrow A^{2}\left(\frac{1}{0}\right) \rightarrow A^{3}\left(\frac{1}{0}\right) \rightarrow \cdots
$$

is an infinite path.
Proof. For all $z \in \mathbb{R} \backslash\{n+3\}, A(z)=\frac{-n z+\left(n^{2}+3 n+1\right)}{-z+n+3}$ and $A^{\prime}(z)>0$. This shows that A is strictly monotone increasing. Also, the path is an infinite. Because, if for some positive integers m and k such that $m>k$, $A^{k}\left(\frac{1}{0}\right)=A^{m}\left(\frac{1}{0}\right)$, then put $m=k+l$ gives $A^{l}\left(\frac{1}{0}\right)=\frac{1}{0}$. In this case, the element A^{l} has three fixed points as $\frac{(2 n+3) \mp \sqrt{5}}{2}$ and $\frac{1}{0}$, which gives A^{l} to be the identity. This gives a contradiction, since A is hyperbolic.

Theorem 7. Let $A=\left(\begin{array}{cc}-n & n^{2}+3 n+1 \\ -1 & n+3\end{array}\right)$, which is in Γ^{3} and $a, b \in \mathbb{N}$ such that $\frac{n}{1} \leq \frac{a}{b}<\frac{(2 n+3)-\sqrt{5}}{2}$. Then,
(i) $\frac{a}{b}<A\left(\frac{a}{b}\right)<\frac{(2 n+3)-\sqrt{5}}{2}$,
(ii) $\frac{a}{b} \rightarrow A\left(\frac{a}{b}\right)$ is an edge in $F_{n, 1}^{3}$ if and only if $a=\frac{(2 n+3) b-\sqrt{5 b^{2}+4}}{2}$ and there exists some $k \in \mathbb{N}$ such that $5 b^{2}+4=k^{2}$.

Proof.(i) Since $\frac{a}{b}<\frac{(2 n+3)-\sqrt{5}}{2}$, we get that

$$
2 a<2 n b+3 b-\sqrt{5} b, 5 b^{2}<(2 n+3)^{2} b^{2}+4 a^{2}-4 a b(2 n+3)
$$

Then, $-a^{2}+a b n+3 a b<-a n b+b^{2}\left(n^{2}+3 n+1\right)$ and $\frac{a}{b}<\frac{-n a+\left(n^{2}+3 n+1\right) b}{-a+b(n+3)}=A\left(\frac{a}{b}\right)$. Further, we show that $A\left(\frac{a}{b}\right)<\frac{(2 n+3)-\sqrt{5}}{2}$. From the above, $a^{2}-2 a b n-3 a b+b^{2}\left(n^{2}+3 n+1\right)>0$ and so $\sqrt{5}<\frac{a-(n+3) b}{3 a-(3 n+7) b}$ and

$$
\sqrt{5}-(2 n+3)<-2 \frac{-a n+b\left(n^{2}+3 n+1\right)}{-a+(n+3) b}, \frac{(2 n+3)-\sqrt{5}}{2}>A\left(\frac{a}{b}\right)
$$

Consequently, we have $\frac{a}{b}<A\left(\frac{a}{b}\right)<\frac{(2 n+3)-\sqrt{5}}{2}$.
(ii) Let $\frac{a}{b} \rightarrow A\left(\frac{a}{b}\right)$ be an edge in $F_{n, 1}^{3}$. By (i) and by Theorem 2 , we have

$$
a^{2}-(2 n+3) a b+\left(n^{2}+3 n+1\right) b^{2}>0
$$

and $a^{2}-(2 n+3) a b+\left(n^{2}+3 n+1\right) b^{2}=1$. Hence, we multiply the equation by 4 and add $5 b^{2}$, we get $4 a^{2}-4 a b(2 n+3)+4 b^{2}\left(n^{2}+3 n+1\right)+5 b^{2}=4+5 b^{2}$. Also, since $(2 n+3) b-2 a>0$, we have $a=\frac{(2 n+3) b-\sqrt{5 b^{2}+4}}{2}$. Furthermore, since $4+5 b^{2}$ is a natural number, there exists some $k \in \mathbb{N}$ such that $5 b^{2}+4=k^{2}$.

Conversely, let $a=\frac{(2 n+3) b-\sqrt{5 b^{2}+4}}{2}$. Then, after some calculations it is easily seen that

$$
\frac{-b^{2}\left(n^{2}+3 n+2\right)(2 n+3)+n b(n+3) \sqrt{5 b^{2}+4}}{2} \equiv 0 \bmod (3)
$$

Therefore, the matrix

$$
B=\left(\begin{array}{cc}
\frac{-(2 n+3) b+\sqrt{5 b^{2}+4}}{2} & \left(n^{2}+3 n+1\right) b \\
-b & \frac{(2 n+3) b+\sqrt{5 b^{2}+4}}{2}
\end{array}\right)
$$

is in Γ^{3}. Also, $B\left(\frac{1}{0}\right)=\frac{a}{b}, B\left(\frac{n}{1}\right)=\frac{a}{b}$. Hence by Theorem 5 . we get that $\frac{a}{b} \rightarrow A\left(\frac{a}{b}\right)$ is an edge in $F_{n, 1}^{3}$.
Corollary 8. Let $k, n \in \mathbb{N}$. Then,
(i) The path

$$
\frac{1}{0} \rightarrow n+\frac{0}{1} \rightarrow n+\frac{1}{3} \rightarrow \cdots \rightarrow n+\frac{a_{k}}{b_{k}} \rightarrow n+\frac{b_{k}}{3 b_{k}-a_{k}} \rightarrow \cdots
$$

is an infinite path under the matrix A.
(ii) All vertices in (i) are less than $\frac{(2 n-3)+\sqrt{5}}{2}$.
(iii) For the numbers a_{k}, b_{k} in (i), $a_{k}=\frac{3 b_{k}-\sqrt{5 b_{k}^{2}+4}}{2}$ and the numbers $5 a_{k}^{2}+4,5 b_{k}^{2}+4$ are perfect squares.

Proof. (i) From the Theorem[5. we get that $A^{m}\left(\frac{1}{0}\right)=\frac{x_{m}}{y_{m}} \rightarrow A^{m+1}\left(\frac{1}{0}\right)=n+\frac{y_{m}}{3 y_{m}-\left(x_{m}-n y_{m}\right)} \rightarrow A^{m+2}\left(\frac{1}{0}\right)=$ $n+\frac{3 y_{m}-\left(x_{m}-n y_{m}\right)}{3\left(3 y_{m}-\left(x_{m}-n y_{m}\right)\right)-y_{m}}$ for $m \in \mathbb{N}$, and so this gives the proof.
(ii) It is clear from (i) of the Theorem 7
(iii) From (ii) of the Theorem $\left[7\right.$, if $\frac{a_{k}}{b_{k}} \rightarrow A\left(\frac{a_{k}}{b_{k}}\right)$, then $a_{k}=\frac{(2 n+3) b_{k}-\sqrt{5 b_{k}^{2}+4}}{2}$. Hence, we have $\frac{a_{k}}{b_{k}}=\frac{\frac{(2 n+3) b_{k}-\sqrt{5 b_{k}^{2}+4}}{2}}{b_{k}} \rightarrow n+\frac{b_{k}}{3 b_{k}-\left(\frac{(2 n+3) b_{k}-\sqrt{5 b_{k}^{2}+4}}{2}-n b_{k}\right)}=n+\frac{b_{k}}{3 b_{k}-\left(\frac{3 b_{k}-\sqrt{5 b_{k}^{2}+4}}{2}\right)}$. Therefore, by (i) of this Corollary, we get that $a_{k}=\frac{3 b_{k}-\sqrt{5 b_{k}^{2}+4}}{2}$.

Let $S=\left(\begin{array}{cc}n+3 & -\left(n^{2}+3 n+1\right) \\ 1 & -n\end{array}\right)$ be the inverse matrix of the above matrix A.
Theorem 9. Let $a, b \in \mathbb{N}$ such that $\frac{2 n+1}{1} \leq \frac{a}{b}<\frac{(2 n+3)+\sqrt{5}}{2}$. Then,
(i) $\frac{a}{b}<S\left(\frac{a}{b}\right)<\frac{(2 n+3)+\sqrt{5}}{2}$,
(ii) $\frac{a}{b} \rightarrow S\left(\frac{a}{b}\right)$ is an edge in $F_{n+3,1}^{3}$ if and only if $a=\frac{(2 n+3) b+\sqrt{5 b^{2}-4}}{2}$ and there exists $l \in \mathbb{N}$ such that $5 b^{2}-4=l^{2}$.

Proof. (i) Since $\frac{a}{b}<\frac{(2 n+3)+\sqrt{5}}{2}, 2 a-b(2 n+3)<\sqrt{5} b$. From this, $4 a^{2}-4 a b(2 n+3)+(2 n+3) b^{2}<5 b^{2}$, and so $a^{2}-(2 n+3) a b+\left(n^{2}+3 n+1\right) b^{2}<0$. Therefore,

$$
\begin{equation*}
\frac{a}{b}<\frac{(n+3) a-b\left(n^{2}+3 n+1\right)}{a-n b}=S\left(\frac{a}{b}\right) \tag{2}
\end{equation*}
$$

Also, since S is increasing on $\left[\frac{(2 n+1)}{1}, \frac{(2 n+3)+\sqrt{5}}{2}\right) \cap \mathbb{Q}$ and $S\left(\frac{(2 n+3)+\sqrt{5}}{2}\right)=\frac{(2 n+3)+\sqrt{5}}{2}$, we obtain that

$$
\begin{equation*}
S\left(\frac{a}{b}\right)<\frac{(2 n+3)+\sqrt{5}}{2} \tag{3}
\end{equation*}
$$

By (2) and (3), we get that $\frac{a}{b}<S\left(\frac{a}{b}\right)<\frac{(2 n+3)+\sqrt{5}}{2}$.
(ii) Let $\frac{a}{b} \rightarrow S\left(\frac{a}{b}\right)$ be an edge in $F_{n+3,1}^{3}$. So, $a^{2}-2 n a b-3 a b+n^{2} b^{2}+3 n b^{2}+b^{2}<0$ and from Theorem 5. $a^{2}-(2 n+3) a b+\left(n^{2}+3 n+1\right) b^{2}=-1$. Then, $(2 a-(2 n+3) b)^{2}=-4+5 b^{2}$ and taking square root, we get $|2 a-(2 n+3) b|=\sqrt{-4+5 b^{2}}$. Since $2 a-(2 n+3) b>0$, this shows that $a=\frac{(2 n+3) b+\sqrt{5 b^{2}-4}}{2}$. For $2 a-(2 n+3) b \in \mathbb{N}$, there exists some $w \in \mathbb{N}$ such that $5 b^{2}-4=w^{2}$. Conversely, let $a=\frac{(2 n+3) b+\sqrt{5 b^{2}-4}}{2}$ and let w be in \mathbb{N} such that $5 b^{2}-4=w^{2}$. Then, $\frac{a}{b}=\frac{\frac{(2 n+3) b+\sqrt{5 b^{2}-4}}{2}}{b}$,

$$
S\left(\frac{a}{b}\right)=\frac{(n+3) \frac{(2 n+3) b+\sqrt{5 b^{2}-4}}{2}-b\left(n^{2}+3 n+1\right)}{\frac{3 b+\sqrt{5 b^{2}-4}}{2}}
$$

From Theorem 5. we have that $\frac{a}{b} \rightarrow S\left(\frac{a}{b}\right)$ is an edge in $F_{n+3,1}^{3}$.
Corollary 10. Let $k \in \mathbb{N}$. Then,
(i) The path $(2 n+3)-\frac{1}{1} \rightarrow(2 n+3)-\frac{1}{2} \rightarrow(2 n+3)-\frac{2}{5} \rightarrow \cdots \rightarrow(2 n+3)-\frac{a_{k}}{b_{k}} \rightarrow(2 n+3)-\frac{b_{k}}{\left(3 b_{k}-a_{k}\right)} \rightarrow \cdots$ is an infinite path under the matrix S.
(ii) The vertices in (i)are less than $\frac{(2 n+3)+\sqrt{5}}{2}$.
(iii) For the numbers a_{k}, b_{k} in (i), $a_{k}=\frac{3 b_{k}-\sqrt{5 b_{k}^{2}-4}}{2}$ and the numbers $5 a_{k}^{2}-4,5 b_{k}^{2}-4$ are perfect squares.

From the Corollaries 8 -(i) and 10 -(i), we get that the following two corollaries.
Corollary 11. The numbers $b_{k} \in \mathbb{Z}^{+}$making $5 b_{k}^{2}+4$ perfect square are $0,1,3,8, \cdots, x, y, 3 y-x, \cdots$
Corollary 12. The numbers $b_{k} \in \mathbb{Z}^{+}$making $5 b_{k}^{2}-4$ perfect square are $1,2,5, \cdots, x, y, 3 y-x, \cdots$
Corollary 13. Let the sequences $\left\{a_{k}\right\}_{k \in \mathbb{N}},\left\{b_{k}\right\}_{k \in \mathbb{N}}$ be $(0,1,3,8, \cdots, x, y, 3 y-x, \cdots)$ and $(1,2,5, \cdots, r, s, 3 s-r, \cdots)$, respectively. Then, the sequence $\left\{c_{k}\right\}_{k \in \mathbb{N}}$, defined by $\left(0,1,1,2,3,5,8, \cdots, a_{k}, b_{k}, a_{k+1}, b_{k+1}, \cdots\right)$ is the Fibonacci sequence.

Proof. We must show that $a_{k}+b_{k}=a_{k+1}$ and $b_{k}+a_{k+1}=b_{k+1}$ for all $k \in \mathbb{N}$. By the mathematical induction principle, for $k=1, a_{1}+b_{1}=a_{2}$ and $b_{1}+a_{2}=b_{2}$ are true. Let it true be for $k \in \mathbb{N}$. Let us see that $a_{k+1}+b_{k+1}=a_{k+2}$ and $b_{k+1}+a_{k+2}=b_{k+2}$. Since, $a_{k+1}=3 a_{k}-a_{k-1}$ and $b_{k+1}=3 b_{k}-b_{k-1}$, we get that $a_{k+1}+b_{k+1}=3\left(a_{k}+b_{k}\right)-\left(a_{k-1}+b_{k-1}\right)=3 a_{k+1}-a_{k}=a_{k+2}$ and $b_{k+1}+a_{k+2}=3\left(b_{k}+a_{k+1}\right)-\left(b_{k-1}+a_{k}\right)=3 b_{k+1}-b_{k}=b_{k+2}$.

Theorem 14. [7] There is an edge $\frac{r}{s} \rightarrow \frac{x}{y}$ in $F_{1, n}^{3}$ if and only if either
(i) if $r \equiv 0(\bmod 3)$, then $x \equiv \mp r(\bmod 3), y \equiv \mp s(\bmod 3 n)$ and $r y-s x=\mp n$, or
(ii) if $s \equiv 0(\bmod 3)$, then $x \equiv \mp r(\bmod 3 n), y \equiv \mp s(\bmod n)$ and $r y-s x=\mp n$, or
(iii) if $r, s \not \equiv 0(\bmod 3)$, then $x \equiv \mp r(\bmod n), y \equiv \mp s(\bmod n), x \not \equiv \mp r(\bmod 3 n), y \not \equiv \mp s(\bmod 3 n)$ and $r y-s x=\mp n$

Now, we consider a new matrix $K=\left(\begin{array}{cc}-1 & 1 \\ -n & n-1\end{array}\right)$ for $n \in \mathbb{N}, n \geq 4$. It is easily proved that the matrix K is in Γ^{3} if and only if $n \equiv 2 \bmod (3)$.

Theorem 15. Let $n \in \mathbb{N}, n \geq 4$, and $K=\left(\begin{array}{cc}-1 & 1 \\ -n & n-1\end{array}\right)$ be in Γ^{3}. Then,
(i) $\forall m \in \mathbb{N}, K^{m}\left(\frac{1}{0}\right) \rightarrow K^{m}\left(\frac{1}{n}\right)$ in $F_{1, n}^{3}$.
(ii) $\forall m \in \mathbb{N}, K^{m}\left(\frac{1}{0}\right) \rightarrow K^{m+1}\left(\frac{1}{0}\right)$ in $F_{1, n}^{3}$.
(iii) The sequence $\left\{K^{m}\right\}_{m \in \mathbb{N}}$ is increasing and the path

$$
K\left(\frac{1}{0}\right) \rightarrow K^{2}\left(\frac{1}{0}\right) \rightarrow K^{3}\left(\frac{1}{0}\right) \rightarrow \cdots
$$

is infinite path.
(iv) The fixed points of K are $z_{1,2}=\frac{n \mp \sqrt{(n-4) n}}{2 n}$.

From (ii) of Theorem 15, we obtain the following result
$K^{m}\left(\frac{1}{0}\right):=\frac{a_{m}}{n b_{m}}$, then $\frac{1}{n}+\frac{a_{m}-b_{m}}{n b_{m}} \rightarrow \frac{1}{n}+\frac{b_{m}}{n\left((n-2) b_{m}-\left(a_{m}-b_{m}\right)\right)}$.
Theorem 16. Let $n \in \mathbb{N}, n \geq 4$, and $K=\left(\begin{array}{cc}-1 & 1 \\ -n & n-1\end{array}\right) \in \Gamma^{3}$ and $a, b \in \mathbb{N}$ such that $\frac{1}{n} \leq \frac{a}{n b}<\frac{n-\sqrt{(n-4) n}}{2 n}$. Then,
(i) $\frac{a}{n b}<K\left(\frac{a}{n b}\right)<\frac{n-\sqrt{(n-4) n}}{2 n}$,
(ii) $\frac{a}{n b} \rightarrow K\left(\frac{a}{n b}\right)$ is an edge in $F_{1, n}^{3}$ if and only if $a=\frac{n b-\sqrt{n(n-4) b^{2}+4}}{2}$ and there exists some $t \in \mathbb{N}$ such that $n(n-4) b^{2}+4=t^{2}$.

Proof. (i) Since $\frac{a}{n b}<\frac{n-\sqrt{(n-4) n}}{2 n}, a^{2}-n a b+n b^{2}>0$. From this, we have $n a^{2}-n^{2} a b+n^{2} b^{2}>0$, and so

$$
\begin{equation*}
\frac{a}{n b}<\frac{-a+n b}{-a n+(n-1) b}=K\left(\frac{a}{n b}\right) \tag{4}
\end{equation*}
$$

On the other hand, for the mapping K is increasing on $\left[\frac{1}{n}, \frac{n-\sqrt{n(n-4)}}{2 n}\right) \cap \mathbb{Q}$ and $K\left(\frac{n-\sqrt{n(n-4)}}{2 n}\right)=$ $\frac{n-\sqrt{n(n-4)}}{2 n}$, we get that

$$
\begin{equation*}
K\left(\frac{a}{n b}\right)<\frac{n-\sqrt{(n-4) n}}{2 n} \tag{5}
\end{equation*}
$$

From (4) and (5), we have $\frac{a}{n b}<K\left(\frac{a}{n b}\right)<\frac{n-\sqrt{(n-4) n}}{2 n}$.
(ii) Let $\frac{a}{n b} \rightarrow K\left(\frac{a}{n b}\right)$ be an edge in $F_{1, n}^{3}$. So, $a^{2}-n a b+n b^{2}>0$ and from Theorem 7 . $a^{2}-n a b+n b^{2}=1$. Then, $(2 a-n b)^{2}=4+n(n-4) b^{2}$ and taking square root, we have $|2 a-n b|=\sqrt{4+n(n-4) b^{2}}$. Since $2 a-n b<0$, this shows that $a=\frac{n b-\sqrt{n(n-4) b^{2}+4}}{2}$. Also, since $n b-2 a \in \mathbb{N}$, there exists some $t \in \mathbb{N}$ such that $n(n-4) b^{2}+4=t^{2}$.

Conversely, $a=\frac{n b-\sqrt{n(n-4) b^{2}+4}}{2}$ and there exists some $t \in \mathbb{N}$ such that $n(n-4) b^{2}+4=t^{2}$.
Then, $\frac{a}{n b}=\frac{\frac{n b-\sqrt{n(n-4) b^{2}+4}}{2}}{n b}, K\left(\frac{a}{n b}\right)=\frac{\frac{n b-\sqrt{n(n-4) b^{2}+4}}{2}}{n\left(\frac{(n-2) b-\sqrt{n(n-4) b^{2}+4}}{2}\right)}$. From Theorem 7 . we get that $\frac{a}{n b} \rightarrow K\left(\frac{a}{n b}\right)$ is an edge in $F_{1, n}^{3}$.

Now, we give the following two corollaries without a proof.
Corollary 17. Let $k, n \in \mathbb{N} ; n \geq 4$. Then,
(i)The path $\frac{1}{0} \rightarrow \frac{1}{n} \rightarrow \frac{1}{n}+\frac{1}{n(n-2)} \rightarrow \cdots \rightarrow \frac{1}{n}+\frac{a_{k}}{n b_{k}} \rightarrow \frac{1}{n}+\frac{b_{k}}{n\left((n-2) b_{k}-a_{k}\right)} \rightarrow \cdots$ is an infinite path under the matrix K .
(ii) All above vertices are less than $\frac{n-\sqrt{(n-4) n}}{2 n}$.
(iii) For the numbers $a_{k}, b_{k} \operatorname{in}(i), a_{k}=\frac{(n-2) b_{k}-\sqrt{n(n-4) b_{k}^{2}+4}}{2}$ and the numbers $n(n-4) a_{k}^{2}+4, n(n-4) b_{k}^{2}+4$ are perfect squares.

Corollary 18. The integers $b \in \mathbb{Z}^{+} \cup\{0\}$ in the equality $n(n-4) b^{2}+4=t^{2}$ are

$$
0,1,(n-2), \cdots, x, y,(n-2) y-x, \cdots
$$

Proof. It is easily seen from (i) of the Corollary 17
Note. By the Corollary 18, we get that the number $\left(9 m^{2}-4\right) b^{2} 4=t^{2}$ in [1] for $n=3 m+2$.

Acknowledgements

The author thanks the referees for their valuable supports.

References

[1] M. Akbaş ,T. Kör and Y. Kesicioğlu, Disconnectedness of the subgraph F^{3} for the group Γ^{3}, Journal of Inequalities and Applications, 2013.
[2] G. A. Jones, D. Singerman, and K. Wicks, The Modular Group and Generalized Farey Graphs, London Mathematical Society Lecture Note Series, Cambridge University Press, 160, 1991.
[3] G. A. Jones and D. Singerman, Complex Functions, An algebraic and geometric viewpoint, Cambridge university press, 1987.
[4] M. Newman, The Structure of some subgroups of the modular group, Illinois J. Math., 6,(1962) 480-487.
[5] M. Newman, Classification of normal subgroups of the modular group, Transactions of the American Math Society, Vol.126, 2,(1967) 267-277.
[6] R.A. Rankin, Modular Forms and Functions,Cambridge University Press, Cambridge, 1978.
[7] Y. Kesicioğlu, Suborbital graphs of Hecke groups Γ^{3} and G_{5}, PhD thesis, Karadeniz Technical University, Trabzon, 2011.

[^0]: 2010 Mathematics Subject Classification. 05CXX, 11B39, 11F06, 20H05, 22E40
 Keywords. Modular group, Suborbital graph, Fibonacci numbers, The subgroup Γ^{3}
 Received: 19 March 2019; Revised: 11 May 2019; Accepted: 16 July 2019
 Communicated by Yilmaz Simsek
 Email address: seda.ozturk@ktu.edu.tr (Seda Öztürk)

