On Boole-Type Combinatorial Numbers and Polynomials

Yilmaz Simsek ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, University of Akdeniz, TR-07058 Antalya, Turkey.

Abstract

The aim of this paper is to construct generating functions for Boole-type combinatorial numbers and polynomials. Using these generating functions, we derive not only fundamental properties of these numbers and polynomials, but also some identities and formulas. Finally, we present a brief historical remarks and observations on our generating functions and Peters and Boole-type numbers and polynomials.

1. Introduction, Definitions and Notations

Throughout this paper, we need the following definitions and notations. $\mathbb{N}=\{1,2,3, \ldots\}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
\mathbb{Z}, \mathbb{R} and \mathbb{C} denotes the set of integers, the set of real numbers and the set of complex numbers, respectively. Generating functions for some special numbers and polynomials are given below:
The Apostol-Bernoulli polynomials and the Apostol-Euler polynomials are defined by, respectively:

$$
\begin{equation*}
F_{B}(t, x ; \lambda)=\frac{t e^{x t}}{\lambda e^{t}-1}=\sum_{n=0}^{\infty} \mathcal{B}_{n}(x ; \lambda) \frac{t^{n}}{n!} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{E}(t, x ; \lambda)=\frac{2 e^{x t}}{\lambda e^{t}+1}=\sum_{n=0}^{\infty} \mathcal{E}_{n}(x ; \lambda) \frac{t^{n}}{n!^{\prime}} \tag{2}
\end{equation*}
$$

which, for $x=0$, are reduced to the Apostol-Bernoulli numbers $\mathcal{B}_{n}(\lambda)=\mathcal{B}_{n}(0 ; \lambda)$ and the Apostol-Euler numbers $\mathcal{E}_{n}(\lambda)=\mathcal{E}_{n}(0 ; \lambda)$. For special value of the parameter λ, we also get the Bernoulli numbers and the Euler numbers (cf. [2], [7], [8]).

The Stirling numbers of the first kind and the second kind are defined by, respectively:

$$
\begin{equation*}
F_{S_{1}}(t, k)=\frac{(\log (1+t))^{k}}{k!}=\sum_{n=0}^{\infty} s(n, k) \frac{t^{n}}{n!} \tag{3}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
(x)_{n}=x(x-1) \ldots(x-n+1)=\sum_{j=0}^{n} x^{j} s(n, j) \tag{4}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
F_{S_{2}}(t, k)=\frac{\left(e^{t}-1\right)^{k}}{k!}=\sum_{n=0}^{\infty} S(n, k) \frac{t^{n}}{n!} \tag{5}
\end{equation*}
$$

(cf. [1], [2], [5], [8]).
Integral representation of the Cauchy numbers C_{n} is given by

$$
\begin{equation*}
C_{n}=\int_{0}^{1}(x)_{n} d x \tag{6}
\end{equation*}
$$

(cf. [5]).
The Peters polynomials are defined by

$$
\begin{equation*}
F_{P}(t, x ; \lambda, \mu)=\frac{(1+t)^{x}}{\left(1+(1+t)^{\lambda}\right)^{\mu}}=\sum_{n=0}^{\infty} s_{n}(x ; \lambda, \mu) \frac{t^{n}}{n!} \tag{7}
\end{equation*}
$$

(cf. [3], [4], [5]). Setting $x=0$ in (7), the polynomials $s_{n}(x ; \lambda, \mu)$ are reduced to the Peters numbers $s_{n}(\lambda, \mu)=s_{n}(0 ; \lambda, \mu)$. When $\mu=1$, equation (7) is reduced to the generating function for the Boole polynomials $\xi_{n}(x ; \lambda)=s_{n}(x ; \lambda, 1)(c f$. [3], [5]). Substituting $x=0$ and $\mu=1$ into (7), the Peters polynomials are reduced to the Boole numbers $\xi_{n}(\lambda)=s_{n}(0 ; \lambda, 1)\left(c f\right.$. [3]) and also $C h_{n}=2 \xi_{n}(1)=2 s_{n}(0 ; 1,1)$ denotes the Changhee numbers (cf. [4]).

We [7] defined the following combinatorial numbers and polynomials:
The numbers $Y_{n}(\lambda)$ and the polynomials $Y_{n}(x ; \lambda)$ are defined by, respectively:

$$
\begin{equation*}
\mathcal{F}(t ; \lambda)=\frac{2}{\lambda(1+\lambda t)-1}=\sum_{n=0}^{\infty} Y_{n}(\lambda) \frac{t^{n}}{n!} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{F}(t, x ; \lambda)=(1+\lambda t)^{x} \mathcal{F}(t ; \lambda)=\sum_{n=0}^{\infty} \Upsilon_{n}(x ; \lambda) \frac{t^{n}}{n!} \tag{9}
\end{equation*}
$$

(cf. [7]).
Observe that

$$
Y_{n}(-1)=(-1)^{n+1} C h_{n}
$$

(cf. [9, Lemma 2]).
We [7, Eq. (2.3)] constructed the following p-adic integral representation for the p-adic meromorphic function as follows:

$$
\int_{\mathbb{X}} \lambda^{x}(1+\lambda t)^{x} \chi(x) d \mu_{-q}(x)=\frac{[2]}{(\lambda q)^{d}(1+\lambda t)^{d}+1} \sum_{j=0}^{d-1}(-1)^{j} \chi(j)(\lambda q)^{j}(1+\lambda t)^{j}
$$

where $\mu_{q}(x)=\mu_{q}\left(x+p^{N} \mathbb{Z}_{p}\right)=\frac{q^{x}}{\left[p^{N}\right]},[x]=[x]_{q}=[x: q]=\left\{\begin{array}{cc}\frac{1-q^{x}}{1-q}, & q \neq 1 \\ x, & q=1\end{array}, \mathbb{X}=\mathbb{X}_{d}=\lim _{\leftarrow} \stackrel{\mathbb{Z}}{ } / d p^{N} \mathbb{Z}, \quad \mathbb{X}_{1}=\mathbb{Z}_{p}\right.$ denotes the set of p-adic integers and d is an odd positive integer and $\lambda \in \mathbb{Z}_{p}$ with $\lambda \neq 1, \chi$ is the Dirichlet character with odd conductor d.

By the above p-adic integral representation, we constructed the following generating function for the so-called generalized Apostol-Changhee numbers and polynomials, respectively:

$$
F_{\mathbb{C}}(t ; \lambda, q, \chi)=\frac{[2] \sum_{j=0}^{d-1}(-1)^{j} \chi(j)(\lambda q)^{j}(1+\lambda t)^{j}}{(\lambda q)^{d}(1+\lambda t)^{d}+1}=\sum_{n=0}^{\infty} \mathbb{C}_{n, \chi}(\lambda, q) \frac{t^{n}}{n!}
$$

and

$$
\begin{equation*}
F_{\mathfrak{C}}(t, z ; \lambda, q, \chi)=F_{\mathfrak{C}}(t ; \lambda, q, \chi)(1+\lambda t)^{z}=\sum_{n=0}^{\infty} \mathbb{C V}_{n, \chi}(z ; \lambda, q) \frac{t^{n}}{n!} . \tag{10}
\end{equation*}
$$

2. Generating functions for combinatorial type numbers

In this section, with the aid of (10), we derive the following generating function

$$
\begin{equation*}
G_{y_{7}}(t, \lambda, q)=\frac{[2]}{(\lambda q)(1+\lambda t)+1}=\sum_{n=0}^{\infty} y_{7, n}(\lambda, q) \frac{t^{n}}{n!} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{y_{7}}(t, z ; \lambda, q)=G_{y_{7}}(t, \lambda, q)(1+\lambda t)^{z}=\frac{[2](1+\lambda t)^{z}}{(\lambda q)(1+\lambda t)+1}=\sum_{n=0}^{\infty} y_{7, n}(z ; \lambda, q) \frac{t^{n}}{n!} \tag{12}
\end{equation*}
$$

By using the above equations, we derive various kind of identities, relations and formulas for the polynomials $y_{7, n}(z ; \lambda, q)$ and the numbers $y_{7, n}(\lambda, q)$.

2.1. Identities and relations for the numbers $y_{7, n}(\lambda, q)$

In this section, by using equation (11) with its functional equations, we provide some identities and relations for not only the numbers $y_{7, n}(\lambda, q)$, but also the Stirling numbers, Apostol-type numbers and also combinatorial numbers.

Theorem 2.1. Let $n \in \mathbb{N}_{0}$. Then we have

$$
\begin{equation*}
y_{7, n}(\lambda, q)=[2](-1)^{n} \frac{\left(\lambda^{2} q\right)^{n} n!}{(\lambda q+1)^{n+1}} \tag{13}
\end{equation*}
$$

Proof. By (11), we have

$$
\text { [2] } \sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\lambda^{2} q\right)^{n} n!}{(\lambda q+1)^{n+1}} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} y_{7, n}(\lambda, q) \frac{t^{n}}{n!}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ on the both sides of the above equation, we get the derived result.
Theorem 2.2 (Recurrence Relation). Let

$$
y_{7,0}(\lambda, q)=\frac{1+q}{1+\lambda q}
$$

Then we have

$$
\begin{equation*}
y_{7, n}(\lambda, q)=-\frac{n \lambda^{2} q}{\lambda q+1} y_{7, n-1}(\lambda, q) \tag{14}
\end{equation*}
$$

where $n \in \mathbb{N}$.

Proof. By (11), we have

$$
[2]=(\lambda q+1) \sum_{n=0}^{\infty} y_{7, n}(\lambda, q) \frac{t^{n}}{n!}+q \lambda^{2} \sum_{n=0}^{\infty} n y_{7, n-1}(\lambda, q) \frac{t^{n}}{n!}
$$

Therefore we get

$$
[2]=(\lambda q+1) y_{7,0}(\lambda, q)
$$

and

$$
0=(\lambda q+1) y_{7, n}(\lambda, q)+q \lambda^{2} n y_{7, n-1}(\lambda, q)
$$

Thus we get the result of theorem.
Theorem 2.3. Let $m \geq 1$. Then we have

$$
\begin{equation*}
\mathcal{B}_{m}\left(\frac{q \lambda^{2}}{q \lambda^{2}-q \lambda-1}\right)=\frac{m}{[2]}\left(q \lambda^{2}-q \lambda-1\right) \sum_{n=0}^{m-1} S(m-1, n) y_{7, n}(\lambda, q) \tag{15}
\end{equation*}
$$

Proof. Replacing t by $e^{t}-1$ in (11), and by using (1), we get

$$
\sum_{n=0}^{\infty} y_{7, n}(\lambda, q) \frac{\left(e^{t}-1\right)^{n}}{n!}=\frac{[2]}{t\left(q \lambda^{2}-q \lambda-1\right)} \sum_{m=0}^{\infty} \mathcal{B}_{m}\left(\frac{q \lambda^{2}}{q \lambda^{2}-q \lambda-1}\right) \frac{t^{m}}{m!}
$$

After some elementary calculations, we get

$$
\frac{\left(q \lambda^{2}-q \lambda-1\right)}{[2]} \sum_{m=0}^{\infty} m \sum_{n=0}^{m-1} S(m-1, n) y_{7, n}(\lambda, q) \frac{t^{m}}{m!}=\sum_{m=0}^{\infty} \mathcal{B}_{m}\left(\frac{q \lambda^{2}}{q \lambda^{2}-q \lambda-1}\right) \frac{t^{m}}{m!}
$$

Comparing the coefficients of $\frac{t^{m}}{m!}$ on the both sides of the above equation, we get the derived result.
By using same computation of equation (15), we also derive the following thoerem:
Theorem 2.4. Let $m \in \mathbb{N}_{0}$. Then we have

$$
\mathcal{E}_{m}\left(\frac{-q \lambda^{2}}{q \lambda^{2}-q \lambda-1}\right)=-\frac{2}{[2]}\left(q \lambda^{2}-q \lambda-1\right) \sum_{n=0}^{m} S(m, n) y_{7, n}(\lambda, q)
$$

2.2. Logarithm functions associated with integral representation of the numbers

Here, we give integral representation of the numbers $y_{7, n}(\lambda, q)$ and also give some integral formulas. Integrating equation (11) with repect to t from 0 to 1 , we get

$$
\sum_{n=0}^{\infty} \int_{0}^{1} y_{7, n}(\lambda, q) \frac{t^{n}}{n!} d t=\frac{[2]}{\lambda q+1} \int_{0}^{1} \frac{d t}{\frac{\lambda^{2} q}{\lambda q+1} t+1}
$$

Hence, we have

$$
\sum_{n=0}^{\infty} \frac{y_{7, n}(\lambda, q)}{(n+1) n!}=\frac{[2]}{\lambda^{2} q} \ln \left(\frac{\lambda^{2} q}{\lambda q+1}+1\right)
$$

Thus, we arrive at the following theorem:

Theorem 2.5.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{y_{7, n}(\lambda, q)}{(n+1)!}=\frac{[2]}{\lambda^{2} q} \ln \left(\frac{\lambda^{2} q+\lambda q+1}{\lambda q+1}\right) . \tag{16}
\end{equation*}
$$

Combining (16) with (13), we get

$$
\sum_{n=0}^{\infty} \frac{[2](-1)^{n}\left(\lambda^{2} q\right)^{n} n!}{(n+1)!(\lambda q+1)^{n+1}}=\frac{[2]}{\lambda^{2} q} \ln \left(\frac{\lambda^{2} q+\lambda q+1}{\lambda q+1}\right)
$$

Therefore, after some elementary calculations, we arrive at a series representation of \ln function by the following corollary:

Corollary 2.6.

$$
\ln \left(\frac{\lambda^{2} q}{\lambda q+1}+1\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)}\left(\frac{\lambda^{2} q}{\lambda q+1}\right)^{n+1}
$$

We remark that the above series has also been studied in [6].

3. A new polynomials $y_{7, n}(x ; \lambda, q)$

In this section, we give some properties of the polynomials $y_{7, n}(x ; \lambda, q)$. By using equation (12), we derive formulas for these polynomials.

By (12), we get

$$
\sum_{n=0}^{\infty} y_{7, n}(x ; \lambda, q) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty}(x)_{n} \frac{(\lambda t)^{n}}{n!} \sum_{n=0}^{\infty} y_{7, n}(\lambda, q) \frac{t^{n}}{n!}
$$

Therefore

$$
\sum_{n=0}^{\infty} y_{7, n}(x ; \lambda, q) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{j=0}^{n}\binom{n}{j}(x)_{n-j} \lambda^{n-j} y_{7, j}(\lambda, q) \frac{t^{n}}{n!}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ on the both sides of the above equation, we get the following theorem.

Theorem 3.1.

$$
\begin{equation*}
y_{7, n}(x ; \lambda, q)=\sum_{j=0}^{n}\binom{n}{j}(x)_{n-j} \lambda^{n-j} y_{7, j}(\lambda, q) \tag{17}
\end{equation*}
$$

By (17), we see that

$$
y_{7, n}(x ; \lambda, q)=[2] \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} j!\frac{\lambda^{n+j} q^{j}}{(\lambda q+1)^{j+1}}(x)_{n-j} .
$$

Integrating the above equation from 0 to 1 with respect to x, we get

$$
\int_{0}^{1} y_{7, n}(x ; \lambda, q) d x=[2] \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} j!\frac{\lambda^{n+j} q^{j}}{(\lambda q+1)^{j+1}} \int_{0}^{1}(x)_{n-j} d x
$$

By (6), we derive

$$
\begin{equation*}
\int_{0}^{1} y_{7, n}(x ; \lambda, q) d x=[2] \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} j!\frac{\lambda^{n+j} q^{j}}{(\lambda q+1)^{j+1}} C_{n-j} . \tag{18}
\end{equation*}
$$

By (4), we also derive

$$
\begin{equation*}
\int_{0}^{1} y_{7, n}(x ; \lambda, q) d x=[2] \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} j!\frac{\lambda^{n+j} q^{j}}{(\lambda q+1)^{j+1}} \sum_{k=0}^{n-j} \frac{s(n-j, k)}{k+1} \tag{19}
\end{equation*}
$$

Combining (18) and (19), we get the following theorem:
Theorem 3.2.

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} j!\frac{\lambda^{n+j} q^{j}}{(\lambda q+1)^{j+1}} C_{n-j}=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} j!\frac{\lambda^{n+j} q^{j}}{(\lambda q+1)^{j+1}} \sum_{k=0}^{n-j} \frac{s(n-j, k)}{k+1} \tag{20}
\end{equation*}
$$

By using (20), we have

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} j!\frac{\lambda^{n+j} q^{j}}{(\lambda q+1)^{j+1}}\left(C_{n-j}-\sum_{k=0}^{n-j} \frac{s(n-j, k)}{k+1}\right)=0
$$

We observe from the above equation that the well-known formula for the Cauchy numbers is given by

$$
C_{n-j}=\sum_{k=0}^{n-j} \frac{s(n-j, k)}{k+1}
$$

(cf. [5]).

4. Further remarks and observations

Motivation of the numbers $y_{7, n}(\lambda, q)$ is briefly given by

$$
\begin{equation*}
y_{7, n}(\lambda, q)=(-1)^{n+1} \frac{q+1}{2 q^{n}} Y_{n}(-q \lambda) \tag{21}
\end{equation*}
$$

In addition, substituting $q=1$ into (12), we have

$$
\frac{2(1+\lambda t)^{x}}{\lambda(1+\lambda t)+1}=\sum_{n=0}^{\infty} y_{7, n}(x ; \lambda, 1) \frac{t^{n}}{n!}
$$

When $\lambda=1$, we obtain

$$
\frac{2(1+t)^{x}}{t+2}=\sum_{n=0}^{\infty} y_{7, n}(x ; 1,1) \frac{t^{n}}{n!}
$$

Hence, we have the following relations between the polynomials $y_{7, n}(x ; \lambda, q)$, Peters polynomials and Boole polynomials:

$$
s_{n}(x ; 1,1)=\frac{1}{2} y_{7, n}(x ; 1,1)
$$

Substituting $x=0, \lambda=q=1$, we see that

$$
s_{n}(0 ; 1,1)=\xi_{n}(1)=\frac{1}{2} C h_{n}=\frac{1}{2} y_{7, n}(0 ; 1,1) .
$$

References

[1] N. P. Cakic, G. V. Milovanovic, On generalized Stirling numbers and polynomials, Mathematica Balkanica 18 (2004) 241-248.
[2] G. B. Djordjevic, G. V. Milovanovic, Special classes of polynomials, University of Nis, Faculty of Technology Leskovac, 2014.
[3] C. Jordan, Calculus of Finite Differences (2nd ed), Chelsea Publishing Company, New York, 1950.
[4] D. S. Kim, T. Kim, J. Seo, A note on Changhee numbers and polynomials, Advanced Studies in Theoretical Physics 7 (2013) 993-1003.
[5] S. Roman, The Umbral Calculus, Dover Publ. Inc., New York, 2005.
[6] Y. Simsek, Integral representations of generating functions for combinatorial numbers and polynomials, The Proceedings Book of The Mediterranean International Conference of Pure\&Applied Mathematics and Related Areas (MICOPAM 2018) Dedicated to Professor Gradimir V. Milovanović on the Occasion of his 70th Anniversary, (Edited by Y. Simsek), ISBN 978-86-6016-036-4, October 26-29, 2018, Antalya, TURKEY, pp. 217-220.
[7] Y. Simsek, Construction of some new families of Apostol-type numbers and polynomials via Dirichlet character and p-adic q-integrals, Turkish Journal of Mathematics 42 (2018) 557-577.
[8] H. M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
[9] H. M. Srivastava, I. Kucukoglu, Y. Simsek, Partial differential equations for a new family of numbers and polynomials unifying the Apostol-type numbers and the Apostol-type polynomials, Journal of Number Theory 181 (2017) 117-146.

[^0]: 2010 Mathematics Subject Classification. 05A10, 05A15, 11B83, 26C05, 30D05, 35A99.
 Keywords. Functional equation, Generating functions, Binomial coefficient, Combinatorial numbers, Apostol-Bernoulli and Apostol-Euler polynomials, Stirling numbers, Cauchy numbers, Peters polynomials, Boole polynomials, Changhee numbers, Special numbers and polynomials.

 Received: 25 January 2019; Revised: 12 March 2019; Accepted: 15 March 2019
 Communicated by Miodrag Spalević
 This article is dedicated to Professor Gradimir V. Milovanović on the Occasion of his 70th anniversary.
 Email address: ysimsek@akdeniz.edu.tr (Yilmaz Simsek)

