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Abstract. The aim of this present paper is to establish and study generating function associated with a
characteristic function for the Bernstein polynomials. By this function, we derive many identities, relations
and formulas relevant to moments of discrete random variable for the Bernstein polynomials (binomial dis-
tribution), Bernoulli numbers of negative order, Euler numbers of negative order and the Stirling numbers.

1. Introduction

Not only various different real world problems, but also moment generating functions, ordinary gen-
erating functions, and exponential generating functions, Fourier transforms are relevant to characteristic
functions and their applications. This functions and their applications have been extensively used many
different fields such as probability theory, engineering, mathematics, mathematical physics, mathematical
statistics, and other related sciences (cf. [1]-[16]; and the references cited therein). We here mention that
our paper motivation is to give generating function for characteristic functions the well-known Bernstein
polynomials and also derive formulas, identities and relations.

We now give some well-known definitions and relations which are used to give results of this paper.

1.1. Some special numbers and polynomials
The Apostol-Bernoulli numbers and polynomials of order k are defined by the following generating

functions, respectively:

F(t;λ, k) =
tk(

λ exp(t) − 1
)k

=

∞∑
n=0

B
(k)
n (λ)

tn

n!
(1)

and

G(t, x;λ, k) = F(t;λ, k) exp(tx) =

∞∑
n=0

B
(k)
n (x, λ)

tn

n!
,
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where exp(x) = etx (cf. [7], [11], [15]; and the references cited therein). With the aid of equation (1), an
explicit formula for the Apostol-Bernoulli numbers of order k is given by:

B
(k)
n (λ) =

n∑
j=0

(
n
j

)
B

(k−1)
j (λ)Bn− j (λ) . (2)

where Bn (λ) = B(1)
n (λ) (cf. [7], [11], [12], [15]; and the references cited therein).

The Apostol-Euler numbers and polynomials of order k are defined by the following generating func-
tions, respectively:

C(t;λ, k) =
2k(

λ exp(t) + 1
)k

=

∞∑
n=0

E
(k)
n (λ)

tn

n!
(3)

and

H(t, x;λ, k) = C(t;λ) exp(tx) =

∞∑
n=0

E
(k)
n (x;λ)

tn

n!

(cf. [7], [11], [15]; and the references cited therein). With the aid of equation (3), an explicit formula for the
Apostol-Euler numbers of order k is given by:

E
(k)
n (λ) =

n∑
j=0

(
n
j

)
E

(k−1)
j (λ)En− j (λ) .

where En (λ) = E(1)
n (λ) (cf. [4], [7], [12], [15]; and the references cited therein).

The Stirling numbers of the second kind is defined by(
exp(t) − 1

)k

k!
=

∞∑
n=0

S (n, k)
tn

n!
(4)

(cf. [5], [4], [7], [11], [12], [15]; and the references cited therein). With the aid of equation (4), an explicit
formulas for the Stirling numbers of the second kind is given by

S (n, k) =
1
k!

k∑
j=0

(
k
j

)
(−1)k− j jn

and S (n, 0) = δn,0 (δn,0 denoted the Kronecker symbol) (cf. [5], [4], [7], [11], [15]; and the references cited
therein).

Let k be a nonnegative integer and λ be a complex number. The combinatorial numbers y1(n, k;λ) are
defined by

Fy1 (t, k;λ) =
1
k!

(
λ exp(t) + 1

)k =

∞∑
n=0

y1(n, k;λ)
tn

n!
. (5)

By using the above generating function, we have

y1(n, k;λ) =
1
k!

k∑
j=0

(
k
j

)
jnλ j

(cf. [15], [12]; and the references cited therein).
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1.2. Characteristic functions and Moment generating functions
Let X be a random variable of the probability distribution f (x). Let E(X) be expected value (mean) of

the random variable X. The characteristic function of of the random variable X is defined by

Kx(t) = E(exp(itx)), (6)

where i2 = −1 (cf. [1], [10, p. 10, Eq-(1.3.2)], [14, p. 112]; and the references cited therein).
We give some properties of characteristic function is given as follows.
Let f (x) be a distribution function. A characteristic function Kx(t) satisfies the following Fourier trans-

form property:

Kx(t) =

∫
∞

−∞

f (x) exp(itx)dx

(cf. [1], [10]). By using (6),we have K(0) = 1, |K(t)| ≤ 1 and Kx(−t) = Kx(t), where Kx(t) is a the complex
conjugate of Kx(t). We also mention the following well-known property: Kx(t) is uniformly continuous on
R, the set of whole real numbers (cf. [1], [10], [14]).

Moment generating functions of the random variable X is defined by

Mx(t) = E(exp(tx)),

(cf. [1], [10, p. 10, Eq-(1.3.2)], [14, p. 112]; and the references cited therein).

1.3. Moment generating function for Bernstein polynomials (binomial distribution)
The Bernstein polynomials are defined by

Bn
k (x; a, b) =

(
n
k

) (x − a
b − a

)k
(

b − x
b − a

)n−k

, (7)

where a and b are real numbers (cf. [6, Chapter 5, pp. 299-306], [8], [9], [13]). Now,assume that 0 ≤ x−a
b−a ≤ 1

and 0 ≤ b−x
b−a ≤ 1, then equation (7) reduces to binomial type distribution (cf. [9], [13]). We note that when

a = 0 and b = 1, equation (7) reduces to the binomial distribution for 0 ≤ x ≤ 1.
In [3], we studied on the following well-known moment generating function for the Bernstein polyno-

mials:

MX(t, x : n; a, b) =

n∑
k=0

exp(kt)Bn
k (x; a, b). (8)

and

MX(t, x : n; a, b) =

(
exp(t)

x − a
b − a

+
b − x
b − a

)n

. (9)

Setting a = 0 and b = 1 in (9), we have

MX(t, x : n; 0, 1) =
(
x exp(t) + 1 − x

)n

(cf. [1], [10], [14, p. 100]). We [3] also studied on the following well-known characteristic functions are
given by

KX(t, x : n, a, b) =

n∑
k=0

exp(ikt)Bn
k (x; a, b) (10)

and

KX(t, x : n, a, b) =

(
x − a
b − a

exp(it) +
b − x
b − a

)n

. (11)

By using moment generating function for the Bernstein polynomials, we [3] proved the following theorems:
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Theorem 1.1. ([3]) Let a and b are real numbers and n be nonegative integer. Then we have

y1

(
m,n;

x − a
b − x

)
=

1
n!

(
b − a
b − x

)n n∑
k=0

kmBn
k (x; a, b). (12)

Theorem 1.2. ([3]) Let a and b are real numbers and n be nonegative integer. We assume that 0 ≤ x−a
b−a ≤ 1 and

0 ≤ b−x
b−a ≤ 1. Then we have

E(Xm : n; a, b) = n!
x − b
b − a

S2

(
m,n;

x − a
x − b

)
.

We [3] also studies some properties of the following moments:

E(Xm; n; a, b) =

n∑
k=0

kmBn
k (x; a, b).

2. Exponential gnenerating function for the function KX(t, x : n, a, b) and their applications

In this section, we give an exponential generating function for the function KX(t, x : n, a, b). By using
the function KX(t, x : n, a, b), we derive some identities and relations involving the Bernstein polynomials
(binomial distribution), Bernoulli numbers of negative order, Euler numbers of negative order and the
Stirling numbers.

Theorem 2.1.

B(z; t, x : n; a, b) =

∞∑
n=0

KX(t, x : n, a, b)
zn

n!
,

where

B(z; t, x : n; a, b) = exp
(
z
(

x − a
b − a

exp(it) +
b − x
b − a

))
Proof. Setting

B(z; t, x : n; a, b) =

∞∑
n=0

KX(t, x : n, a, b)
zn

n!
.

Substituting (11) into the above equation yields

B(z; t, x : n; a, b) =

∞∑
n=0

(
x − a
b − a

exp(it) +
b − x
b − a

)n zn

n!
.

Since

exp(u f (x)) =

∞∑
n=0

(
f (x)

)n un

n!
,

we have

B(z; t, x : n; a, b) = exp
(
z
(

x − a
b − a

exp(it) +
b − x
b − a

))
,

which completes proof of theorem.
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Theorem 2.2. Let a and b are real numbers and n be nonegative integer. We assume that 0 ≤ x−a
b−a ≤ 1 and

0 ≤ b−x
b−a ≤ 1. Then we have

E(Xm : n; a, b) =

n∑
k=0

k∑
j=0

(
k
j

)
j!S(m, j)Bn

k (x; a, b). (13)

Proof. Using (10), we obtain

KX(t, x : n, a, b) =

∞∑
m=0

 n∑
k=0

kmBn
k (x; a, b)

 (it)m

m!
. (14)

From the above equation, we have

KX(t, x : n, a, b) =

∞∑
m=0

E(Xm : n; a, b)
(it)m

m!
(15)

and also

KX(t, x : n, a, b) =

n∑
k=0

k∑
j=0

(
k
j

) (
exp(it) − 1

) j Bn
k (x; a, b).

Combining the above equation with (4), we have

KX(t, x : n, a, b) =

∞∑
m=0

n∑
k=0

k∑
j=0

(
k
j

)
j!S(m, j)Bn

k (x; a, b)
(it)m

m!
(16)

By (15) and (16), we obtain

∞∑
m=0

E(Xm : n; a, b)
(it)m

m!
=

∞∑
m=0

n∑
k=0

k∑
j=0

(
k
j

)
j!S(m, j)Bn

k (x; a, b)
(it)m

m!
.

Comparing coefficients of tm

m! on both sides of the above equation, we obtain the assertion of the theorem.

We also combine equation (14) and equation (16), we obtain

∞∑
m=0

 n∑
k=0

kmBn
k (x; a, b)

 (it)m

m!
=

∞∑
m=0

n∑
k=0

k∑
j=0

(
k
j

)
j!S(m, j)Bn

k (x; a, b)
(it)m

m!
.

Comparing coefficients of tm

m! on both sides of the above equation, we get

n∑
k=0

kmBn
k (x; a, b) =

n∑
k=0

k∑
j=0

(
k
j

)
j!S(m, j)Bn

k (x; a, b). (17)

Hence
n∑

k=0

Bn
k (x; a, b)

km
−

k∑
j=0

(
k
j

)
j!S(m, j)

 = 0. (18)

If x = a, x = b and k > n, then

Bn
k (x; a, b) = 0.

We assume that x , a and x , b. From equation (18), we have the following well-known formula for the
Stirling numbers of the second kind, by different method:
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Theorem 2.3.

km
−

k∑
j=0

(
k
j

)
j!S(m, j) = 0.

Theorem 2.4. Let a and b are real numbers and n be nonegative integer. We assume that 0 ≤ x−a
b−a ≤ 1 and

0 ≤ b−x
b−a ≤ 1. Then we have

E
(−n)
m

(x − a
b − x

)
= 2−n

(
b − a
b − x

)n n∑
k=0

kmBn
k (x; a, b). (19)

Proof. Using (11), we get

KX(t, x : n; a, b) = 2−n
(

x − b
b − a

)n

C
(
it;

x − a
x − b

,n
)
. (20)

Combinig the above equation with (3), we obtain

KX(t, x : n; a, b) = 2−n
(

x − b
b − a

)n ∞∑
m=0

imE(k)
n

(x − a
x − b

) tm

m!
. (21)

Combinig the above equation with (14), we also have

2−n
(

x − b
b − a

)n ∞∑
m=0

E
(k)
n

(x − a
x − b

) (it)m

m!
=

∞∑
m=0

 n∑
k=0

kmBn
k (x; a, b)

 (it)m

m!
.

Comparing coefficients of (it)m

m! on both sides of the above equation, we obtain the assertion of the theorem.

By using (3) and (1), we have the following well-known relation for both the Apostol-Bernoulli numbers
and the Apostol-Euler numbers:

Bm (−λ) = −
m
2
Em−1 (λ) (cf. [15]).

Combining the above well-known relation with (19), we get the following identity:

Corollary 2.5.

B
(−n)
m+n

(a − x
b − x

)
= −2−nk!

(
m
k

) (
b − a
b − x

)n n∑
k=0

kmBn
k (x; a, b).

Combining (12) with (17), we derive the following theorem:

Theorem 2.6. Let a and b are real numbers. Let m and n be nonegative integers. Then we have

y1

(
m,n;

x − a
b − x

)
=

1
n!

(
b − a
b − x

)n n∑
k=0

k∑
j=0

(
k
j

)
j!S(m, j)Bn

k (x; a, b).



B. Simsek / Filomat 34:2 (2020), 543–549 549

References

[1] P. Billingsley, Probability and measure, Wiley India Pvt. Ltd. 1995.
[2] B. Simsek, Formulas derived from moment generating functions and Bernstein polynomials, Appl. Anal. Discrete Math. 13 (2019),

839–848. https://doi.org/10.2298/AADM191227036S
[3] B. Simsek, B. Simsek: The computation of expected values and moments of special polynomials via characteristic and generating

functions. AIP Conf. Proc. 1863 (2017), 300012-1–300012-5; doi: 10.1063/1.4992461.
[4] L. Comtet: Advanced Combinatorics: The Art of Finite and Infinite Expansions. Reidel: Dordrecht and Boston, 1974.
[5] N. P. Cakic, G. V. Milovanovic: On generalized Stirling numbers and polynomials. Math. Balkanica (N.S.), 18 (2004), 241–248.
[6] R. Goldman: Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling,

(Morgan Kaufmann Publishers, R. Academic Press, San Diego), 2002.
[7] G. B. Djordjevic and G. V. Milovanovic: Special classes of polynomials. University of Nis, Faculty of Technology Leskovac, 2014.
[8] G. V. Milovanovic, D. S. Mitrinovic, T. M. Rassias: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific

Publishing Co. Pte. Ltd. Singapore, 1994.
[9] G. G. Lorentz: Bernstein Polynomials. Chelsea Pub. Comp. New York, N. Y. 1986.

[10] E. Lukacs: Characteristic function. Charles griffin & Company Limited (Second Edition), London 1970.
[11] Q-M. Luo, H. M. Srivastava: Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second

kind. Appl. Math. Comput. 217 (2011), 5702–5728.
[12] Y. Simsek: New families of special numbers for computing negative order Euler numbers and related numbers and polynomials.

Appl. Anal. Discrete Math. 12 (2018), 1–35.
[13] Y. Simsek: Generating functions for the Bernstein type polynomials: A new approach to deriving identities and applications for

the polynomials. Hacettepe J. Math. And Stat. 43 (2014 ),1–14.
[14] T. T. Soong: Fundamentals of Probability and Statistics for Engineers. John Wiley&Sons, Ltd. 2004.
[15] H.M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl.

Math. Inf. Sci. 5 (2011) 390–444.
[16] H. M. Srivastava, C. Vignat: Probabilistic proofs of some relationships between the Bernoulli and Euler polynomials. European

J. Pure Appl. Math. 5 (2) (2012), 97–107.


