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Abstract. In this paper, by using trigonometric functions and generating functions, identities and rela-
tions associated with special numbers and polynomials are derived. Relations among the combinatorial
numbers, the Bernoulli polynomials, the Euler numbers, the Stirling numbers and others special numbers
and polynomials are given.

1. Introduction

Recently, mathematicians and other scientists have studied special functions, special numbers and
polynomials. The motivation of this paper is to give some identities, formulas and relations of special num-
bers and polynomials with the help of special functions including generating functions and trigonometric
identities.

The following definitions, relations and notations are used throughout this paper. Let N = {1, 2, 3, ...},
N0 = N ∪ {0} and Z denote the set of integers, R+ denote the set of positive real numbers and C denote
the set of complex numbers. For n ∈ N, (α)n = α (α − 1) ... (α − n + 1) =

(α
n
)
n!. We assume that 00 = 1 and

i2 = −1.
Now we give some generating functions for very useful numbers and polynomials with their recurrence

relations and other well-known properties.
Let k ∈ Z. The Bernoulli polynomials of order k, are defined by means of the following generating

function:

FB (t, x; k) =
( t

et − 1

)k
ext =

∞∑
n=0

B(k)
n (x)

tn

n!
, (1)

where |t| < 2π (cf. [9], [10], [18]; and the references therein).
We observe that B(k)

n (0) = B(k)
n , denoted the Bernoulli numbers of order k. The Bernoulli polynomials

and numbers are given respectively by B(1)
n (x) = Bn(x) and Bn(0) = Bn (cf. [5], [6], [7], [8], [9], [18]; and
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the references therein). Similarly, the Euler polynomials of order k, are defined by means of the following
generating function:

FE (t, x; k) =
( 2

et + 1

)k

ext =

∞∑
n=0

E(k)
n (x)

tn

n!
, (2)

where |t| < π (cf. [7], [9], [18]; and the references therein). We observe that E(k)
n (0) = E(k)

n , denoted the Euler
numbers of order k. The Euler polynomials and numbers are given respectively by E(1)

n (x) = En(x) and
En(0) = En (cf. [5], [7], [8], [9], [18]; and the references therein).

The λ-array polynomials Sn
k (x;λ) are defined by means of the following generating function:

FA (t, x, k;λ) =

(
λet
− 1

)k

k!
ext =

∞∑
n=0

Sn
k (x;λ)

tn

n!
, (3)

where k ∈ N0 and λ ∈ C. When x = 0 and λ = 1, we have the Stirling numbers of the second kind:
S (n, k) = Sn

k (0; 1) (cf. [1], [4], [7], [13], [15]; and the references therein).
The numbers y1(n, k;λ) are defined by means of the following generating function:

Fy1 (t, k;λ) =
1
k!

(
λet + 1

)k
=

∞∑
n=0

y1(n, k;λ)
tn

n!
, (4)

where k ∈N0 and λ ∈ C (cf. [16]).
The second author [16, Eq-(28)] gave

E(−k)
n = k!2−ky1(n, k; 1). (5)

The numbers y2(n, k;λ) are defined by means of the following generating function:

Fy2 (t, k;λ) =
1

(2k)!

(
λet + λ−1e−t + 2

)k
=

∞∑
n=0

y2(n, k;λ)
tn

n!
, (6)

where k ∈N0 and λ ∈ C (cf. [16]).
The numbers y3(n, k;λ; a, b) are defined by means of the following generating function:

Fy3 (t, k;λ; a, b) =
ebkt

k!

(
λe(a−b)t + 1

)k
=

∞∑
n=0

y3(n, k;λ; a, b)
tn

n!
, (7)

where k ∈N0 and λ ∈ C (cf. [15]).
The central factorial numbers T (n, k) (of the second kind) are defined by means of the following gener-

ating function:

FT(t, k) =
1

(2k)!

(
et + e−t

− 2
)k

=

∞∑
n=0

T (n, k)
t2n

(2n)!
(8)

(cf. [3], [5], [14], [15], [16], [17]; and the references therein).

2. Identity including sin t function and array polynomials

In this section, by using generating function, functional equation and sin t, we give an identity, including
the array polynomials.
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Theorem 2.1. Let n,m ∈N0. Then we have

Sm
3n

(
−

3n
2

; 1
)

=

n∑
j=0

m∑
k=0

(−1) j
(
m
k

)
3m+ j−kn!

(3n)!
Sk

j

(
−

j
2

; 1
)

Sm−k
n− j

(
j − n

2
; 1

)
.

Proof. By combining (3) with the following well-known identity

(sin t)3n = 4−n
n∑

j=0

(−1)n− j
(
n
j

)
(3 sin t) j (sin 3t)n− j , (9)

we have

(3n)!FA

(
2it,−

3n
2
, 3n; 1

)
= n!

n∑
j=0

(−1) j 3 jFA

(
2it,−

j
2
, j; 1

)
FA

(
6it,−

n − j
2

,n − j; 1
)
.

By using the above functional equation, we get

∞∑
m=0

Sm
3n

(
−

3n
2

; 1
)

(2i)m tm

m!
=

∞∑
m=0

n∑
j=0

(−1) j
m∑

k=0

(
m
k

)
3m+ j−kn!

(3n)!
Sk

j

(
−

j
2

; 1
)

Sm−k
n− j

(
j − n

2
; 1

)
(2i)m tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, after some elementary calculations,
we arrive at the desired result.

2.1. Identities and relations arised from De Moivre’s formula and Euler identities
Here, we set fn(it, x) = eintx. Applying the De Moivre’s formula and the Euler identities to this function

and using generating functions for the Bernoulli polynomials of order−k, the Euler numbers and polynomi-
als of order −k, the Stirling numbers of the second kind, the array polynomials, the numbers y1 (n, k;λ), the
numbers y2(n, k;λ), the numbers y3(n, k;λ; a, b), and the central factorial numbers, we derive some formulas
and relations.

By the aid of the De Moivre’s formula and Euler identities, we have

fn (it, x) =

n∑
j=0

(
n
j

)
(cos tx)n− j (i sin tx) j . (10)

(cf. [11]). Using (10), we have the following well-known identities:

Re
(

fn (it, x)
)

=

[ n
2 ]∑

l=0

(−1)l
(

n
2l

)
(sin tx)2l (cos tx)n−2l (11)

and

Im
(

fn (it, x)
)

=

[ n−1
2 ]∑

l=0

(−1)l
(

n
2l + 1

)
(sin tx)2l+1 (cos tx)n−2l−1 . (12)

(cf. [2], [11, Eq. (1.5)-(1.6)]).
By applying the Binomial theorem and (3) to the function fn(it, x), we obtain

fn(it, x) =

∞∑
m=0

m∑
v=0

(x)v S (m, v)
(int)m

m!
.
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By substituting the Taylor expansion of the function fn(it, x) into the left-hand side of the above equation
and comparing the coefficients of tm

m! on both sides of the final equation, we have the following well-known
identity for the Stirling numbers of the second kind:

xm =

m∑
v=0

(x)v S (m, v) . (13)

Theorem 2.2. Let n,m ∈N0. Then we have
m∑

v=0

(x)v S (m, v) nm = xm
n∑

j=0

(
n
j

) m− j∑
k=0

(
m − j

k

)
(m) j 2m− jE( j−n)

m− j−k

(
j − n

2

)
B(− j)

k

(
−

j
2

)
. (14)

Proof. Combining (1), (2) and (10), we get the following functional equation:

fn (it, x) =

n∑
j=0

(
n
j

)
(itx) j FE

(
2itx,−

n − j
2

;−(n − j)
)

FB

(
2itx,−

j
2

;− j
)
.

By using the above functional equation, we get

∞∑
m=0

m∑
v=0

(x)v S (m, v) nmim
tm

m!
=

∞∑
m=0

n∑
j=0

(
n
j

) m− j∑
k=0

(
m − j

k

)
(m) j 2m− jB(− j)

k

(
−

j
2

)
E( j−n)

m− j−k

(
j − n

2

)
xmim

tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, after some elementary calculations,
we arrive at the desired result.

Integrating both sides of (14) from 0 to 1 with respect to x, and combining with following well-known
the Cauchy numbers of the first kind (the Bernoulli numbers of the second kind)

bn (0) =

1∫
0

(x)n dx (15)

(cf. [5], [12]), we arrive at the following corollary:

Corollary 2.1. Let n,m ∈N0. Then we have

m∑
v=0

bv (0) S (m, v) nm =
1

m + 1

n∑
j=0

(
n
j

) m− j∑
k=0

(
m − j

k

)
(m) j 2m− jE( j−n)

m− j−k

(
j − n

2

)
B(− j)

k

(
−

j
2

)
.

Theorem 2.3. Let n,m ∈N0. Then we have
m∑

v=0

(x)v S (m, v) nm = 2m−nn!xm
n∑

j=0

m∑
k=0

(
m
k

)
y1

(
k,n − j; 1

)
Sm−k

j

(
−

n
2

; 1
)
. (16)

Proof. Combining (3), (4) and (10), we get the following functional equation:

fn (it, x) = 2−nn!
n∑

j=0

Fy1

(
2itx,n − j; 1

)
FA

(
2itx,−

n
2
, j; 1

)
.

By using the above functional equation, we get
∞∑

m=0

m∑
v=0

(x)v S (m, v) nmim
tm

m!
= n!

∞∑
m=0

n∑
j=0

m∑
k=0

(
m
k

)
2m−ny1

(
k,n − j; 1

)
Sm−k

j

(
−

n
2

; 1
)

xmim
tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, after some elementary calculations,
we arrive at the desired result.



N. Kilar, Y. Simsek / Filomat 34:2 (2020), 535–542 539

Integrating both sides of (16) from 0 to 1 with respect to x, and combining with (15), we arrive at the
following corollary:

Corollary 2.2. Let n,m ∈N0. Then we have

m∑
v=0

bv (0) S (m, v) nm =
2m−nn!
m + 1

n∑
j=0

m∑
k=0

(
m
k

)
y1

(
k,n − j; 1

)
Sm−k

j

(
−

n
2

; 1
)
.

Combining (5) with (16), we arrive at the following theorem:

Theorem 2.4. Let n,m ∈N0. Then we have
m∑

v=0

(x)v S (m, v) nm = xm
n∑

j=0

(
n
j

)
j!2m− j

m∑
k=0

(
m
k

)
E( j−n)

k Sm−k
j

(
−

n
2

; 1
)
. (17)

Integrating both sides of (17) from 0 to 1 with respect to x, and combining with (15), we arrive at the
following corollary:

Corollary 2.3. Let n,m ∈N0. Then we have

m∑
v=0

bv (0) S (m, v) nm =
1

m + 1

n∑
j=0

(
n
j

)
j!2m− j

m∑
k=0

(
m
k

)
E( j−n)

k Sm−k
j

(
−

n
2

; 1
)
.

Theorem 2.5. Let n,m ∈N0. Then we have

m∑
v=0

(x)v S (m, v) nm = xm
n∑

j=0

(
n
j

) n− j∑
k=0

(
n − j

k

) m∑
l=0

(
m
l

)
j! (2k)! (−1)n− j−k

2 j+k+l−m
Sm−l

j

(
−

j
2

; 1
)

y2 (l, k; 1) . (18)

Proof. Combining (3), (6) and (10), we get the following functional equation:

fn (it, x) =

n∑
j=0

(
n
j

) n− j∑
k=0

(
n − j

k

)
j! (−2)n− j−k (2k)!

2n FA

(
2itx,−

j
2
, j; 1

)
Fy2 (itx, k; 1) .

By using the above functional equation, we obtain

∞∑
m=0

m∑
v=0

(x)v S (m, v) nmim tm

m!
=

∞∑
m=0

n∑
j=0

(
n
j

) n− j∑
k=0

(
n − j

k

) m∑
l=0

(
m
l

)
j! (2k)! (−1)n− j−k

2 j+k+l−m
Sm−l

j

(
−

j
2

; 1
)

y2 (l, k; 1) xmim tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, after some elementary calculations,
we arrive at the desired result.

Integrating both sides of (18) from 0 to 1 with respect to x, and combining with (15), we arrive at the
following corollary:

Corollary 2.4. Let n,m ∈N0. Then we have

m∑
v=0

bv (0) S (m, v) nm =
1

m + 1

n∑
j=0

(
n
j

) n− j∑
k=0

(
n − j

k

) m∑
l=0

(
m
l

)
j! (2k)! (−1)n− j−k

2 j+k+l−m
Sm−l

j

(
−

j
2

; 1
)

y2 (l, k; 1) .

Theorem 2.6. Let n,m ∈N0. Then we have
m∑

v=0

(x)v S (m, v) nm = 2m−nn!xm
n∑

j=0

m∑
k=0

(
m
k

)
y3

(
k,n − j; 1;

1
2
,
−1
2

)
Sm−k

j

(
−

j
2

; 1
)
. (19)
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Proof. Combining (3), (7) and (10), we get the following functional equation:

fn (it, x) = 2−nn!
n∑

j=0

Fy3

(
2itx,n − j; 1;

1
2
,
−1
2

)
FA

(
2itx,−

j
2
, j; 1

)
.

By using the above functional equation, we get

∞∑
m=0

m∑
v=0

(x)v S (m, v) nmim
tm

m!
= n!

∞∑
m=0

n∑
j=0

m∑
k=0

(
m
k

)
2m−ny3

(
k,n − j; 1;

1
2
,
−1
2

)
Sm−k

j

(
−

j
2

; 1
)

xmim
tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, after some elementary calculations
we arrive at the desired result.

Integrating both sides of (19) from 0 to 1 with respect to x, and combining with (15), we arrive at the
following corollary:

Corollary 2.5. Let n,m ∈N0. Then we have

m∑
v=0

bv (0) S (m, v) nm =
2m−nn!
m + 1

n∑
j=0

m∑
k=0

(
m
k

)
y3

(
k,n − j; 1;

1
2
,
−1
2

)
Sm−k

j

(
−

j
2

; 1
)
.

Theorem 2.7. Let n,m ∈N0. Then we have

m∑
v=0

(x)v S (m, v) nm = xm
n∑

j=0

(
n
j

) n− j∑
k=0

(
n − j

k

) [ m
2 ]∑

l=0

(
m
2l

)
j! (2k)!

2 j+k+2l−m
Sm−2l

j

(
− j
2

; 1
)

T (l, k) . (20)

Proof. Combining (3), (8) and (10), we get the following functional equation:

fn (it, x) =

n∑
j=0

(
n
j

) n− j∑
k=0

(
n − j

k

)
j! (2k)!
2 j+k

FA

(
2itx,−

j
2
, j; 1

)
FT(itx, k).

By using the above functional equation, we have

∞∑
m=0

m∑
v=0

(x)v S (m, v) nmim
tm

m!
=

∞∑
m=0

n∑
j=0

(
n
j

) n− j∑
k=0

(
n − j

k

) [ m
2 ]∑

l=0

(
m
2l

)
j! (2k)!

2 j+k+2l−m
Sm−2l

j

(
−

j
2

; 1
)

T (l, k) xmim
tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, after some elementary calculations,
we arrive at the desired result.

Integrating both sides of (20) from 0 to 1 with respect to x, and combining with (15), we arrive at the
following corollary:

Corollary 2.6. Let n,m ∈N0. Then we have

m∑
v=0

bv (0) S (m, v) nm =
1

m + 1

n∑
j=0

(
n
j

) n− j∑
k=0

(
n − j

k

) [ m
2 ]∑

l=0

(
m
2l

)
j! (2k)!

2 j+k+2l−m
Sm−2l

j

(
− j
2

; 1
)

T (l, k) .

Theorem 2.8. Let n,m ∈N0. Then we have

E(−1)
m

(
−

1
2

)
= n−m

[ n
2 ]∑

l=0

(
n
2l

)
(2l)!
4l

m∑
k=0

(
m
k

)
E(2l−n)

k Sm−k
2l

(
−

n
2

; 1
)
.
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Proof. Combining (2), (3) and (11), we get the following functional equation:

Re
(

fn (it, x)
)

=

[ n
2 ]∑

l=0

(
n
2l

)
(2l)!
4l

FA

(
2itx,−

n
2
, 2l; 1

)
FE (2itx, 0;−(n − 2l)) .

By using the above functional equation, we get

∞∑
m=0

E(−1)
m

(
−

1
2

)
(2ix)mnm tm

m!
=

∞∑
m=0

[ n
2 ]∑

l=0

(
n
2l

)
(2l)!
4l

m∑
k=0

(
m
k

)
E(2l−n)

k Sm−k
2l

(
−

n
2

; 1
)

(2ix)m tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, after some elementary calculations,
we arrive at the desired result.

Theorem 2.9. Let n,m ∈N0. Then we have

Sm
1

(
−

1
2

; 1
)

= n−m
[ n−1

2 ]∑
l=0

(
n

2l + 1

)
(2l + 1)!

4l

m∑
k=0

(
m
k

)
E(2l+1−n)

k Sm−k
2l+1

(
−

n
2

; 1
)
.

Proof. Combining (2), (3) and (12), we get the following functional equation:

Im
(

fn (it, x)
)

=

[ n−1
2 ]∑

l=0

(−1)l
(

n
2l + 1

)
(2l + 1)!

(2i)2l+1
FA

(
2itx,−

n
2
, 2l + 1; 1

)
FE (2itx, 0;−(n − (2l + 1))) .

By using the above functional equation, we get

∞∑
m=0

Sm
1

(
−

1
2

; 1
)

(2ix)mnm tm

m!
=

∞∑
m=0

[ n−1
2 ]∑

l=0

(
n

2l + 1

)
(2l + 1)!

4l

m∑
k=0

(
m
k

)
E(2l+1−n)

k Sm−k
2l+1

(
−

n
2

)
(2ix)m tm

m!
.

Comparing the coefficients of tm

m! on both sides of the above equation, after some elementary calculations,
we arrive at the desired result.
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