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A Decomposition of Arf Semigroups

Nihal Gümüşbaşa, Nesrin Tutaşa
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Abstract. The aim of this work is to exhibit a kind of primitive semigroup decomposition of Arf semigroups
using combinatorial properties of partitions of a positive integer n.

1. Introduction

Numerical semigroups have several applications to many branches of mathematics. They have become
important because of their applications in algebraic geometry, coding theory during the half of the last
century, see [1, 2, 4, 7, 8, 12].

A numerical semigroup S is a monoid ofN0 = N ∪ {0} and has a finite complement G(S) = N0\S. The
elements of G (S) are called gaps of S. The largest element of G(S) is called the Frobenius number of S and
denoted by F(S). The conductor of S is the number c := F(S) + 1. We say that S is generated by A ⊆ S, if

S = {
m∑

i=1
hiai : m ∈N, hi ∈N0, ai ∈ A, i = 1, . . . ,m}. In this case, A is a system of generators of S and we denote S

by 〈A〉. Note that a system of generators of a numerical semigroup is a minimal system of generators if none
of its proper subsets generates the numerical semigroup. If {n1 < n2 < · · · < ne} is the minimal system of
generators of S, then n1 is called the multiplicity, and e is called the embedding dimension of S. We say that S
has maximal embedding dimension if e = n1.

If S is a numerical semigroup, then unless otherwise stated we assume S = {0 = s0, s1, . . . , sr = F(S)+1,−→
}, where “−→” means that all subsequent natural numbers which are bigger then sr belong to S and r denotes
the number of small elements of S.

Partitions occur in several branches of mathematics, including the study of symmetric polynomials, the
symmetric groups in group representation theory, see [6]. A partition λ = [λ1, λ2, . . . , λr] of a positive integer
n is a non increasing list of positive integers, λr ≤ λr−1 ≤ . . . ≤ λ1, whose sum is n and length is r. We refer
to the λi as a part of partition λ. If λi , λi+1, 1 ≤ i ≤ r − 1, then we called λ is a strict dominant partition.

The Young diagram of λ consists of a left-justified shape of r columns of boxes with lengths λ1, λ2, . . . , λr.
If there are r columns in a Young diagram and there are ui rows of length i, for i = 1, . . . , r, then we denote

this diagram of the form 1u1 2u2 · · · rur and n =
r∑

j=1
ju j. If u j = 0 for some 1 ≤ j ≤ r, then we omit j0 in the
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presentation of a Young diagram Y and if u j = 1, then we write j. If λ = [λ1, λ2, . . . , λr] is the partition
corresponding to Y = 1u1 2u2 · · · rur , then λ j =

∑r
i= j ui , 1 ≤ j ≤ r. Note that λ j − λ j+1 = u j for each j =

1, . . . , r − 1 and λr = ur. We will use the notation m·λ1 := [

m times︷     ︸︸     ︷
λ1, . . . , λ1] to avoid misunderstanding. Flipping

a diagram over its main diagonal (from upper left to lower right) gives the conjugate diagram, the conjugate
of λwill be denoted here by c(λ). If λ = c(λ), then we say λ is a symmetric partition. Given a box of a Young
diagram, the shape formed by the boxes directly to the right of it, the boxes directly below it and the box
itself is called the hook of that box. The number of boxes in a column (or a row) is called the length of that
column (or, respectively, that row). The boxes to the right form the arm and the boxes below form the leg
of the hook. The hook of a box is a column if it has no arm, it is a row if it has no leg, and it consists of
the box itself if it has no arm and no leg. The number of boxes in the hook of a box is called the hook-length
of that box. The Young tableau (plural, “tableaux”) of a Young diagram is obtained by placing the numbers
1, . . . ,m in the diagram which has m boxes.

A connection among partitions, Young diagrams, numerical semigroups was given by [3, 5, 10, 11, 14].
We think of a path as lying in N2 with bottom left corner of Young diagram at the origin. Starting with
x = 0. If x ∈ S, then we draw a line segment of unit length to the right. If x < S, then we draw a line segment
of unit length up. Repeat for x + 1. For any x greater than the Frobenius number of S we draw a line to
the right. The lattice lying above the path and below the horizontal line defines a Young diagram of S (see
[3, 5]). If YS is the Young diagram of a numerical semigroup S, then we denote the jth column by G j, for
each j ≥ 0. We know that 0th column, G0, gives the gap set G (S) of S.

S = {0, 4, 7, 8, 11,→} is a numerical semigroup and we have the following Young tableau for S:

YS = 10 6 3 2
9 5 2 1
6 2
5 1
3
2
1

This Young tableau consists of a Young diagram with the hook lengths of each box in the diagram.
Let Š be the set of numerical semigroups, Ŷ be the set of Young diagrams and let P be the set of partitions.

Here we define the following maps :
σ : Š→ Ŷ, σ(S) = YS, where YS is the Young diagram of S.
τ : Ŷ→ P, σ(Y) = λ, where λ is the partition of the Young diagram Y.

The map S σ
−→ YS

τ
−→ λ is an injection between the set of numerical semigroups and the set of partitions.

For a numerical semigroup S, λ = τσ(S) is called the partition of S.
For a given numerical semigroup S, we have several related semigroups. For each i ≥ 0, the sets Si and

S(i) defined as follows:
Si = {s ∈ S : s ≥ si} , S − si = {s − si ∈N0 : s ∈ S}

S(i) = S − Si = {z ∈N0 : z + Si ⊆ S}.

It is obvious that every S(i) is itself a numerical semigroup, and we obtain the following chain:

· · · ⊂ Sr ⊂ Sr−1 ⊂ · · · ⊂ S1 ⊂ S ⊂ S(1) ⊂ · · · ⊂ S(r) =N0.

For i ≥ 1 we define ith type set T(i) := S(i)\S(i − 1) and ti = |T(i)|. We call ((ti) : i ≥ 1) the type sequence of S.
A numerical semigroup S is called Arf semigroup if x + y − z ∈ S, for all x, y, z ∈ S with z ≤ y ≤ x. This

property is equivalent to, 2x− y ∈ S, for all x, y ∈ S with y ≤ x. An Arf semigroup has maximal embedding
dimension. There are several equivalent conditions on Arf semigroups, see [2, 8, 9, 12, 13].

The combinatorial properties of an Arf semigroup allow us to define an Arf partition of a positive integer
n. In [14], the concept of Arf partition was firstly introduced. In [15], the authors analyzed the relation
among an Arf partition, its Young dual diagram, and the corresponding rational Young diagram. Here,
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we continue these works. In Section 2, firstly, we recall the construction of Arf partitions with respect to a
Young diagram, then we add some new properties to Arf partitions.

For a given hook, if u denotes the number of boxes of the leg and x − 1 denotes the number of boxes of
the arm, then this hook can be represented by 1ux. If x = 0, then the hook is a leg. Let K = {1ux : u ≥ 0, x ≥
2 or x = 0} be the set of hooks. Then we define an operation � on K such that

Γ1 � Γ2 = 1u1−(u2+1)2u2 (x2+1)x1

where Γ1 = 1u1 x1, Γ2 = 1u2 x2 and u1 > u2, x1 − 1 ≥ x2. In Section 3, Lemma 3.3 states that any partition λ can
be written with respect to the operation � on the set of hooks. Additionally, using Lemma 3.3, we exhibit a
primitive semigroup decomposition of an Arf semigroup via the operation � in Theorem 3.6.

2. Some properties of Arf Partitions

For the calculation of hook lengths of a partition, using the definition, one can prove Lemma 2.1.

Lemma 2.1. Let λ = [λ1, . . . , λr] be the partition of a numerical semigroup S, λi , 0, 1 ≤ i ≤ r. From the bottom, the
hook lengths of the (λ1)st row of the Young diagram of λ form the partition λ + ρ, and the hook lengths of (λ1 + 1)st
row form λ+ρ+ r·1, where ρ = [r−1, r−2, . . . , 1, 0]. The small elements of S are obtained by r·(λ1 + r)−

(
λ+ρ

)
− r·1.

For j ≤ λ1, there exist k, t ∈N0 such that the hook lengths of the jth row form the partition

[(λ1 − λt) + k + t − 1, (λ2 − λt) + k + t − 2, . . . , (λt−1 − λt) + k].

If λ is a partition and Y = 1u1 2u2 · · · rur is the Young diagram of λ, then the complement of the hook set
of the first column of Y is {0,u1 + 1,u1 + u2 + 2,u1 + u2 + u3 + 3, . . . ,u1 + u2 + · · · + ur + r,−→}.

Here, in order to ensure completeness, we recall the characterization of the numerical semigroup S with
respect to the corresponding Young diagram YS. Theorem 2.2 proved in [14].

Theorem 2.2. Let S = {s0, s1, . . . , sr−1, sr,−→} be a numerical semigroup and YS be the Young diagram of S. Let Gi
be the hook set of the ith column of YS, i ≥ 0. Then the following statements hold:

1. For 0 ≤ i ≤ r − 1, we have Gi = {s − si : s ∈ G0, s ≥ si}.
2. For 0 ≤ i ≤ r − 1, the set Gi does not contain any element of S.
3. For 1 ≤ i ≤ r, we have ui = si−si−1−1, and YS = 1u1 2u2 · · · rur . In this case, the conductor of S is c = r+

∑r
i=1 ui.

If ui = 0, 1 ≤ i ≤ r, then S =N0.
4. If YS = 1u1 2u2 · · · rur , then |Gi| = sr − si − (r − i), 0 ≤ i ≤ r − 1.
5. The first hook length of Gi is min {b ∈ G (S) : b > si} − si, i ≥ 1, the last hook length of Gi is F (S) − si.

6. S(i) =
⋂

j≥i(S − s j) =N0\
⋃r−1

j=i G j.

7. x ∈ T(i) if and only if x ∈ Gi−1 and x < G j, i − 1 < j ≤ r.

Recall that genus is the cardinality of G(S).

Proposition 2.3. Let S be a numerical semigroup of genus 1 and λ = [λ1, . . . , λr] be the partition of S. Then the
following statements hold:

1. λ1 is the genus of S, c = λ1 + r is the conductor of S.
2. If S is an Arf semigroup and se is the largest minimal generator, then se = λ1 + r + t1, where t1 is the first type

of S.

Proof. (1) is clear. (2) S has maximal embedding dimension, we have F(S) = se − s1. Using (1), we obtain
se = λ1 + r + t1.
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If λ = [λ1, . . . , λr] is a partition of a positive integer n, then we say λ1 + r is the conductor of λ.
If we consider the Young diagram of an Arf semigroup S, we can add new properties to Theorem 2.2. For
example, for any numerical semigroup S, the hook set of the ith column of YS is a subset of the complement
of the semigroup S(i), 0 ≤ i ≤ r. In particular, S is an Arf semigroup if and only if Gi is the complement of
S(i), and S(i) is also Arf, see [14].

Let λ be a partition of a positive integer n. If λ is the partition of an Arf semigroup S, then λ is called
an Arf partition of n. Any positive integer n has at least one Arf partition. For example, λ = [n] is an
Arf partition of n. Some of the Arf partitions of 13 are [13], [9, 4], [9, 3, 1], [10, 3], [10, 2, 1]. Let S be an Arf
semigroup. If YS = 1u1 2u2 · · · rur , then ui , 0, for all 1 ≤ i ≤ r. Equivalently, λ = [λ1, . . . , λr] = τ(YS), then
λi , λi+1, 1 ≤ i < r, see [15].

The proof of Proposition 2.4 is obtained from [14].

Proposition 2.4. λ = [λ1, . . . , λr] is an Arf partition if and only if

λ j − λ j+1 + 1 ∈ {λ j+1 − λ j+2 + 1, λ j+1 − λ j+3 + 2, . . . , λ j+1 − λr + r − j − 1, λ j+1 + r − j,→}

for all j = 1, . . . , r − 1.

In [14], the authors gave an algorithm that uses Arf partitions to obtain the Arf closure (the smallest Arf
semigroup containing S) of a numerical set S. Now, we can obtain some Arf partitions associated with an
Arf partition λ. These are listed in Proposition 2.5.

Proposition 2.5. Let λ = [λ1, . . . , λr] be an Arf partition of a positive integer n.

1. For any 1 ≤ i ≤ r, the partition β = [λi, . . . , λr] is an Arf partition.
2. For any 0 ≤ i < λr, the partition β = [λ1 − i, . . . , λr − i] is an Arf partition of length r.
3. For any 0 ≤ i ≤ λ1, the partition β = λ − r·i (non-negative parts) is an Arf partition of length s, where s ≤ r.

Proof. If λ is an Arf partition, there is an Arf numerical semigroup S such that G(S) is the hook set of the
first column of YS.

(1) The hook set of the ith column of YS is the complement of the semigroup S(i), since S is Arf, S(i) is
also Arf. Wiping the columns from left to right does not change any hook length in other columns.

(2) Deleting rows from top to bottom does not change hook lengths in other rows.
(3) The proof follows from (2).

Recall the trace of a partition is defined by tr (λ) = max {i : λi ≥ i}.

Corollary 2.6. Let λ be an Arf partition of length r and tr(λ) be the trace of λ. Then [λi+1 − i, . . . , λ j − i] is also an
Arf partition, where j is the biggest number j ≤ r such that λ j − i ≥ 0 and 0 ≤ i < tr(λ).

Proof. The proof follows from Proposition 2.5 (1) and (3).

Corollary 2.7. Let λ be an Arf partition of length r and t = tr(λ) be the trace of λ. Then [λ1, . . . , λt] − t·t and
[λt+1, . . . , λr] are Arf partitions.

Proof. The proof follows from Proposition 2.5.

Let P be the set of partitions obtained from the set of all numerical semigroups. The intersection of
two numerical semigroups is again a numerical semigroup. The intersection of two semigroups induces a
binary operation ~ on P and P is a semigroup.

Theorem 2.8. If A is the set of Arf partitions, then A is a semigroup.

Proof. Let α, β ∈ A and let S, T be corresponding Arf semigroups. Then S ∩ T is also an Arf semigroup and
we define ~ : AxA −→ A, (α, β) −→ α ~ β = γ, where γ is the partition of S ∩ T. Since the intersection of
numerical semigroups has associative property, the set A becomes a semigroup with the operation ~.
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3. Decomposition of an Arf Semigroup

In this section, we give a decomposition of an Arf semigroup to the primitive semigroups. Now, we
consider the special subset of the set of Young diagrams. Any element of this subset is a hook of some
diagram. If u denotes the number of boxes of the leg of that hook and x− 1 denotes the number of boxes of
the arm of that hook, then we represent the hook by 1ux. If x = 0, then the hook is a leg. For u = 5, x = 9,
we have the following hook:

16= 159 =

x=9 horizontal boxes︷                   ︸︸                   ︷

Determining the Arf partitions of positive integers is equivalent to determining Arf semigroups. We
want to explain Arf semigroups with the help of partitions. Any partition consists of finitely many hooks.
For this reason, we think of the separation of a partition into hooks. This is motivation for Definition 3.1
and Lemma 3.3.

Definition 3.1. Let K = {1ux : u ≥ 0, x ≥ 2 or x = 0} be the set of hooks. Then we define an operation � on K such
that

Γ1 � Γ2 = 1u1−(u2+1)2u2 (x2+1)x1

where Γ1 = 1u1 x1, Γ2 = 1u2 x2 and u1 > u2, x1 − 1 ≥ x2.

Example 3.2. Let Γ1 = 1u1 x1 = 169 and Γ2 = 1u2 x2 = 144. Then we obtain Γ1�Γ2 = 16−(4+1)24(4+1)191 = 11245191.

x1 horizontal boxes︷                   ︸︸                   ︷

︸                   ︷︷                   ︸
Γ1=169

�

x2 horizontal boxes︷    ︸︸    ︷

︸    ︷︷    ︸
Γ2=144

=

x1 horizontal boxes︷                   ︸︸                   ︷

︸                   ︷︷                   ︸
Γ1�Γ2=11245191

Here, we define an ordering � over the set of hooks as follows:

Γ1 � Γ2 ⇔ u1 > u2, x1 − 1 ≥ x2

where Γ1 = 1u1 x1 and Γ2 = 1u2 x2. Definition 3.1 can be explained as the nesting of two hooks Γ1,Γ2 with
Γ1 � Γ2. The result Γ1 � Γ2 is not a hook, but a partition of a positive integer n. In Example 3.2, we obtain
n = 23.

If Γ1, Γ2 are hooks with the same notation as in Definition 3.1, then we obtain the partition Γ1 � Γ2. On
the other hand, the hook Γ can be added to the right-hand side or left-hand side of Γ1 � Γ2, for a suitable
hook Γ. Therefore, we observe that the operation � has associative property: (Γ1 � Γ2) � Γ = Γ1 � (Γ2 � Γ),
where Γ2 = 1u2 x2, Γ = 1ux and u2 > u, x2 − 1 ≥ x.

Lemma 3.3. If λ is a partition and t = tr(λ), then it can be written of the form

λ = Γ1 � Γ2 � · · · � Γt = 1v1 2v2 3v3 · · · (t − 1)vt−1 tvt ytyt−1 · · · y2y1

where Γi = 1ui xi, 1 ≤ i ≤ t, vi = ui − (ui+1 + 1), 1 ≤ i ≤ t − 1, vt = ut and y j = x j + ( j − 1), 1 ≤ j ≤ t.
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Proof. Let λ = [λ1, . . . , λr]. The trace of a partition can be seen by its Young diagram; it is equal to the
number of boxes of the Young diagram of shape λ in the main diagonal. i.e., tr(λ) = max{i : λi ≥ i}. Then
tr(λ) gives the number of components which can be seen on the decomposition. Given partition λ, we can
calculate xi, i ≤ t, by the following algorithm:
· ui = λi − i, i ≤ t.
· λ − r·t = [m1, . . . ,mt, m̄t+1, . . . , m̄r], where m̄ j = −m j is negative integer, t + 1 ≤ j ≤ r.
· If m := [mt+1, . . . ,mr], then c(m) denotes the conjugate of m.
· [x1, . . . , xt] = t·r − c(m)w

− [0, 1, 2, · · · , t − 1], where c(m)w means that the reverse ordering of c(m).
Hence, ui > ui+1, xi − 1 ≥ xi+1. Let Γi = 1ui xi ∈ K, 1 ≤ i ≤ t = tr(λ). Then we get,

Γ1 � Γ2 = 1u1−(u2+1)2u2 (x2+1)x1
Γ1 � Γ2 � Γ3 = 1u1−(u2+1)2u2−(u3+1)3u3 (x3+2)(x2+1)x1

and by using induction we obtain
Γ1 � Γ2 � · · · � Γt = 1v1 2v2 3v3 · · · (t − 1)vt−1 tvt ytyt−1· · · y2y1,

where vi = ui − (ui+1 + 1), 1 ≤ i ≤ t − 1, vt = ut and y j = x j + ( j − 1), 1 ≤ j ≤ t.

Example 3.4. For a partition λ = [9, 6, 3, 2, 1, 1], we have the decomposition 1323314161 = 186 � 143 � 11, in other
words, λ = [9, 1, 1, 1, 1, 1] � [5, 1, 1] � [1].

Lemma 3.5. Let K = {1ux : u ≥ 0, x ≥ 2 or x = 0}. Then the following statements hold:

1. If K1 = {1ux ∈ K : u ≥ 1, 2 ≤ x ≤ u + 1 or x = 0}, then any Γ ∈ K1 is a partition of a numerical semigroup.
2. If λ is a partition of a numerical semigroup, then it has a decomposition via the set K, but components may not

be a partition of some semigroup.

Proof. (1) Let Γ = 1ux ∈ K1. If x = 0, then the corresponding semigroup is S = {0,u + 1,−→}. Otherwise,
S = {0,u + 1,u + 2, · · · ,u + x − 1,u + x + 1,−→}.

(2) The proof follows from the definition of the partition of a semigroup.

Recall that if F(S) < 2s1, then S is called a primitive semigroup. Hence, if Γ ∈ K1, then Γ is a partition of a
primitive semigroup by Lemma 3.5.

Theorem 3.6. If S is an Arf semigroup, then S has a primitive semigroup decomposition and the length of the
decomposition is the trace of the Arf partition of S. Additionally, the component semigroups do not commute.

Proof. Let S be an Arf semigroup and λ be its partition. Then λ is a strict dominant Arf partition. By
Proposition 2.5, and Corollary 2.6, we see that [λi − j, . . . , λr − j] is also an Arf partition, for 1 ≤ i ≤ r and
0 ≤ j ≤ λ1. In other words, if we separate the last row together with the first column which is left-aligned,
then we obtain two partitions; one is an Arf partition, the other is an element of K1. Both are partitions of the
appropriate semigroups, sinceλ is Arf. Using Lemma 3.3, we writeλ = 1v1 2v2 3v3 · · · (t − 1)vt−1 tvt ytyt−1· · · y2y1,
where vi = ui − (ui+1 + 1), 1 ≤ i ≤ t − 1, vt = ut and y j = x j + ( j − 1), 1 ≤ j ≤ t = tr(λ). Let S̃i denote the
semigroup of the partition 1ui xi. Hence, S has a decomposition of the form S = S̃1 � S̃2 � · · · � S̃t and each
component S̃i is a primitive semigroup by Lemma 3.5.

Corollary 3.7. If λ is the partition of an Arf semigroup S and S = S̃1 � S̃2 � · · · � S̃t is the primitive semigroup
decomposition of S where S̃i denotes the semigroup of the partition 1ui xi, then for any 1 ≤ j ≤ t = tr(λ) the following
statements hold:

1. If x j = 1, then S̃ j = {0, λ j − j + 2,−→}, and if x j − 1 > 0, we have

S̃ j = {0, (λ j − j) + 1, . . . , (λ j − j) + (x j − 1), (λ j − j) + (x j + 1),−→}.

2. 1(S̃ j) = λ j − j + 1 and F(S̃ j) =

{
λ j − j + x j, x j > 1
λ j − j + 1, x j = 1.



N. Gümüşbaş, N. Tutaş / Filomat 34:2 (2020), 491–498 497

Proof. For the case j = t, we may have two situations for S̃t. If Γ = 1u, then S̃t = {0, λ j − j + 2,−→}, otherwise,
any primitive component is

S̃t = {0, (λ j − j) + 1, . . . , (λ j − j) + (x j − 1), (λ j − j) + (x j + 1),−→}.

Direct calculation gives the Frobenius number F(S̃ j) and the genus 1(S̃ j).

Example 3.8. For S = {0, 4, 8, 12, 15,−→}, we have the following tableaux:

YS = 1410 6 2
13 9 5 1
11 7 3
10 6 2
9 5 1
7 3
6 2
5 1
3
2
1

= 14 3 2 1
10
9
8
7
6
5
4
3
2
1

� 9 2 1
6
5
4
3
2
1

� 3
2
1

The partition of S is λ = [11, 8, 5, 2] = 13233342, r = 4 and tr(λ) = 3, λ−4·3 = [11, 8, 5, 2]−[3, 3, 3, 3] = [8, 5, 2,−1].
Then m = [1] and its conjugate is c(m) = [1], we extend c(m) to the partition of length tr(λ) = 3. Hence,
[x1, x2, x3] = [4, 4, 4] − [0, 0, 1] − [0, 1, 2] = [4, 3, 1]. Therefore, Γ1 = 1104, Γ2 = 173 and Γ3 = 121 = 13. Then, we
obtain primitive semigroups S̃1 = {0, 11, 12, 13, 15,−→}, S̃2 = {0, 7, 8, 10,−→}, and S̃3 = {0, 4,−→}. Thus S has a
decomposition of the form S = S̃1 � S̃2 � S̃3 where

{0, 4, 8, 12, 15,−→} = {0, 11, 12, 13, 15,−→} � {0, 7, 8, 10,−→} � {0, 4,−→}.

Lemma 3.9. If S is a symmetric numerical semigroup, then the partition of S is a symmetric partition.

Proof. The proof follows from the construction of the partition of a numerical semigroup.

Proposition 3.10. If S is a symmetric Arf semigroup and λ is the partition of S, then λ is a symmetric Arf partition.
Additionally, the primitive semigroup decomposition of S can be written of the form S = S̃1 � S̃2 � · · · � S̃t where
1 ≤ j ≤ t = tr(λ) and

S̃ j =

{
{0, λ j − j + 2,−→}, λ j = j
{0, λ j − j + 1, . . . , 2(λ j − j), 2(λ j − j) + 2,−→}, λ j ≥ j + 1.

Proof. The first assertion follows from Lemma 3.9. Since λ is a symmetric Arf partition of the semigroup
S and t = tr(λ), we see that ut−k = ut+k+1, 1 ≤ k ≤ t − 1. On the other hand λi − (i − 1) = xi, 1 ≤ i ≤ t. Using
Corollary 3.7, if x j = 1 for some j ≤ t, then S̃ j = {0, λ j − j + 2,−→} and if x j − 1 > 0, we have

S̃ j = {0, (λ j − j) + 1, . . . , (λ j − j) + ((λ j − j + 1) − 1), (λ j − j) + (λ j − j + 1) + 1),−→}
= {0, λ j − j + 1, . . . , 2(λ j − j), 2(λ j − j) + 2,−→}.

Therefore, we have 1(S̃ j) = λ j − j + 1 and F(S̃ j) =

{
2λ j − 2 j + 1, x j > 1
λ j − j + 1, x j = 1.
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