On the Generalized q-Poly-Euler Polynomials of the Second Kind

Veli Kurt ${ }^{\text {a }}$
${ }^{a}$ Akdeniz University, Antalya, TR-07058, Turkey

Abstract

In this work, we define the generalized q-poly-Euler numbers of the second kind of order α and the generalized q-poly-Euler polynomials of the second kind of order α. We investigate some basic properties for these polynomials and numbers. In addition, we obtain many identities, relations including the Roger-Szégo polynomials, the Al-Salam Carlitz polynomials, q-analogue Stirling numbers of the second kind and two variable Bernoulli polynomials.

1. Introduction, Definitions and Notations

The classical Bernoulli polynomials and the classical Euler polynomials are defined by the following generating functions, respectively;

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}=\frac{t}{e^{t}-1} e^{x t},|t|<2 \pi \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}=\frac{2}{e^{t}+1} e^{x t},|t|<\pi \tag{2}
\end{equation*}
$$

Also, let

$$
B_{n}=B_{n}(0) \text { and } E_{n}=E_{n}(0)
$$

where B_{n} and E_{n} are respectively, the Bernoulli numbers and the Euler numbers.
$k \in \mathbb{Z}, k>1$, then k-th polylogarithm is defined by ([2], [12], [14], [22]) as

$$
\begin{equation*}
L i_{k}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{k}} \tag{3}
\end{equation*}
$$

[^0]This function is convergent for $|z|<1$, when $k=1$

$$
L i_{1}(z)=-\log (1-z)
$$

The q-numbers and q-factorial are defined by

$$
\begin{equation*}
[n]_{q}=\frac{1-q^{n}}{1-q}, q \neq 1,[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q}, \tag{4}
\end{equation*}
$$

$n \in \mathbb{N}, q \in \mathbb{C}$, respectively where $[0]_{q}!=1$.
The analogue of $(x-y)_{q}^{n}$ is defined by in [11]

$$
(x-y)_{q}^{n}=\left\{\begin{array}{cc}
1, & \text { if } n=0 \tag{5}\\
(x-y)(x-q y) \cdots\left(x-q^{n-1} y\right), & \text { if } n>1
\end{array}\right.
$$

From (5), we get

The q-exponential functions are given by

$$
\begin{equation*}
e_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{[n]_{q}!}=\prod_{k=0}^{\infty} \frac{1}{\left(1-(1-q) q^{k} z\right)}, 0<|q|<1,|z|<\frac{1}{|1-q|} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{q}(z)=\sum_{n=0}^{\infty} q^{\binom{n}{2}} \frac{z^{n}}{[n]_{q}!}=\prod_{k=0}^{\infty}\left(1+(1-q) q^{k} z\right), 0<|q|<1, z \in \mathbb{C} . \tag{8}
\end{equation*}
$$

From here, we easily see that $e_{q}(z) E_{q}(-z)=1$ in [11].
The above q-notation can be found in [11]. Luo in [24], Liu in [23], Wei et al. [34] and Srivastava in [32] introduced and investigated Euler numbers and Euler polynomials. They gave several basic properties and recursion relations of these polynomials. Carlitz [5] extended the classical Bernoulli and Euler numbers and polynomials and introduced the q-Bernoulli and the q-Euler numbers and polynomials. Ozden et al. in [29], by using a p-adic q-Volkenborn integral gave a new extension of q-Euler numbers and polynomials. Kim et al. in [16] considered the poly-Bernoulli polynomials. Kim et al. in [17] and Kurt [18] gave some relations for the poly-Genocchi polynomials. Mahmudov ([25], [26]) considered two variables the q-Bernoulli polynomials, q-Euler polynomials and q-Genocchi polynomials. He gave some summation properties of these polynomials. Kim et al. [15], Kurt ([20], [21]) gave some identities and the analogues of the Srivastava-Pintér summation formulae for these polynomials. Ryoo et al. [30] introduced the q-polytangent polynomials and gave the distribution of their zeros. Agarwal et al. [1] introduced and investigated the q-extension of Euler polynomial of the second kind. Cieśliński in [6] improved q-exponential and q-trigonometric functions. Duran et al. in ([7], [8], [9]) investigated the (p, q)-Euler polynomials and the (p, q)-Hermite polynomials.

Sadjang [31] introduced and investigated to q-addition theorems for the q-Appell polynomials and the associated classes of q-polynomials expressions.

Mahmudov ([25], [26]) defined and investigated the q-Bernoulli polynomials $\mathcal{B}_{n, q}^{(\alpha)}(x, y)$ of order α, the q-Euler polynomials $\mathcal{E}_{n, q}^{(\alpha)}(x, y)$ of order α and the q-Genocchi polynomials $\mathcal{G}_{n, q}^{(\alpha)}(x, y)$ of order α respectively, the following generating functions

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{B}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!}=\left(\frac{t}{e_{q}(t)-1}\right)^{(\alpha)} e_{q}(t x) E_{q}(t y),|t|<2 \pi \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!}=\left(\frac{2}{e_{q}(t)+1}\right)^{(\alpha)} e_{q}(t x) E_{q}(t y),|t|<\pi \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{G}_{n, q}^{(\alpha)}(x, y) \frac{t^{n}}{[n]_{q}!}=\left(\frac{2 t}{e_{q}(t)+1}\right)^{(\alpha)} e_{q}(t x) E_{q}(t y),|t|<\pi \tag{11}
\end{equation*}
$$

where $q \in \mathbb{C}, \alpha \in \mathbb{N}$ and $0<|q|<1$.
Hamahata et al. [10] defined poly-Euler polynomials by

$$
\sum_{n=0}^{\infty} E_{n}^{(k)}(x) \frac{t^{n}}{n!}=\frac{2 L i_{k}\left(1-e^{-t}\right)}{t\left(e^{t}+1\right)} e^{x t}
$$

For $k=1$, we get $E_{n}^{(1)}(x)=E_{n}(x)$.
The q-analogue of the Stirling numbers of the second kind $S_{2, q}(n, k)$ is defined [26] as

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{2, q}(n, k) \frac{t^{n}}{[n]_{q}!}=\frac{\left(e_{q}(t)-1\right)^{k}}{[k]_{q}!} \tag{12}
\end{equation*}
$$

The q-Hermite polynomials $H_{n, q}(x)$ is defined by Mahmudov in [27] as

$$
\begin{equation*}
e_{q}(t x) E_{q^{2}}\left(-\frac{t^{2}}{[2]_{q}}\right)=\sum_{n=0}^{\infty} H_{n, q}(x) \frac{t^{n}}{[n]_{q}!} . \tag{13}
\end{equation*}
$$

It is clear that

$$
\lim _{q \rightarrow 1^{-}} H_{n, q}(x)=\exp \left(t x-\frac{t^{2}}{2}\right)
$$

The Roger-Szégo polynomials $H_{n}(x: q)$ [see [3], Equ. (1)] and the Al-Salam Carlitz polynomials $U_{n}^{(a)}(x: q)$ [see [13], page 534] are defined by the generating functions

$$
\begin{equation*}
e_{q}(t) e_{q}(x t)=\sum_{n=0}^{\infty} H_{n}(x: q) \frac{t^{n}}{[n]_{q}!} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{e_{q}(x t)}{e_{q}(t) e_{q}(a t)}=\sum_{n=0}^{\infty} U_{n}^{(a)}(x: q) \frac{t^{n}}{[n]_{q}!} \tag{15}
\end{equation*}
$$

The classical Euler numbers of order α and the classical Euler polynomials of order α are defined [33] by the following generating functions, respectively

$$
\sum_{n=0}^{\infty} E_{n}^{(\alpha)} \frac{t^{n}}{n!}=\left(\frac{2}{e^{t}+1}\right)^{\alpha},|t|<\pi
$$

and

$$
\sum_{n=0}^{\infty} E_{n}^{(\alpha)}(x) \frac{t^{n}}{n!}=\left(\frac{2}{e^{t}+1}\right)^{\alpha} e^{x t},|t|<\pi
$$

where $\alpha \in \mathbb{R}$ and $x \in \mathbb{C}$.
The classical Euler numbers of the second kind \tilde{E}_{n} and the classical Euler polynomials of the second kind $\tilde{E_{n}}(x)$ are defined in [1] by means of the following generating functions, respectively

$$
\sum_{n=0}^{\infty} \tilde{E_{n}} \frac{t^{n}}{n!}=\frac{2}{e^{t}+e^{-t}} \text { and } \sum_{n=0}^{\infty} \tilde{E_{n}}(x) \frac{t^{n}}{n!}=\frac{2}{e^{t}+e^{-t}} e^{x t}
$$

Agarwal et al. in [1] defined the q-Euler polynomials of second kind in two parameters as:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{\sim}(x, y) \frac{t^{n}}{[n]_{q}!}=\frac{2}{e_{q}(t)+e_{q}(-t)} e_{q}(x t) E_{q}(t y) \tag{16}
\end{equation*}
$$

where $x, y \in \mathbb{C}$.
By this motivation, we define the generalized q-poly-Euler numbers $\mathcal{E}_{n, q}^{\sim} \quad$ of the second kind of order α and the generalized q-poly-Euler polynomials $\mathcal{E}_{n, q}^{[k, \alpha]}(x, y)$ of the second kind of order α as follows, respectively

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{\sim}{ }^{[k, \alpha]} \frac{t^{n}}{[n]_{q}!}=\left(\frac{2 L i_{k}\left(1-e^{-t}\right)}{t\left(e_{q}(t)+e_{q}(-t)\right)}\right)^{\alpha} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{\sim}{ }^{[k, \alpha]}(x, y) \frac{t^{n}}{[n]_{q}!}=\left(\frac{2 L i_{k}\left(1-e^{-t}\right)}{t\left(e_{q}(t)+e_{q}(-t)\right)}\right)^{\alpha} e_{q}(x t) E_{q}(y t) \tag{18}
\end{equation*}
$$

For $k=1, L i_{1}(z)=-\log (1-z)$, from (17) and (18), we get

$$
\lim _{q \rightarrow 1^{-}}{\mathcal{\mathcal { E } _ { n , q } ^ { \sim }}}^{[1, \alpha]}=E_{n}^{(\alpha)} \text { and } \lim _{q \rightarrow 1^{-}}{\mathcal{\mathcal { E } _ { n , q }}}^{[1, \alpha]}(x, y)=E_{n}^{(\alpha)}(x+y) .
$$

2. Main Theorems

In this section, we give explicit relations for these polynomials. Also, we prove some relations between the generalized q-poly-Euler polynomials of the second kind, the q-Stirling numbers of the second kind, the two variable Bernoulli numbers and the Bernoulli polynomials.

Theorem 2.1. The generalized q-poly-Euler polynomials of the second kind of order α satisfy the following relations:

$$
\begin{align*}
& \mathcal{E}_{n, q}^{\sim}[k, \alpha] \tag{i}\\
& {[x, y)=\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q}(x+y)_{q}^{l} \mathcal{E}_{n-l, q}^{\sim}[k, \alpha]} \tag{ii}\\
& \mathcal{E}_{n, q}^{\sim}[k, \alpha] \\
& (x, y)=\sum_{l=0}^{n}\left[\begin{array}{l}
n \\
l
\end{array}\right]_{q} \mathcal{E}_{n-l, q}^{\sim}(x, \alpha] \\
& (x, 0) q^{\left(\frac{l}{2}\right)} y^{l}
\end{align*}
$$

and

$$
\tilde{\mathcal{E}}_{n, q}^{\sim}[k, \alpha] \quad(x, y)=\sum_{l=0}^{n}\left[\begin{array}{c}
n \tag{iii}\\
l
\end{array}\right]_{q} \mathcal{E}_{n-l, q}^{\sim}{ }^{[k, \alpha]}(0, y) x^{l} .
$$

The proof of this Theorem is easily obtained by using (17) and (18).
Theorem 2.2. The following relations hold true:

$$
(x+y)_{q}^{n}=\frac{1}{2} \sum_{l=0}^{n}\left[\begin{array}{c}
n \tag{19}\\
l
\end{array}\right]_{q}\left(1+(-1)^{l}\right) \mathcal{E}_{n-l, q}^{n}(x, y)
$$

and

$$
x^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{20}\\
k
\end{array}\right]_{q} H_{n-k}(a: q) U_{k}^{(a)}(x: q) .
$$

The proof of these relations are easily obtained by applying the Cauchy product to (14), (15) and (16) and comparing the coefficients. For $y=0$, Theorem 2.2 is reduced to Theorem 2.12-(ii) in [1, p.142].

Theorem 2.3. We have the following relation

$$
\left.(x+y)_{q}^{n}=\sum_{m=0}^{n}\left[\begin{array}{c}
n \tag{21}\\
m
\end{array}\right]_{q} \sum_{k=0}^{n-m}\left[\begin{array}{c}
n-m \\
k
\end{array}\right]_{q} q^{\binom{k}{2}}(-1)^{k} q^{(n-m-k} 2\right) y^{n-m-k} H_{m}(x: q)
$$

The proof of this Theorem is depend on the equations (7), (8) and (14) and also the property of q exponential functions such as $E_{q}(-t) e_{q}(t)=1$.

We get the following corollary from (19) and (21).
Corollary 2.4. There is the following relation

$$
\begin{aligned}
& \sum_{m=0}^{n}\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q} \sum_{k=0}^{n-m}\left[\begin{array}{c}
n-m \\
k
\end{array}\right]_{q} q^{\left(\frac{k}{2}\right)}(-1)^{k} q^{(n-m-k)} y^{n-m-k} H_{m}(x: q) \\
= & \frac{1}{2} \sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q}\left(1+(-1)^{l}\right) \mathcal{E}_{n-l, q}^{n}(x, y) .
\end{aligned}
$$

Theorem 2.5. There is the following relation between the generalized q-poly-Euler polynomials of the second kind and q-Bernoulli polynomials $B_{n, q}^{(\alpha)}(x, y)$ of order α :

$$
\mathcal{E}_{n, q}^{\sim}[k, \alpha] \quad(x, y)=\sum_{j=0}^{n}\left[\begin{array}{c}
n \tag{22}\\
j
\end{array}\right]_{q} \mathcal{E}_{n-j, q}^{\sim}{ }^{[k, \alpha]}(0, y) \sum_{r=0}^{j}\left[\begin{array}{l}
j \\
r
\end{array}\right]_{q} \frac{\mathcal{B}_{j-r, q}^{(1)}(m x, 0)}{m^{j}[r+1]_{q}!} .
$$

Proof. By (9) and (18), we write as

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{\sim}[k, \alpha] \\
&=(x, y) \frac{t^{n}}{[n]_{q}!} \\
& t\left(e_{q}(t)+e_{q}(-t)\right) 2 L i_{k}\left(1-e^{-t}\right) \\
&= \frac{m}{t} \sum_{n=0}^{\infty}(y t) \frac{e_{q}\left(\frac{t}{m}\right)-1}{\frac{t}{m}} \frac{\frac{t}{m}}{e_{q}\left(\frac{t}{m}\right)-1} e_{q}\left(m x \frac{t}{m}\right) \\
& {[k, \alpha] } \\
&(0, y) \frac{t^{n}}{[n]_{q}!} \sum_{n=0}^{\infty} \frac{t^{n+1}}{m^{n+1}[n+1]_{q}!} \sum_{n=0}^{\infty} B_{n, q}(m x, 0) \frac{t^{n}}{m^{n}[n]_{q}!} .
\end{aligned}
$$

By using Cauchy product and comparing the coefficeints of $\frac{t^{n}}{[n]_{q}}$, we have (22).

Theorem 2.6. The following relation holds true:

$$
\begin{align*}
& \mathcal{E}_{n-1, q}^{\sim}(x, \alpha] \\
&(x, y)= \frac{1}{2[n]_{q}} \sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \frac{1}{m^{-1}}\left\{\mathcal{E}_{n-l, q}^{\sim}{ }^{[k, \alpha]}\left(\frac{1}{m}, y\right)+\mathcal{E}_{n-l, q}^{\sim}(0, y)\right\} \tag{23}\\
& \times \mathcal{G}_{l, q}^{(1)}(m x, 0) .
\end{align*}
$$

Proof. By (11) and (18), we write as

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{\sim}[k, \alpha] \\
= & \left(\frac{2 L i_{k}\left(1-e^{-t}\right)}{t\left(e_{q}(t)+e_{q}(-t)\right)}\right)^{\alpha} E_{q}(y t) \frac{e^{n}\left(\frac{t}{m}\right)+1}{\frac{2 t}{m}} \frac{\frac{2 t}{m}}{e_{q}\left(\frac{t}{m}\right)+1} e_{q}\left(m x \frac{t}{m}\right) \\
= & \frac{m}{2 t}\left\{\left(\frac{2 L i_{k}\left(1-e^{-t}\right)}{t\left(e_{q}(t)+e_{q}(-t)\right)}\right)^{\alpha} E_{q}(y t) e_{q}\left(\frac{t}{m}\right) \frac{\frac{2 t}{m}}{e_{q}\left(\frac{t}{m}\right)+1} e_{q}\left(m x \frac{t}{m}\right)\right. \\
& +\left(\frac{2 L i_{k}\left(1-e^{-t}\right)}{t\left(e_{q}(t)+e_{q}(-t)\right)}\right)^{\alpha} E_{q}(y t) \frac{\frac{2 t}{m}}{e_{q}\left(\frac{t}{m}\right)+1} e_{q}\left(m x \frac{t}{m}\right)
\end{aligned}
$$

$$
=\frac{m}{2 t}\{A+B\}, \text { where }
$$

$$
\begin{equation*}
A=\sum_{m=0}^{\infty} \mathcal{E}_{m, q}^{\sim}{ }^{[k, \alpha]}\left(\frac{1}{m}, y\right) \frac{t^{m}}{[m]_{q}!} \sum_{l=0}^{\infty} \mathcal{G}_{l, q}^{(1)}(m x, 0) \frac{t^{l}}{m^{l}[l]_{q}!} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\sum_{m=0}^{\infty} \mathcal{E}_{m, q}^{\sim}[k, \alpha] \quad(0, y) \frac{t^{m}}{[m]_{q}!} \sum_{l=0}^{\infty} \mathcal{G}_{l, q}^{(1)}(m x, 0) \frac{t^{l}}{m^{l}[l]_{q}!} \tag{25}
\end{equation*}
$$

By using Cauchy product to (24) and (25), we get

From comparing the coefficients of the both side, we have (23).

Theorem 2.7. There is the following relation between the generalized q-poly-Euler polynomials of the second kind and the q-Stirling numbers $S_{2, q}(n, k)$ of the second kind as

$$
\begin{align*}
& \sum_{s=0}^{n}\left[\begin{array}{l}
n \\
s
\end{array}\right]_{q} E_{n-s, q}^{n}-[1,1] \\
= & 2 \sum_{m=0}^{n}(x, y) \sum_{m=0}^{s}\left[\begin{array}{c}
s \\
m \\
m
\end{array}\right]_{q} S_{q} S_{2, q}(m, l)(x+y)_{q}^{n-m} . \tag{26}
\end{align*}
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty}[n+1]_{q}{\underset{\mathcal{E}}{n, q}}_{\sim}^{[k, \alpha]}(x, y) \frac{t^{n+1}}{[n+1]_{q}!} \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \frac{1}{m^{l-1}}\left\{\mathcal{E}_{n-l, q}^{\sim} \underset{m}{[k, \alpha]}\left(\frac{1}{m}, y\right)+\mathcal{E}_{n-l, q}^{[k, \alpha]}(0, y)\right\} \mathcal{G}_{l, q}^{(1)}(m x, 0) \frac{t^{n}}{[n]_{q}!} .
\end{aligned}
$$

Proof. By (12) and (18) and for $\alpha=1$, we write as

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{\sim}{ }^{[k, 1]}(x, y) \frac{t^{n}}{[n]_{q}!} \\
= & \frac{2 L i_{k}\left(1-e^{-t}\right)}{t\left(e_{q}(t)+e_{q}(-t)\right)} \frac{\left(e_{q}(t)-1\right)^{l}}{[l]_{q}!} \frac{[l]_{q}!}{\left(e_{q}(t)-1\right)^{l}} e_{q}(x t) E_{q}(y t) \\
& \sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{\sim}[k, 1] \\
= & 2 L i_{k}\left(1-e^{-t}\right) \frac{\left(e_{q}(t)-1\right)^{l}}{[l]_{q}!} e_{q}(x t) E_{q}(y t) . \tag{27}
\end{align*}
$$

The left hand side of the equation (27) is

$$
\begin{equation*}
t \sum_{n=0}^{\infty} \mathcal{E}_{n, q}^{\sim}[k, 1] \quad(x, y) \frac{t^{n}}{[n]_{q}!} \sum_{n=0}^{\infty}\left(1+(-1)^{n}\right) \frac{t^{n}}{[n]_{q}!} \sum_{n=0}^{\infty} S_{2, q}(n, l) \frac{t^{n}}{[n]_{q}!} \tag{28}
\end{equation*}
$$

The right hand side of the equation (27) is

$$
\begin{equation*}
2 \sum_{n=0}^{\infty} S_{2, q}(n, l) \frac{t^{n}}{[n]_{q}!} \sum_{n=0}^{\infty}(x+y)_{q}^{n} \frac{t^{n}}{[n]_{q}!} L i_{k}\left(1-e^{-t}\right) \tag{29}
\end{equation*}
$$

For $k=1$, using $L i_{1}\left(1-e^{-t}\right)=t$ in (29). By using the Cauchy product of the equation (28) and (29) and comparing the coefficients in (27). We have (26).

References

[1] Agarwal R. P., Kang J. Y. and Ryoo C. S., A new q-extension of Euler polynomial of the second kind and some related polynomials, J. Computational Analysis and Appl., 27(1), (2019), 136-148.
[2] Arakawa T. and Kaneko M., Multiple zeta values, poly-Bernoulli numbers and related zeta functions, Nagoya Math. J., 153, (1999), 1-21.
[3] Atakishiyev N. M. and Nagiyev Sh M., On the Rogers-Szega polynomials, J. Phys. A., 27 (1994), no 17, L611-L615.
[4] Bayad A. and Hamahata Y., Polylogarithms and poly-Bernoulli polynomials, Kyushu J. Math., 65 (2011), 15-34.
[5] Carlitz L., q-Bernoulli numbers and polynomials, Duke Math. J., 15, (1948), 987-1000.
[6] Cieśliński Jan L., Improved q-exponential and q-trigonometric functions, Applied Math. Lett., 24 (2011), 2110-2114.
[7] Duran U., Acikgoz M., Esi A. and Araci S., A note on the (p, q) -Hermite polynomials, Appl. Math. and Inf. Sci., 12(1), (2018), 227-231.
[8] Duran U. and Acikgoz M., On (p, q)-Euler numbers and polynomials associated with (p, q) Volkenborn integral, Int. J. of Number Theory, 14(1), (2018), 241-253.
[9] Duran U., Acikgoz M. and Araci S., Unified (p, q)-analog of Apostol type polynomials of order α, Filomat, 32(2), (2018), 387-394.
[10] Hamahata Y., Poly-Euler polynomials and Arakawa-Kaneko type zeta functions, Functione et. App. Commentarii Mathematica, 51(1), (2014), 7-27.
[11] Kac V. and Cheung P., Quantum Calculus, Springer-Verlog, (2002).
[12] Kaneko M., Poly-Bernoulli numbers, J. Théory Numbres, 9, (1997), 221-228.
[13] Koekoek R., Lesky Peter A., Swarttouw René F., Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Math., Springer-Verlag, Berlin, 2010.
[14] Kim T., Multiple zeta values di-zeta values and their applications, Lecture notes in number theory, Gyungnam University, South-Korean, 1998.
[15] Kim D., Kurt B. and Kurt V., Some identities on the generalized q-Bernoulli, q-Euler and q-Genocchi polynomials, Abstract and Appl. Analy., vol. 2013, Article ID:293532.
[16] Kim D. and Kim T., A note on poly-Bernoulli and higher order poly-Bernoulli polynomials, Russian J. of Math. Physics, 22(1), (2015), 26-33.
[17] Kim T., Jang V. S. and Seo J. J., A note on poly-Genocchi numbers and polynomials, Appl. Math. Sci., 8(96), (2014), 4775-4781.
[18] Kurt B., Identities and relation on the Poly-Genocchi Polynomials with a q-parameter, J. of Inequalities, Special Functions, 9(1), (2018), 1-8.
[19] Kurt B., A note on the Apostol type q-Frobenius-Euler polynomials and generalizations of the Srivastava-Pinter addition theorems, Filomat, 30(1), (2016), 65-72.
[20] Kurt V., Some identities and recurrence relations for the q-Euler polynomials, Hacettepe J. of Math. and Statistics, 44(6), (2015), 1397-1404.
[21] Kurt V., New identities and relations derived from the generalized Bernoulli polynomials, Euler and Genocchi polynomials, Advanced in Diff. Equa., 2014, 2014.5.
[22] Lewin L., Structual properties of polylogarithms, Math. Survey and Monographs Amer. Math. Soc. 1991.
[23] Liu G., Generating functions and generalized Euler numbers, Proc. Japon. Acad. 84 SerA, (2008), 29-34.
[24] Luo Q.-M., Some recursion formulae and relations for Bernoulli numbers and Euler numbers of higher order, Adv. Stud. in Contem. Math., 10(1), (2005), 63-70.
[25] Mahmudov N. I., q-Analogues of the Bernoulli and Genocchi polynomials and the Srivastava-Pinter addition theorem, Discrete Dyn. in Nature and Society, 2012, Article ID: 169348.
[26] Mahmudov N. I., On a class of q-Bernoulli and q-Euler polynomials, Advances in Diff. Equ., 2013, 2013.108.
[27] Mahmudov N. I. and Keleshteri M. E., q-Extensions for the Apostol type polynomials, J. of Applied Math., 2014, Article ID:868167.
[28] Mahmudov N. I., Difference equations of q-Appell polynomials, Applied Math. and Comp., 245 (2014), 530-545.
[29] Ozden H. and Simsek Y., A new extension of q-Euler numbers and polynomials related to their interpolation functions, Applied Math. Letters, 21, (2008), 934-939.
[30] Ryoo C. S. and Agarwal R. P., Some identities involving q-poly-tangent numbers and polynomials and distribution of their zeros, Adv. in Diff., (2017), 2017.213.
[31] Sadjang P. N., q-addition theorems for the q-Appell polynomials and the associated classes of q-polynomials expansion, J. Korean Math. Soc., 85(5), (2018), 1179-1192.
[32] Srivastava H. M., Some generalization and basic (or q-) extensition of the Bernoulli, Euler and Genocchi polynomials, App. Math. İnform. Sci., (5), (2011), 390-444.
[33] Srivastava H. M. and Choi J., Series associated with the zeta and related functions, Kluver Academic Pub., Dordrect, Boston and London, (2001).
[34] Wei C.-F. and Qi F., Several closed expressions for the Euler numbers, Journal of Inequalities and Appl., (2015), 2015.219.

[^0]: 2010 Mathematics Subject Classification. 11B68; 11B73, 11S80.
 Keywords. Bernoulli polynomials and numbers; Euler polynomials and numbers; Apostol-Bernoulli polynomials and numbers; Apostol-Euler polynomials and numbers; the Stirling numbers of second kind; Alternating sums; Unified Apostol-Bernoulli, Euler and Genocchi polynomials; modified Apostol-type polynomials.

 Received: 08 January 2019; Revised: 19 March 2019; Accepted: 26 May 2019
 Communicated by Yilmaz Simsek
 This article is dedicated to Professor Gradimir V. Milovanovic on the Occasion of his 70th anniversary.
 Email address: vkurt@akdeniz.edu.tr (Veli Kurt)

