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Notes on the Poly-Korobov Polynomials and Related Polynomials
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Abstract. In recent years, many mathematicians ([2], [7], [8], [9], [15], [16], [21]) introduced and investigated
for the Korobov polynomials. They gave some identities and relations for the Korobov type polynomials.
In this work, we give some relations for the first kind Korobov polynomials and Korobov type Changhee
polynomials. Further, we give two relations between the poly-Changhee polynomials and the poly-Korobov
polynomials. Also, we give a relation among the poly-Korobov type Changhee polynomials, the Stirling
numbers of the second kind, the Euler polynomials and the Bernoulli numbers.

1. Introduction, Definitions and Notations

A usual, throughout this paper,N denotes the set of natural numbers,N0 denotes the set of nonnegative
integers,Z denotes the set of integer numbers,R denotes the set of real numbers andC denotes the complex
numbers. We begin by introducing the following definition and notations (see also [11]-[15], [17], [19], [20],
[21]). It is well known, the Bernoulli polynomials Bn(x) and the Euler polynomials En(x) are defined by the
following generating functions, respectively;

∞∑
n=0

Bn(x)
tn

n!
=
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En(x)
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when x = 0, Bn(0) = Bn and En(0) = En are called the Bernoulli numbers and the Euler numbers.
Generating function for the Stirling numbers of the second kind are given by(
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where k is nonnegative integer ([9], [21]).
The classical polylogarithm function Lik(z) is defined

Lik(z) =

∞∑
n=1

zn

nk
, k ∈ Z, k > 1. (4)

This function is convergent for |z| < 1, when k = 1, Li1(z) = − log(1 − z) in [12].
The poly-Bernoulli polynomials are defined as ([1], [6], [12])

Lik(1 − e−t)
et − 1

ext =

∞∑
n=0

B
(k)
n (x)

tn

n!
. (5)

For k = 1, we have B(1)
n (x) = Bn(x), n ≥ 0. For x = 0, B(k)

n := B(k)
n (0) are called poly-Bernoulli numbers.

Hamahata et al. in [3] defined the poly-Euler polynomials as

2Lik(1 − e−t)
t (et + 1)

ext =

∞∑
n=0

E
(k)
n (x)

tn

n!
(6)

when x = 0, E(k)
n := E(k)

n (0) are called poly-Euler numbers.
The Korobov polynomials Kn (x | λ) of the first kind are given by the generating function

λt

(1 + t)λ − 1
(1 + t)x =

∞∑
n=0

Kn (x | λ)
tn

n!
. (7)

When x = 0, Kn (λ) = Kn (0 | λ) are called Korobov numbers of the first kind ([2], [9], [21]).
D. S. Kim et al. in [7] introduced and investigated some properties of the Korobov polynomials of the

third kind Kn,3 (x | λ) and the Korobov polynomials of the fourth kind Kn,4 (x | λ).
D. S. Kim et al. in ([9], [10]) defined the Changhee polynomials and the Korobov type Changhee

polynomials, respectively:

∞∑
n=0
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=
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t + 2

(1 + t)x (8)

and
∞∑

n=0

Chn (x | λ)
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2
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(1 + t)x . (9)

Srivastava [17] and Srivastava et al. in ([17]-[20]) gave some theorems and recurrence relations for the
classical Bernoulli polynomials, the classical Euler polynomials and the classical Genocchi polynomials.
Korobov ([11], [13]) introduced the Korobov polynomials. Hamahata in [2], Bayad et al. in [1], Imatomi
et al. in [4] and D. Kim et al. in [6] defined and investigated some properties and relations for the poly-
Bernoulli polynomials and poly-Euler polynomials. D. S. Kim et al. in [9] considered and investigated some
relations for the Korobov type polynomials associated with p-adic integrals. Seo et al. in [16] considered the
degenerate Korobov polynomials. Kruchinin in ([14], [15]) gave explicit formulas for Korobov polynomials.
Yardimci et al. in [21] gave some identities for Korobov type polynomials.

2. Explicit Relations For The Korobov Polynomials, The Changhee polynomials and The Korobov Type
Changhee polynomials and Related Polynomials

In this section, we give some relations the Korobov polynomials and the Korobov type Changhee poly-
nomials. Also, we give a relation the poly-Korobov type Changhee polynomials and the Euler polynomials.
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Theorem 2.1. The Changhee polynomials satisfy the following relation

m∑
n=0

En (x) S2(m,n) =

m∑
l=0

l∑
n=0

Chn (x) S2 (l,n) S2 (m, l) . (10)

Proof. By replacing t by e(et
−1) − 1 in (8) and by (2), we get

∞∑
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After some calculations by (3) and using the Cauchy product in the above equation, we have
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 tm
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Comparing the coefficients of both sides, we get results.

Theorem 2.2. There is the following relation between the Changhee polynomials and the Korobov polynomials

Kn (x + λ | λ) − Kn (x | λ) = λn
(
Chn−1 (x) +

1
2

(n − 1) Chn−2 (x)
)

. (11)

Proof. By (7) and (8), we write
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From here, we have

λn
(
Chn−1 (x) +

1
2

(n − 1) Chn−2 (x)
)

= Kn (x + λ | λ) − Kn (x | λ) .

Theorem 2.3. There is the following relation between the Korobov type Changhee polynomials and Korobov polyno-
mials

Kn (x + λ | λ) − Kn (x | λ) =
λn
2

(Chn−1 (x + λ | λ) + Chn−1 (x | λ)) .

Proof. The proof of this theorem is similiar to Theorem 2.2, we omit it.

Theorem 2.4. The following relations hold true:

Kn (x + λ | λ) = Kn (x | λ) + λn (x)n−1 (12)

and

Chn (x + λ | λ) = 2 (x)n − Chn (x | λ) , where (x)n = x(x − 1)...(x − n + 1) f or n > 0. (13)
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Proof. It is easy known that
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Thus, we have
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By using (7), we write
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Comparing the coefficients of tn

n! , we get (12). The proof of the (13) is similiar to that of (12), so we omit
it.

Theorem 2.5. There is the following relation between the Korobov polynomials and the Bernoulli polynomials:
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From (14) and (15), comparing the coefficients of tm

m! , we have (14).

The relation (14) and equation (6) in [16] are similarity. But the transformation is different. Finally, the
relation (14) is true.
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3. The Poly-Korobov Polynomials, The Poly-Changhee polynomials and The Poly-Korobov Type Changhee
polynomials

By the motification in [9], we define the following the poly-Changhee polynomials, the poly-Korobov
polynomials and the poly-Korobov type Changhee polynomials, respectively

∞∑
n=0

Ch(k)
n (x)

tn
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=
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1 − e−t) (1 + t)x
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For k = 1, we get Ch(1)
n (x) = Chn (x), K(1)

n (x | λ) = Kn (x | λ) and Ch(1)
n (x | λ) = Chn (x | λ).

The following relations can be easily from (18), (19) and (20).
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Theorem 3.1. There is the following relation between the poly-Korobov type Changhee polynomials and the Euler
polynomials
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Proof. By (20),
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By replacing t by e−t
− 1 in the last equation, we have
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By using (1), (2), (3) and (4) in (23) and using Cauchy product and comparing the coefficients, we have
(21).
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