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Abstract. It is known that if there exists a Gröbner-Shirshov basis for a group G, then we say that one of the
decision problem, namely the word problem, is solvable for G as well. Therefore, as the main target of this
paper, we will present a (non-commutative) Gröbner-Shirshov basis for the braid group associated with
the congruence classes of complex reflection group G12 which will give us normal forms of the elements of
G12 and so will obtain a new algorithm to solve the word problem over it.

1. Introduction and Preliminaries

The Gröbner basis theory for commutative algebras was introduced by Buchberger [10] and provides a
solution to the reduction problem for commutative algebras. In [4] Bergman generalized the Gröbner basis
theory to associative algebras by proving the “Diamond Lemma”. On the other hand, the parallel theory
of Gröbner bases was developed for Lie algebras by Shirshov [20]. In [6] Bokut noticed that Shirshov’s
method works for also associative algebras. Hence, for this reason, Shirshov’s theory for Lie algebras and
their universal enveloping algebras is called the Gröbner-Shirshov basis theory. There are some important
studies on this subject related to the groups (see, for instance, [7, 11]). We may finally refer the papers
[2, 3, 8, 14–17] for some other recent studies over Gröbner-Shirshov bases.

Algorithmic problems such as the word, conjugacy and isomorphism problems have played an important
role in group theory since the work of M. Dehn in early 1900’s. These problems are called decision problems
which ask for a yes or no answer to a specific question. Among these decision problems especially the
word problem has been studied widely in groups (see [1]). It is well known that the word problem for
finitely presented groups is not solvable in general; that is, given any two words obtained by generators
of the group, there may be no algorithm to decide whether these words represent the same element in this
group. Gröbner-Shirshov basis theory, which is the main theme of this paper, is one of the most effective
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and computational method to solve the word problem for a given algebraic structure not only for groups,
monoids and semigroups but also other important algebras.

In the study [5], the authors first defined the presentations for the braid groups associated with the
complex reflection groups G24 and G27 and they used VKCURVE that is a GAP package implementing Van
Kampen’s method to obtain these presentations. Moreover, they added some conjectures for the cases of
G29, G31, G33 and G34.

Shephard and Todd (1954) classified all finite complex reflection groups in [18]. Later, Cohen (1976)
gave a more systematic description for these groups in terms of root systems, vector graphs and root graphs
[12]. Recently, in [13], Howlett and Shi defined a simple root system (B,w) for such these groups which is
analogous to the corresponding concept for a Coxeter group.

It is well known that any Coxeter group can be presented by generators and relations. A finite complex
reflection group G can also be presented in a similar way (see, for example, [9]). But such a presentation
is not unique for G in general. Different presentations of G may reveal various different properties of G.
Then it is worth to define a congruence relation among the presentations of G (see [19]) and then to ask
that question “How many congruence classes of presentations are there for any irreducible finite complex
reflection group G?”. In [9], the authors solve this problem for the finite primitive complex reflection
groups G = {G7,G11,G15,G19,G27} and in [19], Shi studied the finite primitive complex reflection groups
G = {G12,G24,G25,G26} (in the notations of Shephard and Todd, 1954). So by considering the presentation
of G12 given in [19], our aim in this paper is to find Gröbner-Shirshov bases of thise important group.

The method of Gröbner-Shirshov bases which is the main theme of this paper gives a new algorithm
to get normal forms of elements of groups, and so a new algorithm for solving the word problem in these
groups. By considering this fact, our aim in this paper is to find Gröbner-Shirshov bases for the braid group
associated with the congruence classes of complex reflection group G12.

Throughout this paper, by considering the lengths of any two words, we will use the deg-lex ordering
if the lengths of these words are different or lexicographically ordering if otherwise. Additionally the
notations (i)∧ ( j) and (i)∨ ( j) will denote the intersection and inclusion compositions of relations (i) and ( j),
respectively.

2. Gröbner-Shirshov Bases and Composition-Diamond Lemma

Let K be a field and K〈X〉 be the free associative algebra over K generated by X. Denote X* the free
monoid generated by X, where the empty word is the identity denoted by 1. For a word w ∈ X*, we denote
the length of w by |w|. Suppose that X* is a well ordered set. Then every nonzero polynomial f ∈ K 〈X〉 has
the leading word f . If the coefficient of f in f is equal to 1, then f is called monic.

Let f and 1 be two monic polynomials in K〈X〉. We then have two compositions as follows:

• If w is a word such that w = f b = a1 for some a, b ∈ X* with | f | + |1| > |w|, then the polynomial
( f , 1)w = f b− a1 is called the intersection composition of f and 1with respect to w. The word w is called
an ambiguity of intersection.

• If w = f = a1b for some a, b ∈ X*, then the polynomial ( f , 1)w = f −a1b is called the inclusion composition
of f and 1with respect to w. The word w is called an ambiguity of inclusion.

If 1 is monic, f = a1b and α is the coefficient of the leading term f , then transformation f 7→ f − αa1b is
called elimination (ELW) of the leading word of 1 in f .

Let S ⊆ K 〈X〉 with each s ∈ S is monic. Then the composition ( f , 1)w is called trivial modulo (S,w) if
( f , 1)w =

∑
αiaisibi, where each αi ∈ K, ai, bi ∈ X*, si ∈ S and aisibi < w. If this is the case, then we write

( f , 1)w ≡ 0 mod(S,w).
We call the set S endowed with the well ordering< a Gröbner-Shirshov basis for K 〈X | S〉 if any composition

( f , 1)w of polynomials in S is trivial modulo S and corresponding w.
The following lemma was proved by Shirshov [20] for free Lie algebras with deg-lex ordering.
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Lemma 2.1 (Composition-Diamond Lemma). Let K be a field, A = K 〈X | S〉 = K〈X〉/Id(S) and < a monomial
ordering on X*, where Id(S) is the ideal of K〈X〉 generated by S.Then the following statements are equivalent:

1. S is a Gröbner-Shirshov basis.
2. f ∈ Id(S)⇒ f = asb for some s ∈ S and a, b ∈ X*.
3. Irr(S) = {u ∈ X*

| u , asb, s ∈ S, a, b ∈ X*
} is a basis for the algebra A = K 〈X | S〉.

If a subset S of K〈X〉 is not a Gröbner-Shirshov basis, then we can add to S all nontrivial compositions
of polynomials of S, and by continuing this process many times (maybe infinitely), we eventually obtain a
Gröbner-Shirshov basis Scomp. We should note that such a process is called the Shirshov algorithm.

3. Main Results

In this section, we would like to obtain normal form of elements of the braid group associated with the
congruence classes of complex reflection group G12 by using Gröbner-Shirshov basis theory. In [19], the
author has just obtained a presentation for G12 he did not give the structure of elements of the group G12.
On that respect the result given here is worth to study in Algebra. The presentation of the braid group
associated with the congruence classes of complex reflection group G12 is as follows:

Theorem 3.1 ([19]). The braid group associated with the congruence classes of complex reflection group G12 admits
the presentation〈

s, t,u; s2 = u2 = t2 = 1, suts = utsu, tsut = suts
〉
. (1)

Now we consider the monoid presentation of G12 given in (1). Since we have the relations s2 = u2 = t2 = 1
for the generators s,u, t, it can be easily seen that the monoid presentation is the same with the group
presentation of G12 given in (1). To obtain Gröbner-Shirshov basis of the group G12, let us consider an
ordering among the generators as t > u > s.

The main result of this paper is the following.

Theorem 3.2. A Gröbner-Shirshov basis of the braid group associated with the congruence classes of the complex
reflection group G12 consists of the following polynomials:

(1) s2
− 1, (2) u2

− 1, (3) t2
− 1, (4) utsu − suts,

(5) utst − stsu, (6) utus − stut, (7) ustu − stus, (8) usuts − tsu,
(9) ustsu − tst, (10) (ut)2u − (st)2s, (11) (us)2t − s(tu)2, (12) (us)2ut − (ts)2,
(13) (us)3

− (su)3, (14) u(st)2s − (tu)2, (15) us(ut)2
− (su)2tu, (16) tsut − suts,

(17) tuts − sutu, (18) tsus − usut, (19) tusu − sust, (20) tust − stus,
(21) tstu − usts, (22) (ts)2u − s(ut)2, (23) (ts)2t − (us)2u, (24) (tu)2t − (su)2s.

Proof. We need to prove that all compositions among relations (1)− (24) are trivial. We start with listing all
intersections compositions among relations. Actually we have the following ambiguities w:

(1) ∧ (1) : w = s3, (2) ∧ (2) : w = u3, (2) ∧ (4) : w = u2tsu,
(2) ∧ (5) : w = u2tst, (2) ∧ (6) : w = u2tus, (2) ∧ (7) : w = u2stu,
(2) ∧ (8) : w = u2suts, (2) ∧ (9) : w = u2stsu, (2) ∧ (10) : w = u2(tu)2,
(2) ∧ (11) : w = u2sust, (2) ∧ (12) : w = u2(su)2t, (2) ∧ (13) : w = u2(su)2s,
(2) ∧ (14) : w = u2(st)2s, (2) ∧ (15) : w = u2s(ut)2, (3) ∧ (3) : w = t3,
(3) ∧ (16) : w = t2sut, (3) ∧ (17) : w = t2uts, (3) ∧ (18) : w = t2sus,
(3) ∧ (19) : w = t2usu, (3) ∧ (20) : w = t2ust, (3) ∧ (21) : w = t2stu,
(3) ∧ (22) : w = t2stsu, (3) ∧ (23) : w = t2(st)2, (3) ∧ (24) : w = t2(ut)2,
(4) ∧ (2) : w = utsu2, (4) ∧ (4) : w = utsutsu, (4) ∧ (5) : w = (uts)2t,
(4) ∧ (6) : w = utsutus, (4) ∧ (7) : w = utsustu, (4) ∧ (8) : w = utsusuts,
(4) ∧ (9) : w = utsustsu, (4) ∧ (10) : w = uts(ut)2u, (4) ∧ (11) : w = uts(us)2t,
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(4) ∧ (12) : w = ut(su)3t, (4) ∧ (13) : w = ut(su)3s, (4) ∧ (14) : w = utsu(st)2s,
(4) ∧ (15) : w = ut(su)2tut, (4) ∧ (16) : w = utsut, (4) ∧ (18) : w = utsus,
(5) ∧ (3) : w = utst2, (5) ∧ (16) : w = utstsut, (5) ∧ (17) : w = utstuts,
(5) ∧ (18) : w = utstsus, (5) ∧ (19) : w = utstusu, (5) ∧ (20) : w = utstust,
(5) ∧ (21) : w = utststu, (5) ∧ (21) : w = utstu, (5) ∧ (22) : w = ut(st)2su,
(5) ∧ (22) : w = u(ts)2u, (5) ∧ (23) : w = ut(st)3, (5) ∧ (23) : w = u(ts)2t,
(5) ∧ (24) : w = utst(ut)2, (6) ∧ (1) : w = utus2, (6) ∧ (7) : w = utustu,
(6) ∧ (8) : w = utusuts, (6) ∧ (9) : w = utustsu, (6) ∧ (11) : w = ut(us)2t,
(6) ∧ (12) : w = ut(us)2ut, (6) ∧ (13) : w = ut(us)3, (6) ∧ (14) : w = utus(ts)2,
(6) ∧ (15) : w = utus(ut)2, (6) ∧ (19) : w = utusu, (6) ∧ (20) : w = utust,
(7) ∧ (2) : w = ustu2, (7) ∧ (4) : w = ustutsu, (7) ∧ (5) : w = ustutst,

(7) ∧ (6) : w = ustutus, (7) ∧ (7) : w = (ust)2u, (7) ∧ (8) : w = ustusuts,
(7) ∧ (9) : w = (ust)2su, (7) ∧ (10) : w = us(tu)3, (7) ∧ (11) : w = ust(us)2t,
(7) ∧ (12) : w = ust(us)2ut, (7) ∧ (13) : w = ust(us)3, (7) ∧ (14) : w = ustu(st)2s,
(7) ∧ (15) : w = ustus(ut)2, (7) ∧ (17) : w = ustuts, (7) ∧ (19) : w = ustusu,
(7) ∧ (20) : w = (ust)2, (7) ∧ (24) : w = ust(ut)2, (8) ∧ (1) : w = usuts2,
(8) ∧ (4) : w = usutsu, (8) ∧ (5) : w = usutst, (8) ∧ (16) : w = u(sut)2,
(8) ∧ (18) : w = usutsus, (8) ∧ (21) : w = usutstu, (8) ∧ (22) : w = usu(ts)2u,
(8) ∧ (23) : w = usut(st)2, (9) ∧ (2) : w = ustsu2, (9) ∧ (4) : w = ustsutsu,
(9) ∧ (5) : w = ustsutst, (9) ∧ (6) : w = ustsutus, (9) ∧ (7) : w = ustsustu,
(9) ∧ (8) : w = ust(su)2ts, (9) ∧ (9) : w = ustsustsu, (9) ∧ (10) : w = ustsu(tu)2,
(9) ∧ (11) : w = ust(su)2st, (9) ∧ (12) : w = ust(su)3t, (9) ∧ (13) : w = ust(su)3s,

(9) ∧ (14) : w = ustsu(st)2s, (9) ∧ (15) : w = ustsus(ut)2, (9) ∧ (16) : w = ustsut,
(9) ∧ (18) : w = ustsus, (10) ∧ (2) : w = (ut)2u2, (10) ∧ (4) : w = (ut)3su,
(10) ∧ (5) : w = (ut)3st, (10) ∧ (6) : w = (ut)3us, (10) ∧ (6) : w = (ut)2us,
(10) ∧ (7) : w = (ut)2ustu, (10) ∧ (8) : w = (ut)2usuts, (10) ∧ (9) : w = (ut)2ustsu,
(10) ∧ (10) : w = (ut)4u, (10) ∧ (10) : w = (ut)3u, (10) ∧ (11) : w = (ut)2(us)2t,

(10) ∧ (12) : w = (ut)2(us)2ut, (10) ∧ (13) : w = (ut)2(us)3, (10) ∧ (14) : w = (ut)2us(ts)2,
(10) ∧ (15) : w = (ut)2us(ut)2, (10) ∧ (17) : w = (ut)3s, (10) ∧ (19) : w = (ut)2usu,
(10) ∧ (20) : w = (ut)2ust, (10) ∧ (24) : w = (ut)4, (10) ∧ (24) : w = (ut)3,
(11) ∧ (3) : w = (us)2t2, (11) ∧ (7) : w = (us)2tu, (11) ∧ (9) : w = (us)2tsu,
(11) ∧ (14) : w = (us)2(ts)2, (11) ∧ (16) : w = (us)2tsut, (11) ∧ (17) : w = (us)2tuts,
(11) ∧ (18) : w = (us)2tsus, (11) ∧ (19) : w = (us)2tusu, (11) ∧ (20) : w = (us)2tust,
(11) ∧ (21) : w = (us)2tstu, (11) ∧ (22) : w = (us)2(ts)2u, (11) ∧ (23) : w = (us)2(ts)2t,
(11) ∧ (24) : w = (us)2(tu)2t, (12) ∧ (3) : w = (us)2ut2, (12) ∧ (4) : w = (us)2utsu,
(12) ∧ (5) : w = (us)2utst, (12) ∧ (6) : w = (us)2utus, (12) ∧ (8) : w = (us)2uts,

(12) ∧ (10) : w = (us)2(ut)2u, (12) ∧ (15) : w = (us)2(ut)2, (12) ∧ (16) : w = (us)2utsut,
(12) ∧ (17) : w = (us)2(ut)2s, (12) ∧ (18) : w = (us)2utsus, (12) ∧ (19) : w = (us)2utusu,
(12) ∧ (20) : w = (us)2utust, (12) ∧ (21) : w = (us)2utstu, (12) ∧ (22) : w = (us)2utstsu,
(12) ∧ (23) : w = (us)2ut(st)2, (12) ∧ (24) : w = (us)2(ut)3, (13) ∧ (1) : w = (us)3s,
(13) ∧ (7) : w = (us)3tu, (13) ∧ (8) : w = (us)3uts, (13) ∧ (9) : w = (us)3tsu,
(13) ∧ (11) : w = (us)4t, (13) ∧ (11) : w = (us)3t, (13) ∧ (12) : w = (us)4ut,
(13) ∧ (13) : w = (us)5, (13) ∧ (13) : w = (us)4, (13) ∧ (14) : w = (us)3(ts)2,
(13) ∧ (15) : w = (us)3(ut)2, (14) ∧ (1) : w = u(st)2s2, (14) ∧ (16) : w = u(st)2sut,
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(14) ∧ (18) : w = u(st)2sus, (14) ∧ (21) : w = u(st)3u, (14) ∧ (22) : w = u(st)3su,
(14) ∧ (22) : w = u(st)2su, (14) ∧ (23) : w = u(st)4, (14) ∧ (23) : w = u(st)3,
(15) ∧ (3) : w = us(ut)2t, (15) ∧ (4) : w = us(ut)2su, (15) ∧ (5) : w = us(ut)2st,
(15) ∧ (6) : w = us(ut)2us, (15) ∧ (10) : w = us(ut)3u, (15) ∧ (10) : w = us(ut)2u,
(15) ∧ (16) : w = us(ut)2sut, (15) ∧ (17) : w = us(ut)3s, (15) ∧ (17) : w = us(ut)2s,
(15) ∧ (18) : w = us(ut)2sus, (15) ∧ (19) : w = us(ut)2usu, (15) ∧ (20) : w = us(ut)2ust,
(15) ∧ (21) : w = us(ut)2stu, (15) ∧ (22) : w = us(ut)2stsu, (15) ∧ (23) : w = us(ut)2(st)2,
(15) ∧ (24) : w = us(ut)4, (15) ∧ (24) : w = us(ut)3, (16) ∧ (3) : w = tsut2,
(16) ∧ (4) : w = tsutsu, (16) ∧ (5) : w = tsutst, (16) ∧ (6) : w = tsutus,

(16) ∧ (10) : w = ts(ut)2u, (16) ∧ (16) : w = (tsut)2, (16) ∧ (17) : w = ts(ut)2s,
(16) ∧ (18) : w = tsutsus, (16) ∧ (19) : w = tsutusu, (16) ∧ (20) : w = tsutust,
(16) ∧ (21) : w = tsutstu, (16) ∧ (22) : w = tsutstsu, (16) ∧ (23) : w = tsu(ts)2t,
(16) ∧ (24) : w = ts(ut)3, (17) ∧ (1) : w = tuts2, (17) ∧ (4) : w = tutsu,
(17) ∧ (5) : w = tutst, (17) ∧ (16) : w = tutsut, (17) ∧ (18) : w = tutsus,
(17) ∧ (21) : w = tutstu, (17) ∧ (22) : w = tu(ts)2u, (17) ∧ (23) : w = tut(st)2,
(18) ∧ (1) : w = tsus2, (18) ∧ (7) : w = tsustu, (18) ∧ (8) : w = t(su)2ts,
(18) ∧ (9) : w = tsustsu, (18) ∧ (11) : w = t(su)2st, (18) ∧ (12) : w = t(su)3t,
(18) ∧ (13) : w = t(su)3s, (18) ∧ (14) : w = tsu(st)2s, (18) ∧ (15) : w = t(su)2tut,
(19) ∧ (2) : w = tusu2, (19) ∧ (4) : w = tusutsu, (19) ∧ (5) : w = tusutst,
(19) ∧ (6) : w = tusutus, (19) ∧ (7) : w = tusustu, (19) ∧ (8) : w = tu(su)2ts,
(19) ∧ (8) : w = tusuts, (19) ∧ (9) : w = t(us)2tsu, (19) ∧ (10) : w = tusu(tu)2,
(19) ∧ (11) : w = t(us)3t, (19) ∧ (11) : w = t(us)2t, (19) ∧ (12) : w = t(us)3ut,
(19) ∧ (12) : w = t(us)2ut, (19) ∧ (13) : w = t(us)4, (19) ∧ (13) : w = t(us)3,
(19) ∧ (14) : w = t(us)2(ts)2, (19) ∧ (15) : w = t(us)2(ut)2, (19) ∧ (15) : w = tus(ut)2,

(20) ∧ (3) : w = tust2, (20) ∧ (7) : w = tustu, (20) ∧ (9) : w = tustsu,
(20) ∧ (14) : w = tu(st)2s, (20) ∧ (16) : w = tustsut, (20) ∧ (17) : w = tustuts,
(20) ∧ (18) : w = tustsus, (20) ∧ (19) : w = (tus)2u, (20) ∧ (20) : w = t(ust)2,
(20) ∧ (21) : w = tu(st)2u, (20) ∧ (22) : w = tu(st)2su, (20) ∧ (23) : w = tu(st)3,
(20) ∧ (24) : w = tus(tu)2t, (21) ∧ (2) : w = tstu2, (21) ∧ (4) : w = tstutsu,
(21) ∧ (5) : w = tstutst, (21) ∧ (6) : w = ts(tu)2s, (21) ∧ (7) : w = tstustu,
(21) ∧ (8) : w = tstusuts, (21) ∧ (9) : w = tstustsu, (21) ∧ (10) : w = ts(tu)3,
(21) ∧ (11) : w = tst(us)2t, (21) ∧ (12) : w = tst(us)2ut, (21) ∧ (13) : w = tst(us)3,
(21) ∧ (14) : w = tstu(st)2s, (21) ∧ (15) : w = tstus(ut)2, (21) ∧ (17) : w = tstuts,
(21) ∧ (20) : w = tstust, (21) ∧ (24) : w = tst(ut)2, (22) ∧ (2) : w = (ts)2u2,

(22) ∧ (4) : w = (ts)2utsu, (22) ∧ (5) : w = (ts)2utst,
(22) ∧ (6) : w = (ts)2utus, (22) ∧ (7) : w = (ts)2ustu,
(22) ∧ (8) : w = (ts)2usuts, (22) ∧ (9) : w = (ts)2ustsu,
(22) ∧ (10) : w = (ts)2(ut)2u, (22) ∧ (11) : w = (ts)2(us)2t,
(22) ∧ (12) : w = (ts)2(us)2ut, (22) ∧ (13) : w = (ts)2(us)3,
(22) ∧ (14) : w = (ts)2us(ts)2, (22) ∧ (15) : w = (ts)2us(ut)2,
(22) ∧ (16) : w = (ts)2ut, (22) ∧ (18) : w = (ts)2us,
(23) ∧ (3) : w = (ts)2t2, (23) ∧ (16) : w = (ts)3ut,
(23) ∧ (17) : w = (ts)2tuts, (23) ∧ (18) : w = (ts)3us,
(23) ∧ (19) : w = (ts)2tusu, (23) ∧ (20) : w = (ts)2tust,
(23) ∧ (21) : w = (ts)3tu,
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(23) ∧ (22) : w = (ts)4u, (23) ∧ (23) : w = (ts)4t, (23) ∧ (23) : w = (ts)3t,
(23) ∧ (24) : w = (ts)2(tu)2t, (23) ∧ (21) : w = (ts)2tu, (23) ∧ (22) : w = (ts)3u,
(24) ∧ (3) : w = (tu)2t2, (24) ∧ (4) : w = (tu)2tsu, (24) ∧ (5) : w = (tu)2tst,
(24) ∧ (6) : w = (tu)3s, (24) ∧ (10) : w = (tu)4, (24) ∧ (10) : w = (tu)3,
(24) ∧ (16) : w = (tu)2tsut, (24) ∧ (17) : w = (tu)3ts, (24) ∧ (17) : w = (tu)2ts,
(24) ∧ (18) : w = (tu)2tsus, (24) ∧ (19) : w = (tu)3su, (24) ∧ (20) : w = (tu)3st,
(24) ∧ (21) : w = (tu)2tstu, (24) ∧ (22) : w = (tu)2(ts)2u, (24) ∧ (23) : w = (tu)2(ts)2t,
(24) ∧ (24) : w = (tu)4t, (24) ∧ (24) : w = (tu)3t.

All above intersection compositions are trivial. Let us check some of them as follows:

(13) ∧ (1) : w = (us)3s,
( f , 1)w = ((us)3

− (su)3)s − (us)2(s2
− 1)

= (us)3s − (su)3s − (us)3s + (us)2u
= (us)2u − (su)3s
≡ (us)2u − s2(us)2u ≡ (us)2u − (us)2u ≡ 0.

(16) ∧ (18) : w = tsutsus,
( f , 1)w = (tsut − suts)sus − tsu(tsus − usut)

= tsutsus − suts2us − tsutsus + tsu2sut
≡ tut − sutus ≡ tut − s2tut ≡ tut − tut ≡ 0.

(24) ∧ (10) : w = (tu)3,

( f , 1)w = ((tu)2t − (su)2s)u − t((ut)2u − (st)2s)
= (tu)3

− (su)3
− (tu)3 + (ts)3

= (ts)3
− (su)3

≡ (us)3
− (su)3

≡ (su)3
− (su)3

≡ 0.

(24) ∧ (4) : w = (ts)2utsu,
( f , 1)w = ((ts)2u − s(ut)2)tsu − (ts)2(utsu − suts)

= (ts)2utsu − sutut2su − (ts)2utsu + tsts2uts
≡ tstuts − sutusu ≡ u(st)2s − s2(tu)2

≡ (tu)2
− (tu)2

≡ 0.

It remains to check including compositions of relations (1) − (24). But it is seen that there are no any
compositions of this type.

Hence the result follows.

Now let R12 be the set of relations (1) − (24) and C(u) be a normal form of a word u ∈ G12. By using the
Composition-Diamond Lemma 2.1 and Theorem 3.2, the normal form for the braid group associated with
the congruence classes of complex reflection group G12 can be given as follows:

Corollary 3.3. C(u) has a form

wsε1 w′uε2 w′′tε3 w′′′ (0 ≤ ε1, ε2, ε3 < 2),

where w,w′,w′′ and w′′′ are R12−reduced words in G12.

By considering Corollary 3.3, we have the following other main result of this paper.

Theorem 3.4. The word problem for the braid group associated with the congruence classes of complex reflection
group G12 is solvable.
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Remark 3.5. The Gröbner-Shirshov basis is one of the best methods to obtain the solvability of the word problem since
it can be adapted to some software based algorithms. Specially it has a good advantage in which the old algorithms
cannot be applied to obtain solvable groups, monoids or some other algebraic structures.
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[17] C. Kocapinar, E. G. Karpuz, F. Ates, A. S. Cevik, Gröbner-Shirshov bases of the generalized Bruck-Reilly ∗-extension, Algebra

Colloquium 19-1 (2012) 813-820.
[18] G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954) 274-304.
[19] J. Y. Shi, Simple root systems and presentations for certain complex reflection groups, Communications in Algebra 33 (2005)

1765-1783.
[20] A. I. Shirshov, Some algorithmic problems for Lie algebras, Siberian Math. J. 3 (1962) 292-296.


