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On Radical Formula in Modules over Noncommutative Rings
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Abstract. This paper examines the radical formula in noncommutative case and for this purpose, a
generalization of prime submodule is defined. It is proved that there is a direct connection between one-
sided prime ideals and one-sided prime submodules. Moreover the connections between the intersection
of all one-sided prime submodules and strongly nilpotent elements of a module are studied.

1. Introduction

As it is well known, prime ideals and prime submodules form an important part to characterize rings
and modules and have been studied for long time by many authors ([5], [9], [13], [17]). It is well known
that the set of nilpotent elements of a commutative ring R with unity forms an ideal which is equal to the
intersection of all the prime ideals. This notion has been generalized in [5] to modules.
Let N be a proper submodule of an R-module M. The radical of N in M, denoted by radM(N), is defined to
be the intersection of all prime submodules of M containing N. The envelope submodule REM(N) of N in
M is a submodule of M generated by the set

EM(N) = {rm : r ∈ R and m ∈M such that rnm ∈ N f or some n ∈N}.

Then N is said to satisfy the radical formula in M if radM(N) = REM(N). By using this concept, some useful
characterizations for Dedekind domains and modules were proved but unfortunately, in noncommutative
case, there are not enough useful results about the radical formula and radical submodule.

Let R be a ring. Let M be an R-module and let N be a submodule of M.
i) A set η(a) = {a, a1, ....} is said to be an sequence of an element a of R if for all i ∈ N, ai+1 ∈ aiRai and

a0 = a.
ii) Let a ∈ R, m ∈ M. Then an element am of M is said to be a strongly nilpotent on N if for all subsets

K = {ai ∈ R : a0 = a and ai+1 ∈ aiRai, i ∈ N} of R, 0 ∈ N ∩ Km. We use the notation WM(N) to denote the
submodule generated by the strongly nilpotent elements on N. Now it is clear that WM(N) = REM(N) when
R is a commutative ring.

In [14], to examine the radical formula in noncommutative case, a generalization of prime ideal was
defined. Let P be a left ideal of R. Following [14], P is said to be a one-sided prime ideal (left O-prime ideal)
if for any left ideals I, J such that PJ ⊆ P and IJ ⊆ P, either I ⊆ P or J ⊆ P holds. It is clear that every maximal
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O. Öneş / Filomat 34:2 (2020), 443–449 444

left ideal is one-sided prime ideal. In this sense, the class of one-sided prime ideals is different from other
known classes.

In commutative ring theory, there are so much useful results about the radical formula. In particular,
it plays important role in the characterization of Dedekind domain. Unfortunately, in noncommutative
case, there are not enough useful results about the radical formula and radical submodule. In this paper,
we examine the radical formula in noncommutative case and for this purpose, we firstly define a new
submodule class which are not only the module version of one-sided prime ideal but also a generalization
of prime submodules called one-sided prime submodule and so our main objective is to bring a new
perspective for the prime radical and radical formula in noncommutative ring theory. Then we investigate
the relations between the intersection of all one-sided prime submodules and strongly nilpotent elements
of a module. On the other hand as is well-known, the property that when a submodule P becomes prime
in case (P : M) is prime ideal, which is known not to hold in general, is of central importance in the
prime module theory, but it is proved that there is a direct connection between one-sided prime ideals and
one-sided prime submodules.

Let P be a submodule of a left R-module M. Then P is said to be a one-sided prime submodule of M
if for all a, b ∈ R and m ∈ M such that aRbm ⊆ P and (P : m)Rb ⊆ (P : m), either am ∈ P or bm ∈ P holds.
To show the difference of two classes, we give an example of a one-sided prime submodule which is not a
prime submodule of a module M. We also define the O-radical of a submodule N as the intersection of all
one-sided prime submodules of M containing N, denoted by O-radM(N). Let M be a finitely generated left
R-module and let K = {ai ∈ R : a0 = a and ai+1 ∈ aiRai, i ∈ N} be a set of R. If there is a submodule N of M
such that N∩Km = ∅, we verify that there is a one-sided prime submodule P of left R-module M containing
N but not am. ( i.e. P ∩ Km = ∅ ). By using this result, we characterize elements of O-radM(N) under some
conditions. Finally, we prove that any O-radical submodule N in M is the intersection of a finite number of
one-sided prime submodules if M satisfies the ascending chain condition on O-radical submodules.

2. One-Sided Prime Submodule

Throughout this paper, all rings will be associative rings with identity and all modules will be unital
left modules unless otherwise stated.

In this section, we start with the definition of one-sided prime submodule of an R-module M and
examine some of its properties.

Definition 2.1. Let M be an R-module. A submodule P of M is called a one-sided prime submodule if for all a,b ∈ R
and m ∈M such that (P : m)Rb ⊆ (P : m) and aRbm ⊆ P, either am ∈ P or bm ∈ P holds.

It is clear that every prime submodule of M is one-sided prime. If I is an ideal of R such that I = (I : m)
for all m ∈ R− I then I is a one-sided prime submodule of RR if and only if I is a one-sided prime ideal of R.
On the other hand, the set of one-sided prime submodule is different from the set of prime submodule.

We focus on the set Ωm(P) = (P : m) = {r ∈ R : rm ∈ P} for m ∈ M. Clearly, it is a left ideal of R and
Ωm(P) = R if and only if m ∈ P. We give a basic property related to this set as follows:

Lemma 2.2. Let M and M∗be R-modules and let P be a submodule of M. If f : M → M∗ is an R-module
homomorphism, then we have Ωm(P) ⊆ Ω f (m)( f (P)) for some m ∈ M. The converse of this inclusion is true when
Ker f ⊆ P.

Proof. Let r be in Ωm(P). Then rm ∈ P and so f (rm) = r f (m) ∈ f (P). Thus we have r ∈ Ω f (m)( f (P)).
Let r be in Ω f (m)( f (P)). Then r f (m) = f (rm) ∈ f (P). There exists an element p ∈ P such that f (rm) = f (p)

and so f (rm − p) = 0. Thus we have rm − p ∈ Ker f . Since Ker f ⊆ P, it follows rm ∈ P. Consequently,
r ∈ Ωm(P).

The following lemma is also an example for one-sided prime submodules, which is not prime submodule.

Lemma 2.3. Let R be a domain, M = R ⊕ R be an R-module and 0 , P a prime ideal of R. Then N = 0 ⊕ P is a
one-sided prime submodule of M but not prime submodule.
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Proof. Let r be in P and m = (0, 1) be in M such that rRm ⊆ N. It is clear that m < N and rM * N. Thus N is
not a prime submodule of M.

Now we show that N is a one-sided prime submodule of M. Let x,y,a and b be in R such that xRy(a, b) ⊆ N
and Ω(a,b)(N)Ry ⊆ Ω(a,b)(N). Then xtya = 0 and xtyb ∈ P for all t ∈ R. We have the situations as follows.

i) If x = 0, then x(a, b) ∈ N.
ii) If y = 0, then y(a, b) ∈ N.
iii) If both x and y are not zero then a = 0 since R is a prime ring and xRyb ⊆ P. Since P is a prime ideal

of R, x ∈ P or yb ∈ P. If x ∈ P, then x(0, b) ∈ N and if yb ∈ P, then y(0, b) ∈ N. Thus N is a one-sided prime
submodule of M.

Let M be a module over a commutative ring and P be a submodule of M. The theorem stating that P is
a prime submodule of M if and only if M/P is a torsion-free R/(P : M)-module and (P : M) is a prime ideal
of R is very useful to characterize the module. It is also well known that P need not be a prime submodule
of M while (P : M) is a prime ideal of R. Hence some papers deal with the problem that when a submodule
P has the property of being prime in case (P : M) is a prime ideal.

The following theorem shows that a similar property holds for one-sided prime submodules.

Theorem 2.4. Let M be an R-module and P a submodule of M. Then P is a one-sided prime submodule of M if and
only if Ωm(P) is a one-sided prime ideal of R for m ∈M − P.

Proof. Let P be a one-sided prime submodule. Let aRb ⊆ Ωm(P) for a ∈ R and b ∈ R − Ωm(P) such that
Ωm(P)Rb ⊆ Ωm(P). Then aRbm ⊆ P and so a ∈ Ωm(P).

Let Ωm(P) be a one-sided prime ideal. Let aRbm ⊆ P for a ∈ R and b ∈ R −Ωm(P) such that Ωm(P)Rb ⊆
Ωm(P). Then aRb ⊆ Ωm(P) and Ωm(P)Rb ⊆ Ωm(P). Since Ωm(P) is a one-sided prime ideal, am ∈ P.

Proposition 2.5. Let M and M∗ be R-modules,ϕ : M→M∗ an R-epimorphism and Kerϕ ⊆ P. Then P is a one-sided
prime submodule of M if and only if ϕ(P) is a one-sided prime submodule of M∗.

Proof. Let a, b ∈ R and ϕ(m) ∈M∗ such that aRbϕ(m) ⊆ ϕ(P) and
Ωϕ(m)(ϕ(P))Rb ⊆ Ωϕ(m)(ϕ(P)). Since ϕ(aRbm) ⊆ ϕ(P) and Kerϕ ⊆ P, it follows that aRbm ⊆ P and also
Ωm(P)Rb ⊆ Ωm(P). By the hypothesis, we get that a ∈ Ωm(P) or b ∈ Ωm(P). Thus either ϕ(am) ∈ ϕ(P) or
ϕ(bm) ∈ ϕ(P) and so ϕ(P) is a one-sided prime submodule of M∗.

Conversely, let ϕ(P) be a one-sided prime submodule of M∗. Let a, b ∈ R and m ∈M such that aRbm ⊆ P
and Ωm(P)Rb ⊆ Ωm(P). Thus aRbϕ(m) ⊆ ϕ(P) and Ωϕ(m)(ϕ(P))Rb ⊆ Ωϕ(m)(ϕ(P)). Because ϕ(P) is a one-sided
prime submodule, ϕ(am) ∈ ϕ(P) or ϕ(bm) ∈ ϕ(P). Since Kerϕ ⊆ P, either am ∈ P or bm ∈ P.

Corollary 2.6. Let M be an R-module. Then P is a one-sided prime submodule of M if and only if P/N is a one-sided
prime submodule of an R-module M/N for all N ⊆ P ⊆M.

3. Radical Formula

In this section, we define the O-radical submodule of M and focus on the relationships between sub-
modules generated by the strongly nilpotent elements and O-radical submodules.

Definition 3.1. Let N be a submodule of an R-module M. Then O-radical of N is defined as intersection one-sided
prime submodules of M containing N, denoted by O-radM(N).

In particular, if O-radM(N) = N = WM(N) then N is said to be an O-radical submodule of M.

Theorem 3.2. Let M be a finitely generated R-module and let N, L be submodules of M. Then O-radM(N) + O-
radM(L) = M if and only if N + L = M.
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Proof. Suppose that O-radM(N) + O-radM(L) = M and N + L , M. Thus, there exists a maximal submodule
T of M such that N + L ⊆ T. Since T is a one-sided prime submodule of M, we have O-radM(N) ⊆ T and
O-radM(L) ⊆ T. Then

O-radM(N) + O-radM(L) ⊆ T.

This is a contradiction. Then N + L = M.
Since N ⊆ O-radM(N), L ⊆ O-radM(L) and N + L = M , it follows that

O-radM(N) + O-radM(L) = M.

Let P be a submodule of an R-module M and let K be a multiplicative set of R. The module M is said to
satisfy the condition (∗) if (P + Ran) ∩ Km , ∅ implies ((P : M) + Ra) ∩ K , ∅ for any a ∈ R and n,m ∈M.

For the rest of this paper, all modules will be assumed to satisfy the condition (∗).

Proposition 3.3. Let N be a submodule of a finitely generated R-module M and let K be a multiplicative set of R
such that N ∩ Km = ∅ for any m ∈ M. Then there is a one-sided prime submodule P of M containing N such that
P ∩ Km = ∅.

Proof. Consider the set

Ψ = {L : L ∩ Km = ∅ , N ⊆ L ≤M}.

Then Ψ is a partially ordered set with the inclusion property of set and we also observe that L∩Km = ∅
implies (L : M) ∩ K = ∅ for some submodule L of M. Now take a chain Λ of Ψ. Then A = ∪Ai∈ΛAi and so
A ∈ Ψ. By Zorn’s lemma, there is a maximal element P in the set Ψ.

Assume that n ∈ M − P, a ∈ R −Ωn(P), Ωn(P)Rb ⊆ Ωn(P) for b ∈ R −Ωn(P). We prove that aRbn is not in
P. Since P is maximal element of Ψ, it follows that both ((P : M) + Ra)∩K and (P + Rbn)∩Km are not empty.
Let l ∈ ((P : M) + Ra) ∩ K and km ∈ (P + Rbn) ∩ Km. Hence l = q + da, km = p + tbn for some q ∈ (P : M), t,
d ∈ R, k ∈ K and p ∈ P. Therefore, lk ∈ K and so lkm = (q + da)(p + tbn) = qp + qtbn + dap + datbn ∈ Km. Since
qp + qtbn + dap ∈ P and P ∩ Km = ∅, we get that dactbn < P and so aRbn is not in P.

Proposition 3.4. Let M be a finitely generated R-module, K = {ai ∈ R : a0 = a and ai+1 ∈ aiRai, i ∈N} be a set of R
and N a submodule of M such that N∩Km = ∅ for m ∈M. Then there is a one-sided prime submodule P of R-module
M containing N but not am. ( i.e. P ∩ Km = ∅ )

Proof. Consider the set

Ψ = {L : L ∩ Km = ∅, N ⊆ L ≤M}.

Let Λ be a chain of Ψ. Then A = ∪Ai∈ΛAi and so A ∈ Ψ. Then by Zorn’s Lemma, there is a maximal
element P of Ψ. Take r1, r2 ∈ R − (P : M) and n ∈ M − P such that Ωn(P)Rr2 ⊆ Ωn(P). By the maximality,
choose elements kam ∈ (P+Rr2n)∩Km , ∅ and kb ∈ [(P : M) + Rr1]∩K , ∅. Hence kb = q+dr1, kam = p+ tr2n
for some q ∈ (P : M), t, d ∈ R, k ∈ K and p ∈ P. Assume that a ≥ b. Therefore, there exists the elements x, y
such that ka+1 = xkbyka ∈ K and so

ka+1m = xkbykam = x(q + dr1)y(p + tr2n)
= xqyp + xqytr2n + xdr1yp + xdr1ytr2n ∈ Km

Since xqyp+xqytr2n+xdr1yp ∈ P and P∩Km = ∅, we get that xdr1ytr2n < P. This means that P is a one-sided
prime submodule of M.

Proposition 3.5. Let N be a submodule of an R-module M. If either O-radM(N) or M is cyclic, then O-radM(N) ⊆
WM(N).



O. Öneş / Filomat 34:2 (2020), 443–449 447

Proof. Let O-radM(N) = Rm for m ∈ M. Let am be in O-radM(N) with a ∈ R but not a strongly nilpotent
element on N. There is a sequence K = {ai ∈ R : a0 = a and ai+1 ∈ aiRai, i ∈ N} such that N ∩ Km = ∅.
Then there is a one-sided prime submodule P of M containing N but not am. This is a contradiction with
am ∈ O-radM(N).

Let M = Rm where m ∈ M. Let am be in O-radM(N) with a ∈ R but not a strongly nilpotent element
on N. There is a sequence K = {ai ∈ R − {0R} : a0 = a and ai+1 ∈ aiRai, i ∈ N} such that N ∩ Km = ∅.
Then there is a one-sided prime submodule P of M containing N but not am. This is a contradiction with
am ∈ O-radM(N).

Theorem 3.6. Let N be a submodule of a module M. Then WM(N) = O-radM(N) if either O-radM(N) or M is cyclic
and one of the following conditions holds;

1) axam < P whenever xam < P where P is a one-sided prime submodule.
2) Every one-sided prime submodule P is a maximal submodule.

Proof. It is enough to show that WM(N) ⊆ O-radM(N).
Let am ∈WM(N) but not in O-radM(N). Then there is a one-sided prime submodule P of M containing N

such that am is not in P. For the one-sided prime submodule P, we have two cases;
a) Let Ωm(P)Ra ⊆ Ωm(P). Since aRam is not in P, there is a non zero element a1 = at0a ∈ aRa such that

a1m < P. Then Ωm(P)Ra1 ⊆ Ωm(P)Ra ⊆ Ωm(P) and so we get that a1Ra1m is not in P, there is a non zero
element a2 = a1t1a1 ∈ a1Ra1 such that a2m < P. By using this method, we get the sequence η(a) of a is the set
η(a) = {ai : ai+1 ∈ aiRai and a0 = a, i ∈ N} but η(a)m does not contain any element of P since for all i ∈ N,
aim < P. Therefore am is not a strongly nilpotent element of M on N, a contradiction.

b) Let Ωm(P)Ra * Ωm(P).
i) Let the condition in (1) hold. There are elements p0 ∈ Ωm(P) and x ∈ R such that

(
p0x
)

am < P and so
choose a1m = a

(
p0x
)

am < P by the condition (1).
ii) Let the condition in (2) hold. Then P is a maximal submodule of M and P + Ram = M. Hence

aM = aP + aRam for a ∈ R and so am − ap = alam < P. Now choose a1m = atam.
Since Ωm(P)PRa1 * Ωm(P), with the method in (b), we can take a2m = a1ta1m < P, where t ∈ R.
Therefore, we have the sequence η(a) of a the set η(a) = {a0, a1, a2, ... : ai+1 ∈ aiRai and a0 = a, i ∈ N} but

η(a)m does not contain any element of P since for all i ∈N, aim < P. Therefore am is not a strongly nilpotent
element of M on N.

Theorem 3.7. Let R be a left Noetherian ring and let P be a submodule of an R-module M. Suppose that P is maximal
among all submodules in M that are not finitely generated. Then P is a one-sided prime submodule of M.

Proof. Suppose that Ωm(P) , R, a ∈ R −Ωm(P) and b ∈ R −Ωm(P) such that aRbm ⊆ P and Ωm(P)Rb ⊆ Ωm(P)
for m ∈ M. Then P + Rbm is different from P and P + Rbm is finitely generated. Let {p1 + r1bm, ..., pt + rtbm}
be a generating set for P + Rbm where pi ∈ P and ri ∈ R.

Define the set K = {y ∈ R : ybm ∈ P}. Then clearly, K is a finitely generated left ideal because R is a left
Noetherian ring.

Take an element x in P $ P + Rbm.
x = u1(p1 + r1bm) + ... + ut(pt + rtbm) for some ui ∈ R and so

x − (u1p1 + ... + utpt) = (u1r1 + ... + utrt)bm

Hence (u1r1 + ... + utrt) ∈ K. This means that x ∈ Rp1 + ... + Rpt + Kbm and from otherside, we have
Rp1 + ... + Rpt + Kbm ⊆ P. Then P = Rp1 + ... + Rpt + K which implies that P is finitely generated, a
contradiction.

It is well known that if every prime submodule in a module M is finitely generated, then M satisfies
ascending chain condition on submodules. Since the class of one-sided prime submodule is different from
the class of prime submodule in a module M, we get the result as follows:
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Corollary 3.8. Let R be a left Noetherian ring and let M be an R-module. If every one-sided prime submodule in a
module M is finitely generated, then M satisfies ascending chain condition on submodules.

Proof. Let every one-sided prime submodule in a module M be finitely generated. Define the set

Ω = {Ni : Ni is a submodule of M but not finitely generated}.

Ω , �, J = ∪Ni is not finitely generated submodule in M and J is upper bound in the set Ω. By Zorn’s
Lemma, there is a maximal element P in the set Ω. By Theorem 3.7, P is a one-sided prime submodule of
M and then M satisfies ascending chain condition on submodules.

The following theorem may be regarded as a generalization of Kaplansky’s Theorem for one-sided
prime submodules.

Theorem 3.9. Let M be a cyclic R-module satisfying the ascending chain condition on O-radical submodules. Then
any O-radical submodule in M is the intersection of a finite number of one-sided prime submodules. In particular any
submodule in M is the intersection of a finite number of one-sided prime submodules.

Proof. Let M = Rm and take an O-radical submodule P such that P = Ωm(P)m. If not, let a submodule
P be maximal among these for which the assertion fails. Then it is clear that P is not a one-sided prime
submodule. Take a ∈ R−Ωm(P) and b ∈ R−Ωm(P) such that aRbm ⊆ P and Ωm(P)Rb ⊆ Ωm(P). Let J be a left
O-radical ideal of Ωm(P) + Ra and K an O-radical submodule of P + Rbm. Since P is maximal, Jm and K are
each expressible as a finite intersection of one-sided prime submodules. We reach a contradiction proving
that P = Jm ∩ K.

Let x ∈ Jm ∩ K. By Proposition 3.5, x is in WM(Jm) ∩ WM(K) and so x is a strongly nilpotent on
Jm = (Ωm(P) + Ra)m and K = P + Rbm. If T = {ai : ai+1 ∈ aiRai and a0 = a, i ∈ N}, then there exits
anm ∈ ((Ωm(P) + Ra)m) ∩ Tm and so atm ∈ ((Ωm(P) + Ra)m) ∩ Tm for all t ≥ n. Similarly, there exists amm ∈
(P+Rbm)∩Tm and so avm ∈ (P+Rbm)∩Tm for all v ≥ m for some n, m ∈N. Now assume that n ≤ m. Then we
observe that am+1 = lankam ∈ T for some l, k ∈ R and so am+1m in Tm∩((Ωm(P)+Ra)(P+Rbm))) ⊆ Tm∩P. Since
P is O-radical submodule, am+1m ∈ WM(P) = P = radM(P). The WM(P) = WR(P : m)m = radR(P : m)m with
[15] and so x is in P, which means that P = Jm ∩ K. This is a contradiction with our assumption. Therefore,
any O-radical submodule in M is the intersection of a finite number of one-sided prime submodules.
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[8] M. Alkan and Y. Tıraş, Projective modules and prime submodules, Czechoslovak Math. J. 56 (2006) 601-611.
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