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Construction of Fuzzy Topology by Using Fuzzy Metric
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Abstract. In this work, we construct a stratified fuzzy topological space induced by a fuzzy metric in the
sense of Kramosil and Michalek. Our special interests are to investigate bases for such spaces and to study
continuity and compactness.

1. Introduction and Preliminaries

1.1. Fuzzy Metric Spaces
In this subsection, we recall the definition of fuzzy metric space and its basic properties. A fuzzy metric

which introduced by Kramosil and Michalek [10] is a certain kind of mapping that associates two points
with a value in [0, 1], which intuitively means “the degree of nearness between these points according to a
parameter t”.

Definition 1.1. [10] A fuzzy metric space is an ordered triple (X,M, ∗) such that X is a (non-empty)set, ∗ is a
continuous t-norm and M : X × X × [0,∞) → [0, 1] is a map satisfying the following conditions for all x, y, z ∈ X
and t, s > 0:

(F1) M
(
x, y, 0

)
= 0

(F2) M
(
x, y, t

)
= 1 for all t > 0 if and only if x = y

(F3) M
(
x, y, t

)
= M

(
y, x, t

)
(F4) M

(
x, y, t

)
∗M

(
y, z, s

)
≤M (x, z, t + s) for all t, s > 0

(F5) M
(
x, y, ·

)
: [0,∞)→ [0, 1] is left continuous.

Usual product (denoted by ·) and minimum,(denoted by ∧) are examples of continuous triangular-
norms. One can easily show that x ∗ y ≤ x ∧ y for each x, y and for all (continuous)triangular-norm ∗.
Consequently, if (X,F,∧) is a fuzzy metric space then (X,F, ∗) is a fuzzy metric space [8].

From now on, we use the infimum t-norm since some proofs require the idempotency property.
The family {B (x, α, t) : x ∈ X, t ∈ [0,∞) , α ∈ (0, 1)} generates a crisp topology denoted by TM, where the

open ball B (x, α, t) =
{
y ∈ X : M

(
x, y, t

)
> 1 − α

}
[4, 10] .
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Aydoğdu), halis@kocaeli.edu.tr (Halis Aygün)
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Definition 1.2. [8] Let (X,M1,∧) and (Y,M2,∧) be two fuzzy metric spaces. A mapping f from X to Y is called
continuous at x ∈ X if for each ε ∈ (0, 1) and t > 0, there exist δ ∈ (0, 1) and s > 0 such that M2

(
f (x) , f

(
y
)
, t
)
> 1−ε

whenever M1
(
x, y, s

)
> 1 − δ.

Proposition 1.3. [4] Let (X,M1,∧) and (Y,M2,∧) be two fuzzy metric spaces. Then the followings are equivalent.

a) f : (X,M1,∧)→ (Y,M2,∧) is continuous.

b) f : (X,TM1 )→ (Y,TM2 ) is continuous.

Definition 1.4. [5] Let (X,M,∧) be a fuzzy metric space. A sequence (xn) in X is called convergent to x0 ∈ X if
limn M (xn, x0, t) = 1, for all t > 0.

Definition 1.5. [7] A fuzzy metric space (X,M,∧) is called co-principal if the family {B (x, r, t) : t > 0} is a local base
at x ∈ X, for each x ∈ X and each r ∈ (0, 1).

Definition 1.6. [1] Let (X,M,∧) be a fuzzy metric space, and α ∈ (0, 1). A sequence (xn) in X is called α-convergent
to x0 ∈ X if for each t > 0 there exists n0 ∈N such that M (xn, x0, t) ≥ 1 − α, for all n ≥ n0.

Definition 1.7. [1] Let (X,M,∧) be a fuzzy metric space and α ∈ (0, 1). A sequence (xn) in X is called α-Cauchy
sequence if for each t > 0 there is n0 ∈N such that M (xn, xm, t) ≥ 1 − α, for all m,n ≥ n0.

Definition 1.8. [1] A fuzzy metric space (X,M,∧) is called α-complete if every α-Cauchy sequence in X is α-
convergent to some point of X.

Definition 1.9. [6] A fuzzy metric space (X,M,∧) is called totally bounded if for each α ∈ (0, 1), and t > 0, there is
a finite subset A of X, such that X =

⋃
x∈A

B (x, α, t).

Definition 1.10. [6] A fuzzy metric space (X,M,∧) is called compact if
(
X,TM

)
is a compact topological space.

According to the previous definitions we give the definitions ofα-totally boundedness andα-compactness
in the following way.

Definition 1.11. Let (X,M,∧) be a fuzzy metric space and α ∈ (0, 1). X is called α-totally bounded if for each t > 0
and r ∈ (α, 1) there exists a finite subset A of X such that X =

⋃
x∈A

B (x, r, t).

Definition 1.12. Let α ∈ (0, 1). A fuzzy metric space (X,M,∧) is called α-compact if every sequence in X has a
α-convergent subsequence.

Proposition 1.13. A compact fuzzy metric spaces is α-compact, for all α ∈ (0, 1).

1.2. Fuzzy Topological Spaces Determined by Level-Topologies
In the following, we summarize the construction of fuzzy topology with the help of level topologies by

giving related definitions and properties. We begin with the definition of fuzzy topology which was given
by Chang [2].

Let c : X→ [0, 1] be a mapping defined by c(x) = c,∀x ∈ X, i.e, c ∈ IX is a constant fuzzy set.

Definition 1.14. [2] A fuzzy topological space is an ordered pair (X,T ) such that X be a set and T ⊂ IX satisfies the
following conditions

CT1 0, 1 ∈ T

CT2 If λ1, λ2 ∈ T , then λ1 ∧ λ2 ∈ T



A. Aygünoğlu et al. / Filomat 34:2 (2020), 433–441 435

CT3 If λi ∈ T for all i ∈ I then
∨
i∈I
λi ∈ T .

In [11], Lowen proposed a more natural definition of fuzzy topology, called stratified fuzzy topology,
since constant functions may not be continuous in general with Chang’s definition.

Definition 1.15. [11] A stratified fuzzy topological space is an ordered pair (X,T ) such that X be a set and T ⊂ IX

satisfies the following conditions

LT1 c ∈ T , for all c ∈ [0, 1]

LT2 If λ1, λ2 ∈ T , then λ1 ∧ λ2 ∈ T

LT3 If λi ∈ T for all i ∈ I then
∨
i∈I
λi ∈ T .

Definition 1.16. Let (X,T ) be a fızzy topological space. A subfamily B of T is a base for T if and only if for each
λ ∈ T there exist

(
µi

)
j∈J ⊂ B such that λ = sup j∈J µ j.

Definition 1.17. [11] Let (X,T1) and (Y,T2) be fuzzy topological spaces. A mapping from X to Y is continuous if
f−1(µ) ∈ T1 whenever µ ∈ T2. ( f−1 (

µ
)

(x) = µ
(

f (x)
)

for all x ∈ X).

Lowen[11] gave a relation between the category of classical topologiesTOP and the category of stratified
fuzzy topologies SFUZTOP by introducing two functors given in the next definition.

Definition 1.18. [11] Let X be a nonempty set, T be a topology on X and T be an stratified fuzzy topology on X.
Define w(T) = {λ : λ is lower semicontinuous} and ı(T ) = {λ−1(ε, 1) : ε ∈ [0, 1), λ ∈ T }.

Proposition 1.19. [11] Let X be a nonempty set, T be a topology on X and T be an stratified fuzzy topology on X.

a) w(T) = {λ : λ is lower semicontinuous} is an stratified fuzzy topology on X

b) ı(T ) = {λ−1(ε, 1) : ε ∈ [0, 1), λ ∈ T } is a topology on X.

Proposition 1.20. [12] Let (X,T ) be a fuzzy topological space and 0 ≤ α < 1. The family ıα (T ) = {[λ]α : λ ∈ T },
is a topology on X, which is called the α-level topology of T , where [λ]α = {x ∈ X : λ (x) > α}. On the other hand,⋃
{ıα (T ) : α ∈ [0, 1)} is a subbase for the topology ı(T ).

Let {Tα : α ∈ [0, 1)} be a family of topologies on X. In order to guarantee the existence of at least one
fuzzy topology T on X such that ıα (T ) = Tα for all α ∈ [0, 1), a necessary and sufficient condition was
given in [18, 19] .

Proposition 1.21. [19] Let {Tα : α ∈ [0, 1)} be a family of topologies on a set X. Then the followings are equivalent:

a) There exists at least one fuzzy topology T on X such that ∀α ∈ [0, 1) : ıα (T ) = Tα.

b) LT-property: ∀α ∈ [0, 1) , ∀G ∈ Tα,∃
(
Gβ

)
β∈(α,1)

∈
∏

β∈(α,1)
Tβ descending and G =

⋃
β∈(α,1)

Gβ.

Theorem 1.22. [18]Let F = {Tα : α ∈ [0, 1)} be a family of topologies on a set X. Then there exist fuzzy topologies
T on X having F as their level topologies, i.e. such that

ıα (T ) = Tα, ∀α ∈ [0, 1) (*)

if and only if F has the LT-property. Moreover, the fuzzy topology T (F ) =
{
λ : [λ]α ∈ Tα, for all α ∈ [0, 1)

}
is the

finest of all stratified fuzzy topologies on X if (*) holds.

Proposition 1.23. [19] Let (X,T ) be a fuzzy topological space. Then the following are equivalent:
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a) All level topologies are equal and T is maximal;

b) (X,T ) is topologically generated, i.e. T = w (ı (T ))

In the following, we recall some concepts related to compactness of fuzzy topological spaces.

Definition 1.24. [12] A fuzzy topological space (X,T ) is called fuzzy compact if for all family δ ⊂ T , c ∈ (0, 1]
satisfying

∨
µ∈δ

µ ≥ c and for all ε ∈ (0, c] there exists a finite subfamily δ0 ⊂ δ such that
∨
µ∈δ0

µ ≥ c − ε.

Theorem 1.25. [12] A topological space (X,T) is compact if and only if (X,w(T)) is fuzzy compact.

Definition 1.26. [12] A fuzzy topological space (X,T ) is called ultra fuzzy compact if (X, ı(T )) is compact.

Definition 1.27. [3] Let α ∈ [0, 1). A family {λi : i ∈ ∆} of fuzzy subsets of a fuzzy topological space (X,T ) is called
an α-shading of X if for each x ∈ X, there exists a λi0 ∈ {λi : i ∈ ∆} such that λi0 (x) > α.

Definition 1.28. [3] A fuzzy topological space (X,T ) is called α-compact if every α-shading has an open α-
subshading.

Definition 1.29. [12] A fuzzy topological space (X,T ) is called strong fuzzy compact if it is α-compact for all
α ∈ [0, 1).

Theorem 1.30. [12] Let α ∈ [0, 1). A fuzzy topological space (X,T ) is α-compact if and only if (X, ıα (T ))is compact
topological space.

2. Fuzzy Topology Induced by Fuzzy Metric

2.1. Construction of Fuzzy Topology
Many researchers are interested in topological structure of fuzzy metric [9, 13, 16]. In most study, the

topology induced by a fuzzy metric was crisp topology on an underlying set. Recently few researchers
[9, 13, 14, 20] have addressed the problem of construction of fuzzy-type topological structures induced by
a fuzzy metric. In general, most study consist of to determine a fuzzifying topology.

In this section, we intend to construct a stratified fuzzy topology with the help of level topologies.
Therefore, we construct a base of a topology on X for each parameter α ∈ [0, 1), so that we obtain a
parameterized family of topologies.

Lemma 2.1. Let (X,M,∧) be a fuzzy metric space and α ∈ [0, 1). Then the family

Bα = {B(x, r, t) : x ∈ X, r ∈ (α, 1), t > 0}

is a base for a topology on X.

Proof. Let z ∈ B (x, r1, t)∩ B
(
y, r2, s

)
where r1, r2 ∈ (α, 1). Thus M (x, z, t) > 1− r1 and M

(
y, z, s

)
> 1− r2. Then

there exists t0 < t and s0 < s such that M (x, z, t0) > 1 − r1 and M
(
y, z, s0

)
> 1 − r2.

Let r = min {r1, r2} and p = min {t − t0, s − s0}. We claim that B
(
z, 1 − r, p

)
⊂ B (x, r1, t) ∩ B

(
y, r2, s

)
. Let

u ∈ B
(
z, r, p

)
⊂ B (z, r, t − t0). Then M (u, z, t − t0) > 1 − r.

Therefore M (x,u, t) ≥M (x, z, t0)∧M (z,u, t − t0) > (1 − r1)∧ (1 − r) = 1− r1. Then u ∈ B (x, r1, t) and we have
B
(
z, r, p

)
⊂ B (x, r1, t).

On the other hand let u ∈ B
(
z, r, p

)
⊂ B (z, r, s − s0). Then M (u, z, s − s0) > 1 − r. Therefore M

(
y,u, s

)
≥

M
(
y, z, s0

)
∧M (z,u, s − s0) > (1 − r2) ∧ (1 − r) = 1 − r2. Then u ∈ B

(
y, r2, s

)
. We have B

(
z, r, p

)
⊂ B

(
y, r2, s

)
.

Hence B
(
z, r, p

)
⊂ B (x, r1, t) ∩ B

(
y, r2, s

)
.

The topology, call Tα, generated by Bα is characterized in the following theorem.
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Theorem 2.2. Let (X,M,∧) be a fuzzy metric space, α ∈ [0, 1) and G ⊂ X. Then G ∈ Tα if and only if for each x ∈ G
there exists t > 0 and r ∈ (α, 1) such that B (x, r, t) ⊂ G.
Equivalently;

G ∈ Tα if and only if G =
⋃
r>α

B(x,r,t)⊂G

B(x, r, t).

By the definition of Tα, we have T0 = TM.
The family {Tα : α ∈ [0, 1)} is a decreasing family of topologies, since Bα ⊂ Bβ whenever β < α. Besides

this family satisfies LT-property by the Theorem 2.2. This allows us to construct a fuzzy topology by the
following theorem.

Theorem 2.3. Let (X,M,∧) be a fuzzy metric space and {Tα : α ∈ [0, 1)} be the family of topologies induced by this
metric. Then

T
M :=

{
λ : [λ]α ∈ Tα for all α ∈ [0, 1)

}
is the finest stratified fuzzy topology satisfying ıα

(
T

M
)

= Tα.

As a consequence, we have ı
(
T

M
)

= TM.

Definition 2.4. [16] Let (X,M,∧) be a fuzzy metric space, x ∈ X, r ∈ (0, 1) , t > 0 and β ∈ (0, 1). Then the fuzzy
set βB (x, r, t) is called β open ball with the center x and radius r, where

βB (x, r, t) (y) =

{
β, y ∈ B (x, r, t)
0, other .

In the following proposition, we show that the collection of β open balls is a base for w
(
TM

)
.

Proposition 2.5. Let (X,M,∧) be a fuzzy metric space. Then the family

B1 =
{
βB (x, r, t) : x ∈ X, r ∈ (0, 1) , t > 0, β ∈ (0, 1)

}
is a base for w

(
TM

)
.

Proof. Obviously, B1 ⊂ w
(
TM

)
. Let λ ∈ w

(
TM

)
and λ (x) > 0. Because of lower semicontinuity of λ, for all

ε ∈ (0, 1) satisfying λ (x) − ε > 0 there exists r ∈ (0, 1) and t > 0 such that λ
(
y
)
≥ λ (x) − ε for all y ∈ B (x, r, t).

Choose β = λ (x) − ε, we get βB (x, r, t) ≤ λ.

On the other hand, if M is co-principle then it can be easily shown that Tα = Tβ for all α , β. However,
we have the following corollary by the Proposition 1.23 and Theorem 2.3.

Corollary 2.6. The fuzzy topological space (X,TM) is topologically generated, i.e TM = w
(
ı
(
T

M
))

, if M is co-
principle.

In the next example, we show that TM , w
(
ı
(
T

M
))

in general.

Example 2.7. Let f : [0, 1) →
(

1
2 , 1

]
be a nondecreasing left continuous surjective function. Consider the fuzzy

metric space (X,M,∧) in [15]. M is defined by

M
(
x, y, t

)
=


0, t = 0

f
(

t
|x−y|

)
x , y, t ≥ 0

1 x = y, t ≥ 0

.
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Let α = 1
4 and r = 1

3 > α. Then B
(
x, 1

3 , t
)

= {x} and 2
3 B

(
x, 1

3 , t
)
∈ w

(
ı
(
T

M
))

.

On the other hand for α = 1
2 < β = 2

3 we have
[

2
3 B

(
x, 1

3 , t
)] 1

2
= {x} < T 1

2
. Then T 1

2
is trivial topology, since

B (x, r, t) = X for r > 1
2 . It follows that 2

3 B
(
x, 1

3 , t
)
< TM.

Moreover, by considering a relation between β and r, we can construct a base for the fuzzy topology TM

in the following proposition:

Proposition 2.8. Let (X,M,∧) be a fuzzy metric space. Then the family

B2 =
{
βB (x, r, t) : x ∈ X, r ∈ (0, 1) , t > 0, β ∈ (0, r)

}
is a base for TM.

Proof. We first show that B2 ⊂ T
M. If α < β then

[
βB (x, r, t)

]α = B (x, r, t).
Since r > β, we have r > α. It follows that B (x, r, t) ∈ B2 ⊂ Tα. Hence βB (x, r, t) ∈ TM.
Let λ ∈ TM and λ (x) > 0. Then [λ]α ∈ Tα and x ∈ [λ]α for all α ∈ [0, 1) satisfy λ (x) > α > 0. By the definition
of Tα, there exists r > α satisfying B (x, r, t) ⊂ [λ]α. That is, λ

(
y
)
> α for each y ∈ B (x, r, t). It follows that

αB (x, r, t) ≤ λ.

2.2. Continuity
Contrary to expectations, the continuity between fuzzy metric spaces and between induced fuzzy

topological spaces are incompatible. In this manner, we propose an adjusted form of continuity as follows:

Definition 2.9. Let (X,M1,∧) and (Y,M2,∧) be two fuzzy metric spaces and α ∈ [0, 1). A mapping f from X to Y
is called α-continuous if for all ε > 0 and r ∈ (α, 1) there exist δ ∈ (0, 1) and s ∈ (α, 1) such that M1

(
x, y, δ

)
> 1 − s

implies M2
(

f (x) , f
(
y
)
, ε

)
> 1 − r.

If f is α-continuous for all α ∈ [0, 1), then it is called ?-continuous.

Remark 2.10. Notice that α-continuity is a stronger version of continuity and the definition of 0-continuity coincides
with the continuity.

Theorem 2.11. A mapping f :
(
X,TM1

)
→

(
Y,TM2

)
is continuous if and only if the mapping f : (X,M1,∧) →

(Y,M2,∧) is ?-continuous.

Proof. Let f :
(
X,TM1

)
→

(
Y,TM2

)
be a continuous mapping, x ∈ X, ε > 0 and α ∈ [0, 1). Then B

(
f (x) , r, ε

)
∈

TM2
α where r > α. Choose β ∈ (0, 1) satisfying r > β > α. Thus βB

(
f (x) , r, ε

)
∈ T

M2 . Then f−1 (
βB

(
f (x) , r, ε

))
∈

T
M1 , since f is continuous. That is

[
f−1 (

βB
(

f (x) , r, ε
))]α

= f−1 (
B
(

f (x) , r, ε
))
∈ TM1

α .
Then there exists δ > 0 and s > α such that B (x, s, δ) ⊂ f−1 (

B
(

f (x) , r, ε
))

. For y ∈ B (x, s, δ) we have
f
(
y
)
∈ B

(
f (x) , r, ε

)
. Then M1

(
x, y, δ

)
> 1 − s implies M2

(
f (x) , f

(
y
)
, ε

)
> 1 − r with r, s > α. Hence

f : (X,M1,∧)→ (Y,M2,∧) is ?-continuous.
Let f : (X,M1,∧)→ (Y,M2,∧) be α-continuous for all α ∈ [0, 1). Suppose that f :

(
X,TM1

)
→

(
Y,TM2

)
is

not continuous. There exists µ ∈ TM2 such that f−1 (
µ
)
< TM1 . That is,

[
f−1 (

µ
)]α
< TM1

α for some α ∈ [0, 1) .

Then there exists x ∈
[

f−1 (
µ
)]α

such that B (x,u, t) ⊆
[

f−1 (
µ
)]α

for all t > 0 and u ∈ (α, 1).

On the other hand, f−1 (
µ
)

(x) = µ
(

f (x)
)
> α and we have f (x) ∈

[
µ
]α
∈ T

M2
α . It follows that, there

exists ε > 0 and r ∈ (α, 1) such that B
(

f (x) , r, ε
)
⊂

[
µ
]α. Since f is α-continuous, then there exists δ > 0

and s > α such that M1
(
x, y, δ

)
> 1 − s implies M2

(
f (x) , f

(
y
)
, ε

)
> 1 − r. That is, y ∈ B (x, δ, s) implies

f
(
y
)
∈ B

(
f (x) , r, ε

)
, which is a contradiction.

We get the category FUZFMS of fuzzy metric spaces (X,M,∧) as objects and their ?-continuous
mappings as morphism. By the Theorem 2.11 one can easily define a faithful functor

ϕ : FUZFMS→ SFUZTOP
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2.3. Compactness
In the next lemma, we give a condition for the α-convergence of a sequence.

Lemma 2.12. Let (X,M,∧) be a fuzzy metrics space and (xn) be a sequence in X. If M (xn, x, t) > 1−
(
α + 1

kn

)
for all

n ∈N, where k ∈N satisfies α + 1
k < 1, then (xn) is α-convergent to x.

Proof. Let M (xn, x, t) > 1 −
(
α + 1

kn

)
for all n ∈ N, where k ∈ N satisfies α + 1

k < 1. Suppose that xn is not
α-convergent to x0. Then for some ε ∈ (0, 1 − α) the following holds:

For all n ∈N, there exist n1 > n such that M
(
xn1 , x0, t

)
≤ 1 − α − ε .

We have M
(
xn1 , x0, t

)
≤ 1−α− ε < 1−α− 1

n2
for some n2 ∈N satisfying 1

n2
< ε. Then there exists n0 ≥ n2

such that M
(
xn2 , x0, t

)
≤ 1 − α − ε. We chose n0 = max {n1,n2}. It follows that M

(
xn0 , x0, t

)
≤ 1 − α − ε ≤

1 − α − 1
n0
≤ 1 − α − 1

kn0
where α + 1

k < 1. This is a contradiction.

Definition 2.13. Let (X,M,∧) be a fuzzy metrics space, A ⊂ X and x ∈ A. x is called an α-isolated point of A if
there exists t > 0 and r ∈ (α, 1) such that B(x, r, t) ∩ A = {x}.

Theorem 2.14. Let (X,M,∧) be a fuzzy metric space, and (X,Tα) be an α-level topology of fuzzy topology induced
by this fuzzy metric, where α ∈ [0, 1). The followings are equivalent:

a) (X,Tα) is compact.

b) (X,M,∧) is α-compact.

c) (X,M,∧) is α-totally bounded and α-complete.

Proof. “(a)⇒ (b)” Let (X,Tα) be compact. Assume that, we have a sequence (xn) in X with no α-convergent
subsequence. No term in the sequence can occure infinitely many times. We can assume without loss of
generality that xi , x j whenever i , j.
Notice that, each terms of the sequence (xn) is an α-isolated point of {xn}n∈N. Indeed, suppose that xi0 is
not α-isolated point of {xn}n∈N. Then for each r ∈ (α, 1) and t > 0 there exist x j ∈ {xn : n ∈N} such that
M

(
xi0 , x j, t

)
> 1 − r.

If we choose r = α + 1
kn for each n ∈ N, where k ∈ N satisfies α + 1

k < 1, then there exists x jn ∈ {xn}n∈N such
that M

(
xi0 , x jn , t

)
> 1 −

(
α + 1

kn

)
. By the Lemma 2.12, x jn is an α-convergent subsequence of (xn). Which is a

contradiction. Hence, for each i, there exists ri ∈ (α, 1) and t > 0 such that x j < B (xi, ri, ti) for i , j.
Let U0 = X/ {xn}n∈N . Then U0 ∈ Tα. Indeed, assume that U0 = X/ {xn}n∈N is not open. Then there exists
y ∈ U0 such that B

(
y, r, t

)
∩ {xn}n∈N , ∅ for all r ∈ (α, 1) and t > 0. By taking r = α + 1

kn with k ∈ N satisfies
α + 1

k < 1, we have B
(
y, α + 1

kn , t
)
∩ {xn}n∈N , ∅. It follows that, xin ∈ B

(
y, α + 1

kn , t
)

for each n ∈ N. Hence,

M
(
xin , y, t + 1

n

)
> 1 −

(
α + 1

kn

)
for each n ∈ N. That is xin is α- convergent. Which is a contradiction. As a

consequence {U0} ∪ {B (xn, rn, tn) : n ∈N} is an open cover of X. However it has no finite subcover, since any
finite subcover of this would fail to include infinitely many terms of the sequence (xn).

“(b)⇒ (c)” Let (X,M,∧) beα-compact and (xn) be aα-Cauchy sequence in X. Since (X,M,∧) isα-compact,
we have an α-convergent subsequence. Hence (X,M,∧) is α-complete.

Assume that X is not α-totally bounded. Then there exists t > 0 and r > α such that X can not be
covered by finitely many balls of the form B (x, r, t). Take x1 ∈ X. Since B (x1, r, t) does not cover X, there
exists at least one point x2 ∈ X − B (x1, r, t). Since B (x1, r, t) ∪ B (x2, r, t) does not cover X, there exists at
least one point in X − (B (x1, r, t) ∪ B (x2, r, t)). Continuing this process, we find a sequence (xn) satisfying

xn+1 ∈ X −
n⋃

i=1
B (xi, r, t) for each n ∈N. However such sequence can not have an α-convergent subsequence,

since M (xn, xm, t) < 1 − r for all n,m. This is a contradiction. Therefore X is α-totally bounded.
“(c)⇒ (a)” LetU = {Ui}i∈I ⊂ Tα be an open cover of X. Suppose thatU does not have a finite subcover.

α-totally boundedness implies that there exists a finite set of closed balls B
(
x1

1, r,
1
2

)
, . . . ,B

(
x1

n, r,
1
2

)
that cover
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X, for all r > α. One of these sets can not be covered by a finite subfamily ofU. Denote this by X1. Since X1

is a subset of X, X1 is α-totally bounded. Then there exists B
(
x2

1, r,
1
22

)
, . . . ,B

(
x2

n, r,
1
22

)
that cover X1. Again,

one of these sets can not be covered by a finite subfamily ofU. Denote this by X2. Continuing this process,
we obtain a sequence of closed sets Xn such that . . . ⊂ Xn

⊂ Xn−1
⊂ . . . ⊂ X1, and none of which can be

finitely covered byU. Let choose the centers of these balls as a sequence such that y1 = x1
i , . . . , yn = xn

i , . . ..
Then yn, ym ∈ Xk, for all n,m ≥ k. It follows that M

(
yn, ym, 1

2k

)
> 1 − r, for all n,m ≥ k. Then for all t > 0,

there exists k0 ∈N such that 1
2k < t for all k ≥ k0. That is, M

(
yn, ym, t

)
≥M

(
yn, ym, 1

2k

)
> 1− r. It follows that,

yn is an α-Cauchy sequence. Since X is α-complete, yn is α-convergent to a point y. Since yn ∈ Xm for all
n > m and Xm is closed it follows that y ∈ Xm.

Since U covers Xm, the point y belongs to some Ui0 . This means that B
(
y, r, t

)
⊂ Ui for some r ∈ (α, 1)

and t > 0. Take m0 ∈N satisfying 1
2m0 <

t
2 . If x ∈ Xm0 then

M
(
x, y, t

)
≥M

(
x, ym0 ,

t
2

)
∧M

(
ym0 , y,

t
2

)
≥M

(
x, ym0 ,

1
2m0

)
∧M

(
ym0 , y,

1
2m0

)
> (1 − r) ∧ (1 − r) = 1 − r.
That is, x ∈ B

(
y, r, t

)
. Hence Xm0 ⊂ Ui0 , which is a contradiction.

By the Theorem 2.14 and Proposition 1.13, we have the following corollary.

Corollary 2.15. Let (X,M,∧) be a fuzzy metric space and (X,TM) be the induced fuzzy topological space. Then the
followings are equivalent:

a) (X,M,∧) is compact

b) (X,TM) is ultra fuzzy compact

c) (X,TM) is strong fuzzy compact

d) (X,w(TM)) is fuzzy compact.

Furthermore, if (X,M,∧) is co-principle then we can extend the Corollary 2.15 by adding “(e) (X,TM) is
fuzzy compact”.

On the other hand, the compactness of (X,M,∧) implies the fuzzy compactness of (X,TM) since TM
⊆

w(TM). Moreover, whether the inverse implication holds or not is an open problem.

3. Conclusion

In this study, we focused on to investigate the relation between fuzzy metric and Lowen-type fuzzy
topology. We propose a formulation to determine how a fuzzy topology can be constructed by the help
of fuzzy metric. We compare the induced fuzzy topology with the fuzzy topology induced by the Lowen
functor w and show that they are different for non-coprinciple fuzzy metric spaces. Furthermore, we present
a modified and stronger version of continuity for fuzzy metric spaces in order to get equivalence of conti-
nuity between fuzzy metric spaces and induced fuzzy topological spaces. Finally we study compactness
for such spaces and show that compactness of fuzzy metric spaces coincides with the stronger version of
fuzzy compactness of induced fuzzy topological spaces.
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