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Abstract. Several Steffensen type inequalities are derived for anti-symmetrized monotone functions, i. e.
functions f which anti-symmetrical transform f̃ (x) = 1

2

[
f (x) − f (a + b − x)

]
, x ∈ [a, b], is monotone.

1. Introduction

In 1918 Steffensen [6] proved the following result:

Theorem 1.1. Let f and 1 be integrable functions defined on the interval [a, b] such that f is nonincreasing and
0 ≤ 1 ≤ 1 and denote λ =

∫ b

a 1(t) dt. Then we have∫ b

b−λ
f (t) dt ≤

∫ b

a
f (t)1(t) dt ≤

∫ a+λ

a
f (t) dt, (1)

with the inequalities reversed if f is nondecreasing.

Steffensen published his result in an actuarial journal and the inequalities went mostly unnoticed for the
first few decades. However, since then the inequality has been extensively studied, extended, refined and
applied in many areas. For a recent, comprehensive presentation of the research related to the Steffensen
inequality one can see the monograph [5].

Milovanović and Pečarić [2] weakened the assumptions on the function 1 and showed that these
assumptions are sufficient and necessary, i. e. the weakest assumption under which inequality (1) holds.

Theorem 1.2. Let f and 1 be integrable functions defined on the interval [a, b] and let λ =
∫ b

a 1(t) dt.

a) The second inequality in (1) holds for every nonincreasing function f if and only if∫ x

a
1(t) dt ≤ x − a and

∫ b

x
1(t) dt ≥ 0 for every x ∈ [a, b]. (2)
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b) The first inequality in (1) holds for every nonincreasing function f if and only if∫ b

x
1(t) dt ≤ b − x and

∫ x

a
1(t) dt ≥ 0 for every x ∈ [a, b]. (3)

The following result, due to Pečarić [3], extends the Steffensen inequality by introducing one more
function.

Theorem 1.3. Let f , 1 and h be integrable functions defined on the interval [a, b] such that h is positive, the function
x 7→ f (x)

h(x) is nonincreasing and 0 ≤ 1 ≤ 1. Then∫ b

a
f (t)1(t) dt ≤

∫ a+λ

a
f (t) dt, (4)

where λ is the solution of the equation∫ a+λ

a
h(t) dt =

∫ b

a
h(t)1(t) dt. (5)

If the function x 7→ f (x)
h(x) is nondecreasing, then the inequality in (4) is reversed.

Applying Theorem 1.3 with h = 1 one recovers the second inequality in (1). Analogous extension of the
first inequality can be derived from Theorem 1.3 with substitutions 1(x)→ 1 − 1(x) and λ→ a + b − λ. For
alternative proofs, interpretations and extensions of these results see also [1, 4].

In this paper we will obtain several Steffensen type inequalities for functions which anti-symmetrical
transform f̃ (x) = 1

2
[

f (x) − f (a + b − x)
]
, x ∈ [a, b], is monotone. The anti-symmetrical transform of a mono-

tone function is again monotone, while the reverse implication does not need to hold.

2. Main results

The symmetrical transform of a function f on the interval [a, b], denoted by f̆[a,b] or simply by f̆ if the interval
[a, b] is clear from the context, is defined by

f̆ (x) =
1
2
[

f (x) + f (a + b − x)
]
, for x ∈ [a, b].

Similarly, the anti-symmetrical transform of f on the interval [a, b], denoted by f̃[a,b] or simply by f̃ , is defined
by

f̃ (x) =
1
2
[

f (x) − f (a + b − x)
]
, for x ∈ [a, b].

For every function one has f = f̆ + f̃ .

Definition 2.1. We say that a function f : [a, b] → R is anti-symmetrized nonincreasing (resp. nondecreasing) if
its anti-symmetrical transform f̃ is nonincreasing (resp. nondecreasing).

Obviously, if f is a monotone function, then its anti-symmetrical transform f̃ , as a sum of two such
functions, is monotone in the same direction. On the other hand, there are functions which are not monotone,
yet their anti-symmetrical transform is. For example, let f0 : [a, b]→ R be given by f0(x) = x2. Then

f̃0(x) =
1
2

[
x2
− (a + b − x)2

]
= (a + b)x −

(a + b)2

2
,

so if a and b are such that a < 0 < b and b − a > 0, the function f0 is not monotone, while f̃0 is increasing.
We are going to prove several Steffensen type inequalities for anti-symmetrized monotone functions.

The first result corresponds to the second inequality in (1) under the Milovanović-Pečarić’s assumptions.
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Theorem 2.2. Let f and 1 be integrable functions defined on the interval [a, b] such that f is anti-symmetrized
nonincreasing and 1 satisfies (2) with λ =

∫ b

a 1(t) dt. Then

2
∫ b

a
f (t)1̃(t) dt ≤

∫ a+λ

a
f (t) dt −

∫ b

b−λ
f (t) dt, (6)

with the inequality reversed if f is anti-symmetrized nondecreasing.

Proof. Applying the Steffensen inequality (1) for the nonincreasing function f̃ we get∫ b

a
f̃ (t)1(t) dt ≤

∫ a+λ

a
f̃ (t) dt. (7)

The left hand side of (7) is equal to∫ b

a
f̃ (t)1(t) dt =

1
2

∫ b

a
f (t)1(t) dt −

1
2

∫ b

a
f (a + b − t)1(t) dt

=
1
2

∫ b

a
f (t)1(t) dt −

1
2

∫ b

a
f (y)1(a + b − y) dy =

∫ b

a
f (t)1̃(t) dt, (8)

while the right hand side is equal to∫ a+λ

a
f̃ (t) dt =

1
2

∫ a+λ

a
f (t) dt −

1
2

∫ a+λ

a
f (a + b − t) dt =

1
2

∫ a+λ

a
f (t) dt −

1
2

∫ b

b−λ
f (y) dy. (9)

Inserting these two identities in (7) we obtain the required inequality.

Analogously we can obtain the corresponding result for the first inequality in (1).

Theorem 2.3. Let f and 1 be integrable functions defined on the interval [a, b] such that f is anti-symmetrized
nonincreasing and 1 satisfies (3) with λ =

∫ b

a 1(t) dt. Then∫ b

b−λ
f (t) dt −

∫ a+λ

a
f (t) dt ≤ 2

∫ b

a
f (t)1̃(t) dt, (10)

with the inequality reversed if f is anti-symmetrized nondecreasing.

We can combine Theorems 2.2 and 2.3 in the following corollary.

Corollary 2.4. Let f and 1 be integrable functions defined on the interval [a, b] such that f is anti-symmetrized
monotone and 1 satisfies (2) and (3) with λ =

∫ b

a 1(t) dt. Then

2
∣∣∣∣ ∫ b

a
f (t)1̃(t) dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ a+λ

a
f (t) dt −

∫ b

b−λ
f (t) dt

∣∣∣∣.
We are going to prove two versions of Theorem 1.3 for anti-symmetrized monotone functions. The first

one is given in the next theorem.

Theorem 2.5. Let f , 1 and h be integrable functions defined on the interval [a, b] such that h is positive, the function

x 7→ f̃ (x)
h(x) is nonincreasing and 0 ≤ 1 ≤ 1. Then inequality (6) holds, where λ is the solution of the equation (5).

If the function x 7→ f̃ (x)
h(x) is nondecreasing, then the reversed inequality in (6) holds.
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Proof. Due to (8), (9) and the assumptions of the theorem we have

1
2

∫ a+λ

a
f (t) dt −

1
2

∫ b

b−λ
f (t) dt −

∫ b

a
f (t)1̃(t) dt

=

∫ a+λ

a
f̃ (t) dt −

∫ b

a
f̃ (t)1(t) dt

=

∫ a+λ

a
f̃ (t)

[
1 − 1(t)

]
dt −

∫ b

a+λ
f̃ (t)1(t) dt

≥
f̃ (a + λ)
h(a + λ)

∫ a+λ

a
h(t)

[
1 − 1(t)

]
dt −

∫ b

a+λ
f̃ (t)1(t) dt

=
f̃ (a + λ)
h(a + λ)

[∫ b

a
h(t)1(t) dt −

∫ a+λ

a
h(t)1(t) dt

]
−

∫ b

a+λ

f̃ (t)
h(t)

h(t)1(t) dt

=

∫ b

a+λ
h(t)1(t)

[
f̃ (a + λ)
h(a + λ)

−
f̃ (t)
h(t)

]
dt ≥ 0.

The second extension of Theorem 1.3 to the anti-symmetrized monotone functions is given in the next
theorem.

Theorem 2.6. Let f , 1 and h be integrable functions defined on the interval [a, b] such that h is positive, the function
z(x) =

f (x)
h(x) is anti-symmetrized nonincreasing, 0 ≤ 1 ≤ 1 and λ is the solution of the equation (5). Then

2
∫ b

a
z̃(t)h(t)1(t) dt ≤

∫ a+λ

a
f (t) dt −

∫ b

b−λ
f (t)

h(t)
h(a + b − t)

dt. (11)

If the function z is anti-symmetrized nondecreasing, then the reversed inequality in (11) holds.

Proof. We have

∫ a+λ

a
f (t) dt −

∫ b

a
z(t)h(t)1(t) dt =

∫ a+λ

a
z(t)h(t) dt −

∫ b

a
z(t)h(t)1(t) dt

=

∫ a+λ

a
z(t)h(t)

[
1 − 1(t)

]
dt −

∫ b

a+λ
z(t)h(t)1(t) dt (12)

Since z̃ is nonincreasing we have

z(t) − z(a + b − t) = 2z̃(t) ≥ 2z̃(a + λ) (13)
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for t ≤ a + λ, while the reverse inequality holds for t ≥ a + λ, so∫ a+λ

a
z(t)h(t)

[
1 − 1(t)

]
dt −

∫ b

a+λ
z(t)h(t)1(t) dt ≥ 2z̃(a + λ)

∫ a+λ

a
h(t)

[
1 − 1(t)

]
dt

+

∫ a+λ

a
z(a + b − t)h(t)

[
1 − 1(t)

]
dt −

∫ b

a+λ
z(t)h(t)1(t) dt

= 2z̃(a + λ)
[∫ b

a
h(t)1(t) dt −

∫ a+λ

a
h(t)1(t) dt

]
−

∫ b

a+λ
[2z̃(t) + z(a + b − t)] h(t)1(t) dt +

∫ a+λ

a
z(a + b − t)h(t)

[
1 − 1(t)

]
dt

= 2
∫ b

a+λ
[z̃(a + λ) − z̃(t)] h(t)1(t) dt −

∫ b

a
z(a + b − t)h(t)1(t) dt

+

∫ a+λ

a
z(a + b − t)h(t) dt

≥ −

∫ b

a
z(a + b − t)h(t)1(t) dt +

∫ a+λ

a

f (a + b − t)
h(a + b − t)

h(t) dt

From (12) and the last inequality we conclude∫ a+λ

a
f (t) dt −

∫ a+λ

a

f (a + b − t)
h(a + b − t)

h(t) dt ≥
∫ b

a
[z(t) − z(a + b − t)] h(t)1(t) dt,

i.e. ∫ a+λ

a
f (t) dt −

∫ b

b−λ
f (t)

h(a + b − t)
h(t)

dt ≥ 2
∫ b

a
z̃(t)h(t)1(t) dt,

When h is symmetric, i.e. h(t) = h(a + b − t), then the assumptions on f and h in Theorems 2.5 and 2.6

are equivalent since z̃(x) =
f̃ (x)
h(x) . In that case

∫ b

a z̃(t)h(t)1(t) dt =
∫ b

a f̃ (t)1(t) dt =
∫ b

a f (t)1̃(t) dt, so inequalities
(6) and (11) are the same.
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