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Abstract. The de Rham theorem gives a natural isomorphism between De Rham cohomology and singular
cohomology on a paracompact differentiable manifold. We proved this theorem on a wider family of
subsets of Euclidean space, on which we can define inner differentiability. Here we define this family of
sets called tangentially locally linearly independent sets, propose inner differentiability on them, postulate
usual properties of differentiable real functions and show that the integration over sets that are wider than
manifolds is possible.

1. Introduction

The differentiable mappings are usually defined on open sets. On arbitrary set a function is differentiable,
if there is a bigger open set that contains the set and the function is differentiable on it. However, this is
only an agreement. In this paper we define inner differentiability on a wider family of subsets of Euclidean
space called tangentially locally linearly independent - TLLI sets in order to give new highlight to the well
known De Rham theorem, that gives a nice relationship between analysis and topology.

De Rham has shown in [6] that there exist isomorphism between de Rham cohomology and singular
cohomology on a paracompact differentiable manifold. This is very important fact as singular cohomology,
defined as in [7], is very topological theory and de Rham cohomology is much more analytical that is based
on the existence of differential forms with prescribed properties, explained as in [4]. An important operation
on differential forms, the exterior derivative, is used in the celebrated Stokes’ theorem as formulated in its
modern form in [2], that also shows the relationship between topology and analysis. In [8] we proved de
Rham theorem on the tangentially locally linearly independent.

In this paper instead using usual definition of derivatives as limits for the differential forms we use
algebraic approach to the derivative that is mentioned in [5] to define inner differentiability on TLLI sets.
Therefore, in the second Section of the paper we consider the family of TLLI sets and some of their properties
and in the third Section is defined the inner differentiability of real multivariate functions on these sets.
This allows us to postulate in Section 4 the integration over class of sets called cuboidle sets that is wider
class of manifolds by defining differential forms on TLLI sets. Section 5 concludes the paper.
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2. Tangentially locally linearly independent and full tangentially locally linearly independent sets

In this Section we state the definition of a wider family of subsets of Euclidean space than open sets
called tangentially locally linearly independent - TLLI sets and their properties in order in the next section
to define the inner differentiability of multivariate real functions.

Definition 2.1. A set M ⊆ Rn is called tangentially locally linearly independent (TLLI), if for any arbitrary point
x0 =

(
x0

1, ..., x
0
n

)
∈M is valid:

if D1, ...,Dn are real functions on the set M and continuous at x0 such∑n
i=1

(
xi − x0

i

)
·Di

(
x
)

= 0 ,∀ x ∈M, then Di

(
x0

)
= 0 ,∀ i ∈ { 1, ...,n } .

Theorem 2.2. If M ⊆ Rn is TLLI set, then all points from the set M are accumulation points of the set M, i.e.
M ⊆M′.

Proof. Let M ⊆ Rn be TLLI and let assume the opposite statement of the theorem, i.e. M 1 M′. So, there is
a point y ∈M, but y <M′.
Let consider the functions Di : M→ R defined by:

Di

(
x
)

=

 1 , if x = y

0 , if x ∈M\
{

y
}
, ∀ i ∈ { 1, ...,n } .

Next we prove that these functions are continuous at the point y ∈M.

Let ε > 0 is an arbitrary real number. Since y < M′ then there exists an open neighborhood Tδ
(
y
)

at y

such Tδ
(
y
)
∩M ⊆

{
y
}
. Therefore, for any point x ∈ Tδ

(
y
)
∩M is true that

∥∥∥∥ Di

(
x
)
−Di

(
y
) ∥∥∥∥ = 0 < ε , ∀ i ∈

{ 1, ...,n } . So the functions Di for all i = 1, ...,n are continuous at the point y ∈M.

By the definition of the functions Di, i = 1,n,
∑n

i=1
(

xi − yi
)
· Di

(
x
)

= 0 for all x ∈ M but Di

(
y
)

= 1 ,
0 ,∀ i ∈ { 1, ...,n } , which is in contradiction of the assumption that the set M is TLLI. Therefore statement of
the theorem is valid.

Example 2.3. All lines in R2 are not TLLI sets.

Proof. Let Π =
{ (

x, y
)
∈ R2 : ax + by = c

}
be an arbitrary line inR2, where a, b, c are real numbers such that

at least one of a and b is different than 0.
The functions D1 : Π → R , D2 : Π → R defined by D1

(
(x, y)

)
= a ,D2

(
(x, y)

)
= b for all

(
x, y

)
∈ Π are

continuous at a fixed point x0 =
(

x0, y0
)
∈ Π, and(

x − x0
)

D1
(
(x, y)

)
+

(
y − y0

)
D2

(
(x, y)

)
=

(
x − x0

)
· a +

(
y − y0

)
· b =

= a · x − a · x0 + b · y − b · y0 =
(

a · x + b · y
)
−

(
a · x0 + b · y0

)
=

= c − c = 0 , ∀
(
x, y

)
∈ Π .

But D1

(
x0

)
= a , D2

(
x0

)
= b and at least one of a and b is different than 0, so by definition the line is not

TLLI set.

Let x0
∈ Rn be an arbitrary point. The line through the point x0 and parallel with the xk- axis, k ∈ { 1, ...,n },

is denoted by:

Gk

(
x0

)
=

{ (
x0

1, ..., x
0
k−1, xk, x0

k+1, ..., x
0
n

)
: xk ∈ R

}
, k ∈ { 1, ...,n } .

Definition 2.4. A set M ⊆ Rn is full TLLI if any point x0
∈M is an accumulation point of all sets M∩Gk

(
x0

)
, k ∈

{ 1, ...,n } .
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Theorem 2.5. Any full TLLI set M ⊆ Rn is TLLI set.

Proof. Let M be a full TLLI set and x0
∈ M is an arbitrary point. Let D1, ...,Dn be functions determined by

the assumption of the Definition 2.1. Then for any x ∈ M ∩ Gk

(
x0

)
where k ∈ {1, 2, ...,n} is fixed arbitrarly

chosen, the following statement is valid:

0 =

n∑
i=1

(
xi − x0

i

)
·Di

(
x
)

=
(

xk − x0
k

)
·Dk

(
x
)
.

So, Dk

(
x
)

= 0 for any x ∈ M ∩ Gk

(
x0

)
. Since M is ful TLLI the point x0 is an accumulattion point of the

set M ∩ Gk

(
x0

)
. Then there exists a sequence

(
xm

)
m∈N

in the set M ∩ Gk

(
x0

)
such that xm

→ x0, m → ∞.

Since Dk

(
x
)

= 0 for any x ∈ M ∩ Gk

(
x0

)
, then Dk

(
xm

)
= 0 for all m ∈ N. The function Dk is continuous, so

0 = Dk

(
xm

)
→ Dk

(
x0

)
, m→∞. Therefore, Dk

(
x0

)
= 0 for an arbitrary k ∈ {1, 2, ...,n}.

Finaly. since k ∈ {1, 2, ...,n} an x0 are arbitrary, then the set M is TLLI.

Notice that all open sets and all closed n-dimensional rectangular cuboids in the spaceRn are full TLLI sets.

3. Derivatives of multivariate real functions without limits

The definition of derivative, avoiding limit of a quotient difference was one of the main discissions
among mathematicians in eighties of the previous century, see [9] and [3]. In this Section in order to define
inner differentialbility on TLLI sets we consider the algebraic approach to the derivatives given in [5].

Definition 3.1. A multivariate real function f : M→ R, defined on TLLI set M ⊆ Rn is differentiable at x0
∈M, if

there exist n real-valued functions D1, ...,Dn on the set M and continuous at x0
∈M such that:

f
(
x
)

= f
(
x0

)
+

n∑
i=1

(
xi − x0

i

)
·Di

(
x
)
, ∀ x ∈M (1)

Definition 3.2. A multivariate real function f : M→ R is differentiable on the set M ⊆ Rn, if it is differentiable at
any point of the set M.

Theorem 3.3. Let f : M→ R be a real function on the TLLI set M ⊆ Rn and let f be differentiable at x0
∈M. Then

the values D1

(
x0

)
, ...,Dn

(
x0

)
are unique .

It doesn’t mean that the functions D1(x), ...,Dn(x) are unique on the set M.

Proof. Let D1,...,Dn and D′

1,...,D′

n are functions for such the equation (1) is valid. Then,

n∑
i=1

(
xi − x0

i

)
· (Di

(
x
)
−D

′

i

(
x
)
) = 0 , ∀ x ∈M

Since the functions D1(x) −D′

1(x),...,Dn(x) −D′

n(x) are continuous at the point x0 and the set M is TLLI then
Di(x0) −D′

i(x
0) = 0 ,∀ i ∈ {1, ...,n}, i.e. Di(x0) = D′

i(x
0) ,∀ i ∈ {1, ...,n}.

We say that theses unique values D1

(
x0

)
, ...,Dn

(
x0

)
are partial derivatives of the function f at x0 and we

employ the notation

Di

(
x0

)
=
∂ f
∂xi

(
x0

)
= fxi

′
(
x0

)
, ∀ i ∈ { 1, ...,n } .
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Theorem 3.4. Let f : M→ R be a real function on the TLLI set M ⊆ Rn and let f be differentiable at x0
∈ M, then

f is continuous at x0
∈M.

Proof. Because f is differentiable at x0
∈ M, then there exist n real functions D1, ...Dn on the set M that are

continuous at x0
∈M such that:

f
(
x
)

= f
(
x0

)
+

n∑
1=1

(
xi − x0

i

)
·Di

(
x
)
, ∀ x ∈M.

Let
(
xm

)
m∈N

be a sequence in M such that xm
→ x0, m → ∞, i.e. xm

i → x0
i ,m → ∞ for all i ∈ { 1, ...,n }. Since

the set M is TLLI,

lim
m→∞

f
(
xm

)
= lim

m→∞

 f
(
x0

)
+

n∑
i=1

(
xm

i − x0
i

)
·Di

(
xm

) = f
(
x0

)
.

Moreover, since the sequence is arbitrary then the function f is continuous at x0
∈M.

Let f : M → R be a real valued function on full TLLI set M ⊆ Rn and x0 =
(
x0

1, x
0
2, ..., x

0
n

)
be a fixed point

of the set M.
We define n real univariate functions:
1k (xk) = f

(
x0

1, ..., x
0
k−1, xk, x0

k+1, ..., x
0
n

)
for all k ∈ { 1, ...,n }.

The domain of these functions 1k for any k ∈ { 1, ...,n } is the set
Ak =

{
xk ∈ R :

(
x0

1, ..., x
0
k−1, xk, x0

k+1, ..., x
0
n

)
∈ M

}
= M ∩ Gk

(
x0

)
.

Since Ak , k = 1, ..,n are TLLI sets in R, then all points xk ∈ Ak , k = 1, ...,n are accumulation points of
the sets Ak , k = 1, ..,n, respectively.

In [5] are given the proofs of the last two theorems in this Section:

Theorem 3.5. If the function f : M → R is differentiable at x0
∈ M, then all functions 1k , k = 1, ...,n are

differentiable at x0
k , k = 1, ...,n, respectively, and 1′k

(
x0

k

)
= f ′xk

(
x0

)
.

Definition 3.6. Let f : M→ R be a real function on TLLI set M ⊆ Rn. The function f is differentiable with respect
to xk at x0

∈M, if the function 1k is differentiable at x0
k .

Definition 3.7. A function f : M→ R is continuously differentiable on full TLLI M ⊆ Rn, if it is differentiable on
M, and all its partial derivatives are continuous on M.

If a real multivariate function f defined on TLLI set M ⊆ Rn is differentiable on M then a question about
differentiability of its partial derivatives f ′xk

, k = 1, ...,n at a point x0
∈ M (with respect to all or some of the

variables xk, k = 1, ...,n) is raised.
Therefore, if the partial derivatives f ′xk

for some k = 1, ...,n exist and they are differentiable at x0
∈ M

with respect to some variables x j , j = 1, ...,n we say that there exist partial derivatives of second order of the

function f at x0
∈ M with respect to some variables xi and x j they are denoted by

(
fxk

′
)′

x j

(
x0

)
= f ′xkx j

(
x0

)
=

∂2 f
∂x j∂xk

(
x0

)
= f ′kj

(
x0

)
, where k = 1, ...,n and j = 1, ...,n. If there exist partial derivatives of a second order

of the function f on the whole set M then it is possible to discuss about their differentiability and partial
derivatives of higher order.

Definition 3.8. A real multivariate function is r- times differentiable at x0
∈ M, where r = 2, 3, ..., if there exist an

open neighborhood U of that point such that the function f is r − 1- times differentiable on the set U ∩M and all
r − 1-partial derivatives of f are differentiable at x0.
A function f is r- times differentiable on the set M if it is r- times differentiable at all points of the set M.
The partial derivtives from r-th order of the function f at x0 are denoted by f ′xk1 xk2 ...xkr

(
x0

)
=

∂r f
∂xkr ...∂xk2∂xk1

(
x0

)
.
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Theorem 3.9. Let f : M→ R be a multivariate real function on a closed rectangular cuboid

M =
{

x ∈ Rn : ak ≤ xk ≤ bk , ak, bk ∈ R , k = 1, ...,n
}
, and let all partial derivatives of the function f be differentiable

with respect to all variables at the point x0
∈M. Then, fxix j

(
x0

)
= fx jxi

(
x0

)
, i, j = 1, 2, ...,n.

4. Differential forms on TLLI sets

Definition 4.1. Differential form of k order on the set M (or k−form in M) is a mapping ω ,

ω =
∑

1≤i1<...<ik≤n ai1...ik

(
x
)

dxi1 ∧ ... ∧ dxik , where ai1...ik : M → R are continuous real functions for any k−variation

{i1, i2, ..., ik} of the set of n elements {1, 2, ...,n}, and we will denote by ω =
∑

i ai

(
x
)

dxi, where dxi = dxi1 ∧ ... ∧ dxik
and ai = ai1...ik for any variation i = {i1, ..., ik} , 1 ≤ i1 < ... < ik ≤ n, such that it maps to any singular k−cube
φ : Ik

→M (that is continuously differentiable function on cube, i.e. φ ∈ C1) a real number:

ω
(
φ
)

=

∫
φ
ω =

∑
i

∫
Ik

ai

(
φ

(
t
)) ∂ (

φi1 , ...φik

)
∂ (t1, ..., tk)

dt1 ∧ ... ∧ dtk,

where
∂(φi1 ,...φik )
∂(t1,...,tk) =

∣∣∣∣∣∣∣∣∣∣∣
∂φi1
∂t1
· · · · · ·

∂φi1
∂tk

...
...

∂φik
∂t1
· · · · · ·

∂φik
∂tk

∣∣∣∣∣∣∣∣∣∣∣ is the Jacobian of φ =
(
φ1, φ2, ..., φn

)
.

Definition 4.2. We define the following statements,

1. ω = 0 if and only if ω
(
φ
)

= 0, for any singular k−cube φ : Ik
→M, φ ∈ C1,

2. ω1 = ω2 if and only if ω1

(
φ
)

= ω2

(
φ
)
, for any singular k−cube φ : Ik

→M, φ ∈ C1,

3. Ifω1 andω2 are two k−forms on M, then the sumω = ω1+ω2 is k−form on M such thatω
(
φ
)

= ω1

(
φ
)
+ω2

(
φ
)
,

for any singular k−cube φ : Ik
→M, φ ∈ C1,

4. For any number c ∈ R, cω is k−form on M such that (cω)
(
φ
)

= c · ω
(
φ
)
, for any singular k−cube φ : Ik

→

M, φ ∈ C1.

Definition 4.3. If Γ =
∑
φ nφφ is continuously differentiable k−chain on M, then the k−form on M ω maps a real

number to the k−chain Γ =
∑
φ nφφ

ω (Γ) =

∫
Γ

ω =
∑
φ

∑
i

nφ

∫
Ik

ai

(
φ

(
t
)) ∂ (

φi1 , ...φik

)
∂ (t1, ..., tk)

dt1 ∧ ... ∧ dtk.

Notice, if φ : Ik
→ M is degenerated singular k−cube, i.e. there exists singular k − 1−cube φ

′

: Ik−1
→ M

such that

φ (t1, ..., ti−1, ti, ti+1, ...tn) = φ′ (t1, ..., ti−1, ti+1, ..., tn)

for some integer i , 1 ≤ i ≤ n, then for any k− form ω on M is valid that ω
(
φ
)

= 0. So, we conclude that a k−
formω on M is a real function from the free abelian group of all nondegenerated continuously differentiable
singular k- cubes, Ck (M).
The set of all k−forms for any k ≤ n on M is denoted by Dk (M) , i.e.

Dk (M) =
{
ω

∣∣∣ ω : Ck (M)→ R is k − form on M
}
. If k > n then Dk (M) = 0.
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Definition 4.4. Let ω be a k−form on the set M such that ω = a
(
x
)

dxi1 ∧ ... ∧ dxis ∧ ... ∧ dxip ∧ ... ∧ dxik , where
a : M → R is continuous real function on M. By ω is denoted the k−form on M that is obtained by transposition of
dxis and dxip , i.e. ω = a

(
x
)

dxi1 ∧ ... ∧ dxip ∧ ... ∧ dxis ∧ ... ∧ dxik . Since
∫
φ
ω = −

∫
φ
ω, i.e. ω

(
φ
)

= −ω
(
φ
)

for any

singular k−cube φ : Ik
→M, φ ∈ C1, the k−form ω is called opposite k−form of ω.

Notice, if the indices is and ip are equal, then ω=ω = −ω, and so ω = 0.
Therefore, if ω is a k−form ω =

∑
{i1,...,ik}∈{1,...,n} ai1...ik

(
x
)

dxi1 ∧ ...∧ dxik , then the k−variation with repetition
{i1, i2, ..., ik} of n elements {1, 2, ...,n} is enough to be just k−variation without repetition. Moreover, by
transposition of the indices any k−form ω =

∑
{i1,...,ik}∈{1,...,n} ai1...ik

(
x
)

dxi1 ∧ ... ∧ dxik can be transformed into a

formω =
∑

1≤i1<...<ik≤n ai1...ik

(
x
)

dxi1∧...∧dxik , that we will call standard differential k−form and we will denote

byω =
∑

i ai

(
x
)

dxi, where dxi = dxi1∧...∧dxik and ai = ai1...ik for any variation i = {i1, ..., ik} , 1 ≤ i1 < ... < ik ≤ n.
By the definition, standard differential k−form of any k−form is unique.

Definition 4.5. Let dxi be a p−form and dx j be a q− form on M. A product of the differential forms dxi and dx j is
p + q−form on M such that dxi ∧ dx j = dxi1 ∧ ... ∧ dxip ∧ dx j1 ∧ ... ∧ dx jq (not necessary being standard differential
form).

Notice, if i ∩ j , ∅, then dxi ∧ dx j = 0. Let i ∩ j = ∅, then the product of dxi and dx j is p + q−form on M

in standard form dxi ∧ dx j = (−1)α dx[
i, j

], where
[
i , j

]
is notation of the indices i1, ..., ip, j1, ..., jq increasingly

ordered, and α is the number of negative differences between the indices jr− it, t ∈
{

1, ..., p
}

and r ∈
{

1, ..., q
}
.

The proofs of the two next theorems are obtained in [1].

Theorem 4.6. Let dxi be p−form, dx j is q− form and dxk is r− form on M. Then

dxi ∧
(
dx j ∧ dxk

)
=

(
dxi ∧ dx j

)
∧ dxk.

Definition 4.7. Let ω =
∑

i ai

(
x
)

dxi be a p−form on M and λ =
∑

j b j

(
x
)

dx j is q−form on M. A product of them

is a p + q− form ω ∧ λ =
∑

i, j ai · b j

(
x
)

dxi ∧ dx j.

Proposition 4.8. The following statements are valid:

1. Let ω, λ and σ be differential forms on M. Then ω ∧ (λ ∧ σ) = (ω ∧ λ) ∧ σ.
2. Let ω1, ω2 be any k−forms and λ be an arbitrary p−form on M. Then (ω1 + ω2) ∧ λ = ω1 ∧ λ + ω2 ∧ λ.
3. Let ω1, ω2 be any k−form and λ be an arbitrary p−form on M. Then λ ∧ (ω1 + ω2) = λ ∧ ω1 + λ ∧ ω2.

From the last proposition we conclude that the set of all k−forms on M, Dk (M) with respect to sum and
product is a vector space.

Next we define an operator d : Dk (M)→ Dk+1 (M) and state some theorems about its properties that can
be easily proved.

Definition 4.9. Let f : M → R be a 0−form on M, where f is continuously differentiable function. Its differential
is a 1−form on M, d f =

∑n
i=1

∂ f
∂xi

dxi. Let ω =
∑

i ai

(
x
)

dxi is an arbitrary k−form on M, such that ai continuously

differentiable real function. Its differential is a k + 1−form on M, dω =
∑

i dai ∧ dxi =
∑

i
∑n

j=1
∂ai

∂x j
dx j ∧ dxi .

The proof of the next theorem is obtained in [1].

Theorem 4.10. The mapping d : Dk (M)→ Dk+1 (M) , k ∈ Z is linear, i.e.

1. d (ω + λ) = dω + dλ
2. d (cω) = c · dω.
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The statement of the following theorem is obtained from Calculus.

Theorem 4.11. Let f : M → R and 1 : M → R are 0−forms on M, where f and 1 are continuously differentiable
functions, then d

(
f1

)
= d f · 1 + f · d1.

Theorem 4.12. Let ω and λ are arbitrary k and m− forms on M, respectively. Then,

(ω ∧ λ) = dω ∧ λ + (−1)k ω ∧ dλ. (2)

Proof. The proof of this theorem is based on simple calculations considering two situations, first, assuming
that ω = aidxi and λ = b jdx j and plugging theorems 4.10 and 4.11 and second, assuming in general that
ω =

∑
i aidxi and λ =

∑
j b jdx j by plugging the result from the first assumption.

Definition 4.13. We say that ω is an exact differential k- form on M, then there exists k−1- form λ ∈ Dk−1 (M) such
that ω = dλ. We say that ω is a closed differential k- form on M if dω = 0.

Definition 4.14. We say a set M ⊆ Rn is cuboidle, if for any point x ∈M there exists rectangular cuboid

K =
{

y ∈ Rn
∣∣∣ ai ≤ yi ≤ bi , ai, bi ∈ R , i = 1,n

}
such that x ∈ K ⊆M.

A cuboidle set is TLLI set.

Theorem 4.15. Let ω =
∑

i aidxi be two times differentiable k- form on cuboidle set M ⊆ Rn, i.e. for all indices i the
functions ai : M→ R are two times differentiable on the set M. Then ddω = 0 on the set M.

Proof. 1 case: Let ω be an arbitrary 0−form f : M→ R on M, then

d2ω = d (dω) = d

 n∑
i=1

∂ f
∂xi

dxi

 =

n∑
i=1

d
(
∂ f
∂xi

dxi

)
=

n∑
i=1

 n∑
j=1

∂2 f
∂x j∂xi

 dx j ∧ dxi

In the sum above we consider two terms ∂2 f
∂x j∂xi

dx j∧dxi and ∂2 f
∂xi∂x j

dxi∧dx j. Because f is two times differentiable
function on cuboidle set M, then for any point x ∈M there exists rectangular cuboid

K =
{

y ∈ Rn
∣∣∣ ai ≤ yi ≤ bi , ai, bi ∈ R , i = 1,n ,

}
such that x ∈ K ⊆ M and considering Theorem 3.9 the equation ∂2 f

∂x j∂xi
(x) =

∂2 f
∂xi∂x j

(x) is true for any point
x ∈M.

Therefore, ∂2 f
∂x j∂xi

dx j ∧ dxi = (−1) ∂2 f
∂x j∂xi

dxi ∧ dx j = (−1) ∂2 f
∂xi∂x j

dxi ∧ dx j, and so all terms are cancelled between
them, i.e. d2 f = 0.
2 case: d

(
dxi

)
= d

(
1 · dxi

)
= d1 ∧ dxi = 0.

3 case: d
(
adxi

)
= da ∧ dxi

d2
(
adxi

)
= d

(
d
(
adxi

))
= d

(
da ∧ dxi

) (2)
=d2a ∧ dxi + (−1)k da ∧ d2xi = 0.

Let ω =
∑

i aidxi be two times differentiable k- form on a cuboidle set M ⊆ Rn, then dω =
∑

i dai ∧ dxi , d2ω =∑
i d2

(
aidxi

)
= 0.

Finally we conclude that ddω = 0 for any two times differentiable k- form ω on a cuboidle set M ⊆ Rn.
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Theorem 4.16. Let ω =
∑

i aidxi be a differentiable k- form on a cuboidle set M ⊆ Rn. If ω =
∑

i aidxi is an exact k−
form on the set M, then it is closed.

Proof. Since ω is an exact k− form on the set M, then there exists k − 1 - form λ ∈ Dk−1 (M) such that ω = dλ.
Because ω is a differentiable k- form on a cuboidle set then λ is two times differentiable k − 1- form on
cuboidle set M ⊆ Rn and by Theorem 4.11 ddλ = 0 on the set M, Therefore, dω = ddλ = 0 on the set M, so ω
is closed k- form on the set M.

The converse statement of Theorem 4.16 is not always true, but if we assume additionally that the
cuboidle set M ⊆ Rn is also convex set then any continuously differentiable closed k- form on M is exact as
shown in [5].

5. Conclusion

In our paper we consider a family of sets in n dimensional real space so called TLLI sets that is wider
than the family of open sets. Moreover, we define differentiability and differential forms on this family
of sets. So we show that it is possible to integrate over singular cube not only in a manifold as we know
by now but in a cuboidle set defined by the TLLI sets. At last we prove and state some theorems which
are necessary for the definition of de Rham cohomology in order to complete the proof of the De Rham
Theorem on a wider family than manifolds that we have shown in [6] .
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[6] G. De Rham, Sur l’analysis situs des variétés à n dimensions, Journal de Mathematiques Pures et Appliqués, 10 (1934), 115–200.
[7] S. Eilenberg, Singular homology in differentiable manifolds,Annals of Mathematics, 48, No. 3 (1947), 670–681.
[8] N. Shekutkovski, A. Velkoska, Theorem of de Rham on TLLI sets, Proc. of IV congress of math. of R. Macedonia, (2008), 300–317.
[9] O. Shisha, Derivative without limit, J. Math. Anal. Appl. 113 (1986), 280–287.


