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Abstract. In this paper, we use a generalized form for the Jordan totient function in order to extend the
Reciprocal power GCDQ matrices and power LCMQ matrices from the standard domain of natural integers
to Euclidean domains. Structural theorems and determinantal arguments defined on both arbitrary and
factor-closed q-ordered sets are presented over such domains. We illustrate our work in the case of Gaussian
integers.

1. Introduction

Let T = {t1, t2, ..., tm} be a well ordered set of m distinct positive integers with t1 < t2 < ... < tm. The
GCD matrix defined on T is (T)m×m = (ti, t j), where (ti, t j) is the greatest common divisor of ti and t j. The
LCM matrix defined on T is [T]m×m =

[
ti, t j

]
, where

[
ti, t j

]
is the least common multiple of ti and t j. If r

is any real number, then the rth power GCD matrix defined on T is (Tr)m×m = (ti, t j)r, and the rth power

LCM matrix defined on T is [Tr]m×m =
[
ti, t j

]r
. Moreover, set T = {t1, t2, ..., tm} is said to be factor-closed

if t ∈ T for any divisor t of ti ∈ T, and it is gcd-closed if (ti, t j) ∈ T for all ti and t j in T. In 1876, Smith

[18] showed that if T = {1, 2, ...,m}, then det (T) =
m
Π
i=1
φ(i) and det[T] =

m
Π
i=1
φ(i)π(i), where φ is Euler’s totient

function and π is a multiplicative function such that π(pk) = −p. Moreover, Smith showed that the results
hold true for any factor-closed set. In 1989, Beslin and El-Kassar [3] extended the concept of GCD matrices
and Smith’s determinant to unique factorization domains. In 1989/92, Beslin and Ligh [2, 4, 5] factorized
the GCD matrices defined on gcd-closed sets, and they computed their determinants. In addition, they
obtained the structural theorems for the LCM matrices and showed that they are non-singular. Later, in
1992, Borque and Ligh [6] conjectured that the LCM matrices defined on gcd-closed sets are invertible. In
1996, Chun [7] introduced the concept of power GCD and LCM matrices, and presented their structures,
determinants and inverses over the domain of natural integers. In 1996, Haukkanen and Sillanpaa [13]
studied the GCD and LCM matrices for lcm-closed and gcd-closed sets. In 1997, Haukkanen [12], in his
famous paper ”On Smith’s Determinant”, gave a counter example for Bourque and Ligh’s conjecture. In
1998, Hong [14, 15] showed inductively that det (T) divides det [T] if T is gcd-closed and m ≤ 3, and he gave
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a counter example in case m ≥ 4. In 2009, Hong et al. [16] generalized the power GCD matrices defined
on factor-closed sets from the standard settings Z to unique factorization domains. El-Kassar et al. [8–11]
extended many results concerning the GCD and LCM matrices defined on factor-closed sets to principal
ideal domains. Recently, Awad et al. [1] gave a generalization for the power GCD and LCM P-matrices
defined on gcd-closed sets over unique factorization domains, where the results found in literature are
considered as special cases if the domain of natural integers is taken in particular. In this paper, we give a
generalization for the Reciprocal power GCDQ and power LCMQ matrices defined on both arbitrary and
factor-closed q-ordered sets of non-zero non-associate elements in any Euclidean domain S. In addition,
some examples in Z[i] are given in order to describe what have been done.

2. Preliminaries

Definition 2.1. The nonempty set P = {p1, p2, p3, ...} is said to be a prime residue system of an Euclidean domain S
if P is a complete well-ordered set of non-zero non-associate prime elements in S.

Definition 2.2. If T = {t1, t2, ..., tm} is a set of non-zero non-associate elements in an Euclidean domain S with
measure q and prime residue system P = {p1, p2, p3, ...}, then the list of well-ordered primes {p1, p2, ..., pi} in P whose
elements divide all the elements of T and its ordering is inherited from the well-ordering of P is said to be a complete
prime residue system of T in S.

Definition 2.3. If T = {t1, t2, ..., tm} is a set of non-zero non-associate elements in an Euclidean domain S with
measure q, then the q-ordering <q in S is a linear ordering defined via the following scheme: ti <q t j if q(ti) < q(t j)
and ti ≈ t j if q(ti) = q(t j).

Hence, if T = {t1, t2, ..., tm} such that t1 <q t2 <q ... <q tm, then T is q-ordered.

Definition 2.4. Let S be an Euclidean domain with measure q and prime residue system P, and let x be a non-zero
element in S with the unique prime factorization x ≈ upα1

1 pα2
2 ...p

αm
m , where pi ∈ P, αi ∈N , and u is a unit in S. Define

the totally multiplicative function φs(x) as

φs(x) =

m∏
i=1

q
(
pαi−1

i

) (
(q(pi) − 1

)
,

and φs(u) = 1.

Theorem 2.5. If x ∈ S and E(x) is a complete set of distinct non-associate divisors d of x in S, then q(x) =
∑

d∈E(x)

φs(d).

Proof. See [8]

Definition 2.6. Let x = upα1
1 pα2

2 ...p
αm
m be a non-zero element in S. Define the Jordan totient function Jk,s on S − {0}

to be the multiplicative function Jk,s(x) =
m∏

i=1
q
(
pi
)k(αi−1)

(
q(pi)k

− 1
)

with Jk,s(x) = 1 if x is unit.

Theorem 2.7. If x ∈ S and E(x) is a complete set of distinct non-associate divisors d of x in S, then q (x)k =
∑

d∈E(x)

Jk,s(d).

Proof. Since Jk,s (x) is multiplicative, then q(x) =
∑

d∈E(x)
Jk,s(d) is also multiplicative. Hence,∑

d∈E(pαi
i )

Jk,s(d) = 1 + q
(
pi
)k(1−1) [q(pi)k

− 1] + q
(
pi
)k(2−1) [q(pi)k

− 1] + ... + q
(
pi
)k(αi−1) [q(pi)k

− 1]

= 1 + q
(
pi
)k
− 1 + q

(
pi
)2k
− q

(
pi
)k + ... + q

(
pi
)kαi
− q

(
pi
)k(αi−1)

= q
(
pαi

i

)k
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Definition 2.8. Let P = {p1,p2, ..., pm} be a complete prime residue system of an Euclidean domain S. An element
d ∈ P is said to be a P-divisor of x ∈ S if d divides x. Moreover, if x and y are both non-zero elements in S, then the
greatest common P-divisor of x and y in S is denoted by

(
x, y

)
p which is unique up to order and up to associates.

Definition 2.9. Let T = {t1, t2, ..., tm} be a q-ordered set of non-zero non-associate elements in an Euclidean domain
S with measure q and prime residue system P, and let r be any real number. The rth power GCD q-matrix defined on
T is the m ×m matrix(Tr)q whose i jth entry is (ti j)r = q

(
(ti, t j)p

)r
, where (ti, t j)p is the greatest common P-divisor of

ti and t j in S.

3. Reciprocal Power GCDQ Matrices over Euclidean Domains

In this section, we study the factorizations and determinants of the rth power Reciprocal GCDQ matrices
defined on q-ordered sets of non-zero non-associate elements in an Euclidean domain S. Moreover, we
present some examples in Z[i].

Definition 3.1. If T = {t1, t2, ..., tm} is a q-ordered set of non-zero non-associate elements in S, then the rth power

Reciprocal GCDQ matrix defined on T over S is the matrix
(
1/(Tr)q

)
whose i jth entry is (ti j)−r =

1
(ti j)r

.

3.1. Factorizations of Reciprocal Power GCDQ Matrices over Euclidean Domains
Theorem 3.2. If T = {t1, t2, ..., tm} is a q-ordered set of non-zero non-associate elements in S, then the Reciprocal
power GCDQ matrix

(
1/(Tr)q

)
= E (1/Gr) ET, where (1/Gr) is a diagonal matrix and E is a lower triangular incidence

matrix.

Proof. Let D = {y1, y2, ..., yn} be the minimal factor-closed set containing T = {t1, t2, ..., tm} in S, and let
E(t) be a complete set of non-associate divisors d for every ti in T. Consider the n × n diagonal matrix
(1/Gr) = dia1(J−r,s(y1), J−r,s(y2), ... , J−r,s(yn)), and the m × n incidence matrix E = (ei j) such that ei j = 1 if
y j ∈ E(ti) and 0 otherwise. Then,

(E (1/Gr) ET)i j =

n∑
k=1

(eik J−r,s(yk)e jk) =
∑

yk∈E(ti)
yk∈E(t j)

J−r,s(yk) =
∑

yk∈E((ti,t j))

J−r,s(yk) = [q(ti, t j)]−r.

Example 3.3. If T = {1, 1 + i, 2 + i} is a q-ordered factor-closed set in the Euclidean domain Z[i] with measure
q (a + bi) = a2 + b2, then the 2nd power Reciprocal GCDQ matrix has the following factorization:

E (1/Gr) ET =

 1 0 0
1 1 0
1 0 1


 1 0 0

0 −
3
4 0

0 0 −
24
25


 1 1 1

0 1 0
0 0 1

 =

 1 1 1
1 1

4 1
1 1 1

25

 =
(
1/(T2)q

)
Theorem 3.4. If T = {t1, t2, ..., tm} is a q-ordered set of non-zero non-associate elements in S, then the Reciprocal
power GCDQ matrix

(
1/(Tr)q

)
can be decomposed into a product of an m × n matrix (1/Gr) and its n ×m incidence

matrix (1/Br) for some positive integer n ≥ m, where the non-zero entries of (1/Gr) are J−r,s(d) for some divisor d in
the minimal factor-closed set D containing T in S.

Proof. Let D = {y1, y2, ..., yn} be the minimal factor-closed set containing T = {t1, t2, ..., tm} in S, and let E(t)
be a complete set of non-associate divisors d for every ti in T. Consider the m × n matrix (1/Gr) = (1i j) such
that 1i j = J−r,s(y j) if y j ∈ E(ti) and 0 otherwise, and the n ×m matrix (1/Br) = (bi j) such that bi j = 1 if 1 ji , 0
and 0 otherwise, which is an incidence matrix relative to (1/Gr). Then,

((1/Gr) (1/Br))i j =

n∑
k=1

(1ikbkj) =
∑

yk∈E(ti), yk∈E(t j)

J−r,s(yk) =
∑

yk∈E((ti,t j)p)

J−r,s(yk) = [q(ti, t j)]−r.
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Example 3.5. If T is defined as above, then

(1/G2) (1/B2) =

 1 0 0
1 −

3
4 0

1 0 −
24
25


 1 1 1

0 1 0
0 0 1

 =

 1 1 1
1 1

4 1
1 1 1

25

 =
(
1/(T2)q

)
Theorem 3.6. If T = {t1, t2, ..., tm} is a q-ordered set of non-zero non-associate elements in S, and if D = {y1, y2, ..., yn}

is the minimal factor-closed set containing T in S, then the Reciprocal power GCDQ matrix can be decomposed into
the product

(
1/(Tr)q

)
= (1/Gr) (1/Gr)

T, where (1/Gr) is an m × n matrix.

Proof. Let F be an extension of the field of fractions F over S in which J−r,s(t) has a square root for every
ti ∈ T. Let D = {y1, y2, ..., yn} be the minimal factor-closed set containing T in S, and let E(x) be a complete set
of distinct non-associate divisors d of x in S. Define the m×n matrix (1/Gr) whose i jth entry is 1i j =

√
J−r,s(y j)

if y j ∈ E(ti), and 0 otherwise. Then,

(G−rGT
−r)i j =

n∑
k=1

(1ik1 jk) =
∑

yk∈E(ti)
yk∈E(t j)

√
J−r,s(yk)

√
J−r,s(yk) =

∑
yk∈E((ti,t j)p)

J−r,s(yk) = [q(ti, t j)p]−r = (ti j)−r.

Example 3.7. If T = {1, 1 + i, 2 + i}, then

(1/G2) (1/G2)T =


1 0 0

1
√
−

3
4 0

1 0
√
−

24
25




1 1 1

0
√
−

3
4 0

0 0
√
−

24
25

 =

 1 1 1
1 1

4 1
1 1 1

25

 =
(
1/(Tr)q

)

3.2. Determinants of Reciprocal Power GCDQ Matrices over Euclidean Domains
Theorem 3.8. If T = {t1, t2, ..., tm} is a q-ordered factor-closed set of non-zero non-associate elements in S, then

det
(
1/(Tr)q

)
=

m∏
i=1

J−r,s(ti).

Proof. Since T = {t1, t2, ..., tm} is a q-ordered factor-closed set of non-zero non-associate elements in S, then
T ≈ D = {y1, y2, ..., ym} and

(
1/(Tr)q

)
= E (1/Gr) ET, where E is a lower triangular matrix with diagonal entries

ei j = 1. Thus,

det
(
1/(Tr)q

)
= det

(
E (1/Gr) ET

)
= det(E) det (1/Gr) det(ET) = det (1/Gr) =

m∏
i=1

J−r,s(ti).

Note that the proof of the above theorem could be obtained by using the other factorizations.

Example 3.9. If T = {1, 1 + i, 2 + i}, then det
(
1/(T2)q

)
= J−2,s(1) × J−2,s(1 + i) × J−2,s(2 + i) = 1 × −3

4 ×
−24
25 = 18

25

Theorem 3.10. Let D = {y1, y2, ..., yn} be the minimal q-ordered factor-closed set of non-zero non-associate elements
in S containing T = {t1, t2, ..., tm} with m < n, y1 <q y2 <q ... <q yn, and t1 <q t2 <q ... <q tm. For some indices ki

such that 1 < k1 < k2 < ... < km < n, let Er(k1 ,k2 ,...,km ) be the submatrix consisting of the kth
1 , k

th
2 , ..., k

th
m columns of E.

Then,

det
(
1/(Tr)q

)
=

∑
1≤k1<k2<...<km≤n

(det Er(k1 ,k2 ,...,km )

)2
m∏

i=1

J−r,s(yki )

 .
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Proof. Let E = (1/Br)
T so that

(
1/(Tr)q

)
= (1/Gr) (1/Br) = (1/Gr) ET. Hence, the i jth entry of (1/Gr) may be

written as 1i j = ei j J−r,s(y j), where ei j = 1 if y j ∈ E(ti) and 0 otherwise. Define, for some indices ki such that
1 < k1 < k2 < ... < km < n, the submatrices Gr(k1 ,k2 ,...,km ) and Er(k1 ,k2 ,...,km ) which consist of the kth

1 , k
th
2 , ..., k

th
m columns

of matrix (1/Gr), and matrix E, respectively. Then, Gr(k1 ,k2 ,...,km) = Er(k1 ,k2 ,...,km) D, where D is a m × m diagonal
submatrix of (1/Gr) whose diagonal elements are dii = J−r,s(yki ). Therefore,

det(Gr(k1 ,k2 ,...,km )) = det(Er(k1 ,k2 ,...,km ) )

 m∏
i=1

dii

 .
Applying Cauchy-Binet formula we obtain that

det
(
1/(Tr)q

)
= det

(
(1/Gr) ET

)
=

∑
1≤k1<k2...<km≤n

((
det Gr(k1 ,k2 ,...,km)

) (
det Er(k1 ,k2 ,...,km )

)T
)

=
∑

1≤k1<...<km≤n

det(Er(k1 ,k2 ,...,km ) )

 m∏
i=1

J−r,s(yki )

 (det Er(k1 ,k2 ,...,km )

)T

=
∑

1≤k1<k2...<km≤n


 m∏

i=1

J−r,s(yki )

 (det Er(k1 ,k2 ,...,km)

)2


Example 3.11. Let T = {1, 2, 1 + 3i, 5} be an arbitrary set in Z[i]. Since T is not factor-closed in Z[i], let
D = {1, 1 + i, 2, 2 + i, 1 + 2i, 1 + 3i, 5} be the minimal factor-closed set containing T in Z[i]. It r = 2, then

(
1/(T2)q

)
=


1 1 1 1
1 1

16
1
4 1

1 1
4

1
100

1
25

1 1 1
25

1
625

 , (1/G2) =


1 0 0 0 0 0 0
1 −3

4
−3
16 0 0 0 0

1 −3
4 0 −24

25 0 18
25 0

1 0 0 −24
25

−24
25 0 576

625

 , E =


1 0 0 0 0 0 0
1 1 1 0 0 0 0
1 1 0 1 0 1 0
1 0 0 1 1 0 1


Hence,

det
(
1/(T2)q

)
=

∑
1≤k1<k2.....<k4≤7


 4∏

i=1

J−2,s(yki )

 (det E(k1,k2,k3,k4)2

)2


= J−2,s(1)J−2,s(1 + i)J−2,s(2)J−2,s(2 + i)[det E(1,2,3,4)2 ]2

+ J−2,s(1)J−2,s(1 + i)J−2,s(2)J−2,s(1 + 2i)[det E(1,2,3,5)2 ]2

+ J−2,s(1)J−2,s(1 + i)J−2,s(2)J−2,s(5)[det E(1,2,3,7)2 ]2

+ J −2,s (1)J−2,s(1 + i)J−2,s(2 + i)J−2,s(1 + 2i)[det E(1,2,4,5)2 ]2

+ J−2,s(1)J−2,s(1 + i)J−2,s(2 + i)J−2,s(1 + 3i)[det E(1,2,4,6)2 ]2

+ J−2,s(1)J−2,s(1 + i)J−2,s(2 + i)J−2,s(5)[det E(1,2,4,7)2 ]2

+ J−2,s(1)J−2,s(1 + i)J−2,s(1 + 2i)J−2,s(1 + 3i)[det E(1,2,5,6)2 ]2

+ J−2,s(1)J−2,s(1 + i)J−2,s(1 + 3i)J−2,s(5)[det E(1,2,6,7)2 ]2

+ J−2,s(1)J−2,s(2)J−2,s(2 + i)J−2,s(1 + 2i)[det E(1,3,4,5)2 ]2

+ J−2,s(1)J−2,s(2)J−2,s(2 + i)J−2,s(1 + 3i)[det E(1,3,4,6)2 ]2

+ J−2,s(1)J−2,s(2)J−2,s(2 + i)J−2,s(5)[det E(1,3,4,7)2 ]2

+ J−2,s(1)J−2,s(2)J−2,s(1 + 2i)J−2,s(1 + 3i)[det E(1,3,5,6)2 ]2

+ J−2,s(1)J−2,s(2)J−2,s(1 + 3i)J−2,s(5)[det E(1,3,6,7)2 ]2

=
6237
12500

.
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4. Power LCMQ Matrices over Euclidean Domains

In this section, we study the structure theorems and determinants of the rth power LCMQ matrices
defined on q-ordered sets of non-zero non-associate elements in an Euclidean domain S. Moreover, we
present some examples in Z[i]. Let P = {p1, p2, ..., pm} be a complete prime residue system of S. A non-zero
element d ∈ S is said to be a P-multiple of another element x in S if x divides d and d is associate to a product
of elements in P. If x and y are both non-zero elements in S, then the least common P-multiple of x and y
in S is denoted by [x, y]p.

Definition 4.1. Let T = {t1, t2, ..., tm} be a q-ordered set of non-zero non-associate elements in an Euclidean domain
S with measure q and a prime residue system P. Define the rth power LCMQ matrix defined on T to be the m × m
square matrix [Tr]q such that its i jth entry is (ti j)r =

(
q[ti, t j]p

)r
.

4.1. Structures of the Power LCMQ Matrices Defined on Factor Closed Sets over Euclidean Domains

Theorem 4.2. let T = {t1, t2, ..., tm} be a q-ordered set of non-zero non-associate elements in S, then the power LCMQ
matrix [Tr]q can be written, up to associates, as [Tr]q = DrEG−rETDr.

Proof. Let D = {y1, y2, ..., yn} be the minimal q-ordered factor-closed set of non-zero non-associate elements
in S containing T = {t1, t2, ..., tm}with m ≤ n. Consider the n × n diagonal matrix

(1/Gr) = dia1(J−r,s(y1), J−r,s(y2), ..., J−r,s(yn)),

and the m ×m diagonal matrix

Dr = dia1(q[t1]r, q[t2]r, ..., q[tm]r).

If E = (ei j) is an m × n incidence matrix defined as ei j = 1 if y j ∈ E(ti) and 0 otherwise, then

(DrEA−rETDr)i j ≈ (Dr(T−r)Dr) = q[tr
i ](T

−r)i jq[tr
j] =

q[tr
i ]q[tr

j]

[q(ti, t j)]r = q

 tr
i t

r
j

(ti, t j)r

 = [q[ti, t j]p]r = (ti j)r.

Example 4.3. Let T = {1, 1 + i, 2 + i} be a factor-closed set in Z[i], then the determinant of the 2nd power LCMQ
matrix is:

[T2]q =

 1 4 25
4 4 100
25 100 25


and has the following decomposition

D2T−2D2 =

 1 0 0
0 4 0
0 0 25


 1 1 1

1 1
4 1

1 1 1
25


 1 0 0

0 4 0
0 0 25

 =

 1 4 25
4 4 100

25 100 25

 = [T2]q

4.2. Determinants of the Power LCMQ Matrices on Factor Closed Sets Over Euclidean Domains

Theorem 4.4. Let T = {t1, t2, ..., tm} be a q-ordered factor-closed set of non-zero non-associate elements in an Euclidean
domain S with measure q, then

det
(
[Tr]q

)
=

m∏
i=1

J−r,s(ti)q(ti)2r.
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Proof. Since T = {t1, t2, ..., tm} is a q-ordered factor-closed set in S, then T ≈ D = {y1, y2, ..., ym}, and [Tr]q =
DrEG−rETDr, where E is a lower triangular matrix with diagonal entries eii = 1 and det(E) = 1. Therefore,

det
(
[Tr]q

)
= det(DrEG−rETDr) = det(Dr) det(E) det((1/Gr)) det(ET) det(Dr)

=
∏
i=1

q(ti)r
× det((1/Gr)) ×

m∏
i=1

q(ti)r =

m∏
i=1

J−r,s(ti)q(ti)2r.

Example 4.5. Let T = {1, 1 + i, 2 + i} be a factor-closed set in Z[i], then the determinant of the 2nd power LCMQ
matrix

[T2]q =

 1 4 25
4 4 100
25 100 25


is

det
([

T2
]

q

)
= J−2,s(1)q(1)2×2 J−2,s(1 + i)q(1 + i)2×2 J−2,s(2 + i)q(2 + i)2×2

= 1 × 14
×

(
−

3
4

)
× 24
×

(
−

24
25

)
× 54 = 7200.
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