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Abstract. In this paper, by making use of uniqueness polynomials for meromorphic functions, we obtain
a class of uniqueness polynomials for holomorphic curves from the complex plane into complex projective
space. The related uniqueness problems are also considered.

1. Introduction and Results

We first recall the definitions of sharing values and sets which play an important role in the development
of uniqueness theory of meromorphic functions. Let f and 1 be two non-constant meromorphic functions
in the complex plane C and let a be a finite complex number. We say that f and 1 share the value a CM
(counting multiplicities) , provided that f − a and 1 − a have the same zeros with the same multiplicities.
Similarly, we say that f and 1 share the value a IM (ignoring multiplicities), provided that f − a and 1 − a have
the same set of zeros, where the multiplicities are not taken into account. In addition we say that f and 1
share∞ CM (IM), if 1/ f and 1/1 share 0 CM (IM).

Let S be a set of distinct elements of C ∪ {∞} and

E f (S) =
⋃
a∈S

{z; f (z) − a = 0},

where each zero is counted according to its multiplicity. If multiplicities are not counted, then the set is
denoted by E f (S). If E f (S) = E1(S) we say that f and 1 share the set S CM. On the other hand, if E f (S) = E1(S),
we say that f and 1 share the set S IM.

In [1], F. Gross proposed the following problem ( known as “Gross-problem ”) which has a significant
influence on uniqueness theory of meromorphic functions: Whether there exist two (even one) finite sets
S j ( j = 1, 2) such that E f (S j) = E1(S j) ( j = 1, 2) can imply f ≡ 1 for any pair of nonconstant entire functions f
and 1 ? Since then many authors have found such two finite sets (called unique range sets) with as small
cardinalities as possible. See [2–4, 6].

P. Li and C. C. Yang [13] seem to have been the first to draw a connection between unique range sets
and zeros of polynomials.
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A polynomial P ∈ C[t] is called a uniqueness polynomials for meromorphic functions (UPM) if

P( f ) = P(1)⇒ f = 1

for all nonconstant meromorphic functions f and 1 on C.
In the last years, much attention has been given to find uniqueness polynomials for meromorphic

functions. For instance, Yi [7], Yang and Hua [8] proved

Theorem 1.1. [7, 8] For m,n ∈ N∗, let P(z) = zn
− azn−m + b, a, b ∈ C∗. Then P(z) is a UPM if (m,n) = 1,n >

m + 1,m ≥ 2.

Recall that the N−dimensional complex projective space

PN(C) = CN+1
− {0}/ ∼,

where
(a0, . . . , aN) ∼ (b0, . . . , bN) if and only if (a0, . . . , aN) = λ(b0, . . . , bN)

for some λ ∈ C. We denote by [a0 : · · · : aN] the equivalence class of (a0, . . . , aN). Throughout this paper, we
fix homogeneous coordinates [x0 : · · · : xN] on PN(C). Let H be a hypersurface of degree d in PN(C) defined
by the equation ∑

I∈Td

aIXI = 0

where Td = {(i0, . . . , iN) ∈ NN+1; i0 + · · · + iN = d}, XI = xi0
0 · · · x

iN
N for I = (i0, . . . , iN). Sometimes, we identify

the hypersurface H with its defining polynomial, i. e. , we will write

H(x0, . . . , xN) =
∑
I∈Td

aIXI.

Since a meromorphic function on C is also a holomorphic curve from C into the complex projective with
dimension 1, it is natural to generalize the results about UPM to the case of holomorphic curves from C
into PN(C). Now we recall the following definition

Definition 1.2. A homogeneous polynomial P of variables x0, . . . , xN is called a uniqueness polynomials for holo-
morphic curves (UPC) if

P( f̃ ) = P(1̃)⇒ f = 1

for all algebraically nondegenerate holomorphic curves f and 1 from C into PN(C).

In 1997, Shirosaki [9] proved the homogeneous polynomial

H(x0, x1) = xn
0 + xm

0 xn−m
1 + xn

1

is a uniqueness polynomial for holomorphic curves from C into P1(C) if (m,n) = 1,n > 2m + 8,m ≥ 2.
Afterwards, he constructed inductively uniqueness polynomials for algebraically nondegenerate holomor-
phic curves into PN(C). In 2005, T. V. Tan [10] improved Shirosaki’s result to more general cases and hence
obtained a larger class of UPCs.

In 2011, V. H. An and T. D. Duc [11] obtained a UPC related to Theorem 1.1.

Theorem 1.3. [11] Suppose that m,n ∈ N∗ with (m,n) = 1,m ≥ 2,n ≥ 2m + 9. Let

Pi(xi, xN) = xn
i − aixn−m

i xm
N + bixn

N, (0 ≤ i ≤ N − 1),

where ai, bi ∈ C∗, 0 ≤ i ≤ N − 1 and b2d
i , bd

j b
d
l with i , j, i , l. Then PN,d :=

∑N−1
i=0 Pd

i (xi, xN) is a UPC if
d ≥ (2N − 1)2.
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Note that the homogeneous polynomial Pi(xi, xN) = xn
i − aixn−m

i xm
N + bixn

N is the homogeneous equation
of the polynomial P̃i(x) = xn

− aixn−m + bi as in Theorem 1.1, that is Pi(xi, xN) = xn
NP̃i(

xi
xN

). Inspired by this
heuristic, we present, in this article, a connection between the UPCs and the UPMs, which provides a class
of uniqueness polynomials for holomorphic curves from C into complex projective space.

Theorem 1.4. (Main Result) Suppose that m,n, d ∈ N∗ with n ≥ 2m + 9, d ≥ (2N − 1)2. Let

P̃i(x) =
m∑
µ=0

ai
n−µxn−µ + bi

be a UPM, where ai
µ, bi ∈ C, 0 ≤ µ ≤ m, ai

n , 0, bi , 0, ai
n−µ0
, 0 for some µ0 ∈ {1, . . . ,m} (0 ≤ i ≤ N − 1). Set

Pi(xi, xN) =
m∑
µ=0

ai
n−µxn−µ

i xµN + bixn
N, (0 ≤ i ≤ N − 1).

If b2d
i , bd

j b
d
k with i , j, i , k, then PN,d :=

∑N−1
i=0 Pd

i (xi, xN) is a UPC.

In particular, Theorem 1.4 generalizes Theorem 1.3 in the case of P̃i(x) = xn
− aixn−m + bi (0 ≤ i ≤ N − 1).

In addition, Theorem 1.4 can yield some new UPCs. For example, as a corollary of the result of G. Frank
and M. Reinders [12], we have the polynomial

P(x) =
(n − 1)(n − 2)

2
xn
− (n − 1)(n − 2)xn−1 +

n(n − 1)
2

xn−2
− c

is a UPM, where n(≥ 11) is a positive integer and c(, 0, 1) is a constant. Thus, Theorem 1.4 implies the
following

Corollary 1.5. Suppose that n ∈ N∗ with n ≥ 11. For 0 ≤ i ≤ N − 1, let

Pi(xi, xN) =
(n − 1)(n − 2)

2
xn

i − (n − 1)(n − 2)xn−1
i xN +

n(n − 1)
2

xn−2
i x2

N + bixn
N,

where b2d
i , bd

j b
d
k with i , j, i , k. Then PN,d :=

∑N−1
i=0 Pd

i (xi, xN) is a UPC if d ≥ (2N − 1)2.

Let PN,d be the homogeneous polynomial defined in Theorem 1.4. Now consider the hypersurface S in
PN(C), which is defined by the equation PN,d(x0, . . . , xN) = 0. For a holomorphic curve f : C → PN(C), we
denote by f ∗S the pull-back of the divisor S in C by f . By Theorem 1.4, we have the following uniqueness
theorem.

Corollary 1.6. Suppose that m,n, d ∈ N∗ with n ≥ 2m + 9, d ≥ (2N − 1)2. Let f and 1 be two algebraically
nondegenerate holomorphic curves from C into PN(C). Let S be the hypersurface defined as above. Assume that
b2d

i , bd
j b

d
k with i , j, i , k. If f ∗S = 1∗S, then f = 1.

2. Preliminaries

We start with relevant notions and definitions. For details see [13–15]. Let D be a domain in C,
f : D → PN(C) be a holomorphic curve and U be an open set in D. Any holomorphic curve f̃ : U → CN+1

such that P( f̃ (z)) ≡ f (z) in U is called a representation of f on U,where P : CN+1
− {0} → PN(C) is the standard

projective map.

Definition 2.1. For an open subset U of D we call a representation f̃ = ( f0, . . . , fN) a reduced representation of f on
U if f0, . . . , fN are holomorphic functions on U without common zeros.
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Remark 2.2. As is easily seen, if both f̃ j : U j → CN+1 are reduced representations of f for j = 1, 2 with U1∩U2 , φ
then there is a holomorphic function h(, 0) : U1 ∩U2 → C such that f̃2 = h f̃1 on U1 ∩U2.

Remark 2.3. Every holomorphic curve f : C→ PN(C) has a reduced representation on the totality of C. See [16].

Definition 2.4. Let f : C → PN(C) be a holomorphic curve with a representation f̃ . If there exists no nonzero
homogeneous polynomial H(x0, . . . , xN) such that H( f̃ ) ≡ 0, then it is said that f is algebraically nondegenerate.

Obviously, for holomorphic curves from C into P1(C), i.e., meromorphic functions, algebraically nonde-
generacy coincides with nonconstantness.

In order to prove our main result, we need the following lemmas.

Lemma 2.5. [15] Let F j . 0, 0 ≤ j ≤ N be holomorphic functions on C, and let d ∈ N∗. Assume that

Fd
0 + · · · + Fd

N = 0.

If d > (N + 1)(N − 1), there is a partition of indices, {0, 1, . . . ,N} = ∪Iα such that
(i) the cardinality |Iα| ≥ 2 for every Iα,
(ii) Fi/F j = ci j ∈ C for all i, j ∈ Iα,
(iii)

∑
i∈Iα Fd

i = 0.

Lemma 2.6. [17] Let 1 j(x0, . . . , xN) be homogeneous polynomial of degree δ j for 0 ≤ j ≤ N. Suppose there exists a
holomorphic curve f : C→ PN(C) so that its images lies in

N∑
j=0

xd−δ j

j 1 j(x0, . . . , xN) = 0.

and d > (N+1)(N−1)+
∑N

j=0 δ j.Then there is a nontrivial linear relation among xd−δ j

1 11(x0, . . . , xN), . . . , xd−δ j

N 1N(x0, . . . , xN)
on the image of f .

3. Proofs

3.1. Proof of Theorem 1.4
Proof. Suppose that f and 1 be two holomorphic curves from C into PN(C) with reduced representations
f̃ = ( f0, . . . , fN), 1̃ = (10, . . . , 1N), respectively, such that PN,d( f̃ ) = PN,d(1̃). Then we get

Pd
0( f0, fN) + · · · + Pd

N−1( fN−1, fN) − Pd
0(10, 1N) − · · · − Pd

N−1(1N−1, 1N) = 0. (3.1)

Since d ≥ (2N−1)2, f and 1 are algebraically nondegenerate holomorphic curves, from Lemma 2.5 it follows
that there exists some permutation, says σ, σ : {0, 1, · · · ,N − 1} → {0, 1, · · · ,N − 1} such that

Pi( fi, fN) = AiPσ(i)(1σ(i), 1N), (3.2)

where Ad
i = 1, 0 ≤ i ≤ N − 1. Fix Bi such that Bn

i = Ai, 0 ≤ i ≤ N − 1. Then

˜̂1 = (1̂0, . . . , 1̂N) := (Bi10, . . . ,Bi1N)

is also a reduced representation of 1 and

Pi( fi, fN) = Pσ(i)(1̂σ(i), 1̂N), (3.3)

for 0 ≤ i ≤ N − 1.

Claim 1 bi f n
N = bσ(i)1̂

n
N for 0 ≤ i ≤ N − 1.
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We have from (3.3) that

1̂n−m
σ(i)

( m∑
µ=0

aσ(i)
n−µ1̂

m−µ
σ(i) 1̂

µ
N

)
− f n−m

i

( m∑
µ=0

ai
n−µ f m−µ

i f µN
)
− bi f n

N + bσ(i)1̂
n
N = 0. (3.4)

for 0 ≤ i ≤ N − 1. We now define the holomorphic curve F1 from C into P3(C) induced by the mapping
F̃1(z) = (1̂σ(i), fi, fN, 1̂N). By (3.4), we see that the images of F lies in

xn−m
0

( m∑
µ=0

aσ(i)
n−µxm−µ

0 xµ3
)
− xn−m

1

( m∑
µ=0

ai
n−µxm−µ

1 xµ2
)
− bixn

2 + bσ(i)xn
3 = 0.

Since n > 2m + 8, it follows from Lemma 2.6 that the homogeneous polynomials

xn−m
1

( m∑
µ=0

ai
n−µxm−µ

1 xµ2
)
, bixn

2 , bσ(i)xn
3

are linearly dependent on the image of F1.Hence, there exist constants C1,C2,C3 with (C1,C2,C3) , (0, 0, 0),
such that

C1bσ(i)1̂
n
N + C2bi f n

N + C3 f n−m
i

( m∑
µ=0

ai
n−µ f m−µ

i f µN
)
= 0. (3.5)

Note that the holomorphic curve f is algebraically nondegenerate, we then have C1 , 0. If C1,C2,C3 , 0,
we can define the holomorphic curve F2 from C into P2(C) induced by the mapping F̃2(z) = (1̂N, fN, fi).
Similarly, by (3.5) and Lemma 2.6, we obtain

D1bi f n
N +D2 f n−m

i

( m∑
µ=0

ai
n−µ f m−µ

i f µN
)
= 0

for some constants D1,D2 with (D1,D2) , 0.Which is a contradiction to the assumption that f is algebraically
nondegenerate. Therefore, we have C1 , 0 and one of C2,C3 is 0.We next consider the following two possible
cases.

If C2 = 0, then C3 , 0. By the assumption of the theorem that ai
n−µ0
, 0 for some µ0 ∈ {1, . . . ,m}, we can

rewrite (3.5) as the following

C1bσ(i)1̂
n
N + C3ai

n−µ0
f n−µ0

i f µ0

N + C3 f n−m
i

( ∑
µ∈{0,...,m},µ,µ0

ai
n−µ f m−µ

i f µN
)
= 0.

In the exactly same way, we obtain f is algebraically degenerate by Lemma 2.6. Again, we get a contradic-
tion.

If C3 = 0, then C2 , 0. Thus, we deduce by (3.5) that

bσ(i)1̂
n
N = −

C2

C1
bi f n

N. (3.6)

Then 1̂N = c fN holds for some constant c , 0. Combing this with (3.4) and (3.6) yields that

1̂n−m
σ(i)

( m∑
µ=0

aσ(i)
n−µcµ1̂m−µ

σ(i) f µN
)
− f n−m

i

( m∑
µ=0

ai
n−µ f m−µ

i f µN
)
− bi

(
1 +

C2

C1

)
f n
N = 0.

Suppose that 1 + C2
C1
, 0. By the similar arguments above for the holomorphic curve F3 from C into P2(C)

induced by the mapping F̃3(z) = (1̂σ(i), fN, fi) we obtain a contradiction. Hence, 1+ C2
C1
= 0 and Claim 1 holds.
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Claim 2 The map σ is an identity, that is σ(i) = i for 0 ≤ i ≤ N − 1.
Suppose that there exists i0 ∈ {0, 1, . . . ,N− 1} such that σ(i0) , i0.We will arrive at a contradiction below.

By Claim 1, we have bi f n
N = Aibσ(i)1

n
N for 0 ≤ i ≤ N − 1. Recall that Ad

i = 1, we deduce bd
i f nd

N = bd
σ(i)1

nd
N for

0 ≤ i ≤ N − 1. We thus obtain
bi0

d

(bσ(i0))d
=
1nd

N

f nd
N

=
(bσ−1(i0))d

bi0
d

.

However, this contradicts the assumption that for i , j, i , k,b2d
i , bd

j b
d
k .And hence, The map σ is an identity.

We are now ready to get back to our original task of showing that f = 1. Claims 1,2 imply that f n
N = 1̂

n
N.

This clearly implies, together with (3.3), that

Pi

( fi
fN
, 1

)
= Pi

( 1̂i

1̂N
, 1

)
,

for 0 ≤ i ≤ N − 1. Note the definition of P̃i(z), we then have

P̃i

( fi
fN

)
= P̃i

( 1̂i

1̂N

)
= P̃i

( 1i

1N

)
,

for 0 ≤ i ≤ N − 1. Since P̃i(z), 0 ≤ i ≤ N − 1, are UPMs, we have fi
fN
=
1i

1N
holds for 0 ≤ i ≤ N − 1. Thus, f = 1.

This completes the proof.

3.2. Proof of Corollary 1.6
Proof. Suppose that f and 1 be two holomorphic curves from C into PN(C) with reduced representations

f̃ = ( f0, . . . , fN), 1̃ = (10, . . . , 1N), respectively. Since f ∗S = 1∗S, PN,d( f̃ )
PN,d(1̃) is an entire function without zeros,

denote by h(z). Thus PN,d( f̃ ) = PN,d(h1̃), where h1̃ = (h10, . . . , h1N) is also a reduced representation of 1. By
the definition of PN,d and Theorem 1.4, f = 1.
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