Some Existence Theorems for Semilinear Neumann Problems with Landesman-Lazer Condition Revisited

Sheng Ma ${ }^{\text {a }}$, Zhihua Hu^{a}, Jing Jin ${ }^{\text {a }}$, Qin Jiang ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Huanggang Normal University, Hubei 438000, China

Abstract

In this paper, existence theorems are established for Neumann problems for semilinear elliptic equations at resonance together with Landesman-Lazer condition revisited. Our existence results follow as an application of the Saddle point Theorem together with a standard eigenspace decomposition.

1. Introduction and main results

In the paper, we are concerned with the following Neumann boundary value problems

$$
\left\{\begin{align*}
-\Delta u & =\mu_{k} u+g(u)-h(x) \text { in } \Omega \tag{1}\\
\frac{\partial u}{\partial n} & =0 \quad \text { on } \partial \Omega
\end{align*}\right.
$$

where Δ is the Laplacian operator, $\Omega \subset R^{N}(N \geq 1)$ is a bounded domain with smooth boundary and outer normal vector $n=n(x), \frac{\partial u}{\partial n}=n(x) \cdot \nabla u$, the function $g: R \rightarrow R$ is a bounded continuous function with $G(u)=\int_{0}^{u} g(s) d s$ as its primitive, $h \in L^{2}(\Omega)$ and $\mu_{k}, k \geq 1$, is the k-th eigenvalue of the eigenvalue problem

$$
\left\{\begin{align*}
-\Delta u & =\mu u \text { in } \Omega \tag{2}\\
\frac{\partial u}{\partial n} & =0 \text { on } \partial \Omega .
\end{align*}\right.
$$

Let $m \geq 1$ be a multiplicity of μ_{k}. Then we set the eigenvalues of (2) be the increasing sequence:.

$$
\mu_{1}<\mu_{2} \leq \cdots \leq \mu_{k-1}<\mu_{k}=\cdots=\mu_{k+m-1}<\mu_{k+m} \leq \mu_{k+m+1} \leq \cdots \rightarrow \infty
$$

Define the functional φ on $H^{1}(\Omega)$ by

$$
\varphi(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}|u|^{2} d x-\int_{\Omega} G(u) d x+\int_{\Omega} h u d x, u \in H^{1}(\Omega)
$$

[^0]where the Sobolev space $H^{1}(\Omega)$ is the usual space of $L^{2}(\Omega)$ functions with weak derivative in $L^{2}(\Omega)$, endowed with the norm defined by
$$
\|u\|=\left(\int_{\Omega}|u(x)|^{2} d x+\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{\frac{1}{2}}
$$
for all $u \in H^{1}(\Omega)$. It's well known that finding solutions of problem (1) is equivalent to finding critical points of φ in $H^{1}(\Omega)$.

There exists a lot of published literatures related to the solvability conditions for Neumann boundary value problems, see [2][17][21][22][31][32] and there references. For problem (1), the common solvability conditions were the periodicity condition, see [26], the monotonicity condition, see[23][24], the sign condition, see[14][15], the Landesman-Lazer type condition, see[16][18][29][30][33].

We focus on the so called Landesman-Lazer condition, introduced by Lazer and Leach [20] in 1969 in the case

$$
g(t, x)=\lambda_{N} x+h(x)-e(t)
$$

where $\lambda_{N}=\left(\frac{2 \pi N}{T}\right)^{2}$ and h is bounded. In the settings of [20], this condition ensures existence of one periodic solution for the following problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+g(t, x)=0 \\
u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)
\end{array}\right.
$$

In the case when $g(t, x)=\lambda_{N} x+h(t, x)$, it can be written as follows:

$$
\int_{\{v>0\}} \liminf _{x \rightarrow+\infty} h(t, x) v(t) d t+\int_{\{v<0\}} \limsup _{x \rightarrow-\infty} h(t, x) v(t) d t>0
$$

for every v solving the homogeneous equation

$$
x^{\prime \prime}+\lambda_{N} x=0
$$

Just as an intuitive idea, one can qualitatively think that a suitable shape for $h(t, x)$ to satisfy such a condition requires that h is positive for $x \rightarrow+\infty$ and negative for $x \rightarrow-\infty$.

This paper [20] opened the way towards what today is usually called the Landesman-Lazer condition, introduced one year later to a semilinear elliptic problem by Landesman and Lazer [19], and read as follows:
$(\mathrm{LL})_{ \pm}$for any nontrivial ϕ in the eigenspace associated with μ_{k},

$$
g(\mp \infty) \int_{\Omega} \phi^{+} d x-g(\pm \infty) \int_{\Omega} \phi^{-} d x<\int_{\Omega} \bar{h} \phi d x<g(\pm \infty) \int_{\Omega} \phi^{+} d x-g(\mp \infty) \int_{\Omega} \phi^{-} d x
$$

After the pioneering works [19][20], this type of conditions has inspired several authors in the attempt of finding the right abstract formulation and providing different generalizations. Contributions in this direction were given, among others, by [1][3][4][5][7][8][9][11][12][13] for a quite rich bibliography about the subject see [10]. In particular, in [28], Tang defined the function $F(t)=2 G(t) / t-g(t)$ and the constants $\underline{F}(+\infty)=\liminf _{t \rightarrow+\infty} F(t), \bar{F}(-\infty)=\lim \sup _{t \rightarrow-\infty} F(t)$ to prove that a resonance problem about the first eigenvalue of a linear operator

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+m^{2} u+g(x, u)=h(x), \quad x \in(0, \pi) \tag{3}\\
\quad u(0)=u(\pi)=0
\end{array}\right.
$$

is solvable under the Landesman-Lazer type condition:

$$
\begin{align*}
& \int_{0}^{\pi}\left[\bar{F}(-\infty)(\sin x)^{+}-\underline{F}(+\infty)(\sin x)^{-}\right] d x \\
& <\int_{0}^{\pi} h \sin x d x<\int_{0}^{\pi}\left[\underline{F}(+\infty)(\sin x)^{+}-\bar{F}(-\infty)(\sin x)^{-}\right] d x \tag{4}
\end{align*}
$$

Later in 2001, Tomiczek [33] studied two-point boundary value problems (3) and introduced a rather general sufficient condition so called potential Landesman-Lazer type:
$(\mathrm{p}-\mathrm{LL})_{ \pm}$for any nontrivial ϕ in the eigenspace associated with μ_{k},

$$
G^{\mp} \int_{\Omega} \phi^{+} d x-G^{ \pm} \int_{\Omega} \phi^{-} d x<\int_{\Omega} \bar{h} \phi d x<G^{ \pm} \int_{\Omega} \phi^{+} d x-G^{\mp} \int_{\Omega} \phi^{-} d x
$$

as a generalization to conditions (4) and (LL) $)_{ \pm}$, where $G^{ \pm}=\lim _{s \rightarrow \pm \infty} \frac{G(s)}{s}$ and in [33], $\mu_{k}=m^{2}, \phi=\sin x$. In addition, in 2001, Tang [30] considered the Neumann boundary value problem (1) under the condition similar to (4) and obtained the following results:

Theorem A[30] Suppose that $g \in C(R, R)$ such that

$$
0 \leq \liminf _{|t| \rightarrow \infty} \frac{g(t)}{t} \leq \limsup _{|t| \rightarrow \infty} \frac{g(t)}{t}<\mu_{2}
$$

Assume that $h \in L^{q}(\Omega)$ satisfying

$$
\begin{equation*}
\bar{F}(-\infty)<\frac{1}{|\Omega|} \int_{\Omega} h(x) d x<\underline{F}(+\infty) \tag{5}
\end{equation*}
$$

where $q>\frac{2 N}{N+2}$ if $N \geq 3(q>1$, if $N=1,2),|\Omega|$ is the volume of Ω,

$$
\underline{F}(+\infty)=\liminf _{t \rightarrow+\infty} F(t), \quad \bar{F}(-\infty)=\limsup _{t \rightarrow-\infty} F(t)
$$

and

$$
F(t)=2 G(t) / t-g(t), \text { for } t \neq 0, F(0)=g(0) .
$$

Then the problem (1), where $k=1$, has at least one solution in the Sobolev space $H^{1}(\Omega)$.
Theorem B [30] Suppose that $g \in C(R, R)$ such that

$$
\lim _{|t| \rightarrow \infty} \frac{g(t)}{t}=0
$$

Assume that $h \in L^{q}(\Omega)$ satisfying either

$$
\begin{equation*}
\left|\int_{\Omega} h \phi d x\right|<\frac{1}{2}(\underline{(\underline{F}(-\infty)-\bar{F}(+\infty)), ~} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|\int_{\Omega} h \phi d x\right|<\frac{1}{2}(\underline{F}(+\infty)-\bar{F}(-\infty)) \tag{7}
\end{equation*}
$$

for any nontrivial ϕ in the eigenspace associated with μ_{k}, with $\|\phi\|_{1}=1$, where $q>\frac{2 N}{N+2}$ if $N \geq 3(q>1$, if $N=1,2$), Then the problem (1), where $k>1$, has at least one solution in the Sobolev space $H^{1}(\Omega)$.

The purpose of this paper is to introduce a rather generalization of $(\mathrm{LL})_{ \pm}$and (p-LL) ${ }_{ \pm}$for the existence of a solution of problem (1). For readers' convenience, we first give the following statements.

The corresponding eigenfunctions, $\left(\phi_{n}\right)$, form an orthogonal basis for both $L^{2}(\Omega)$ and $H^{1}(\Omega)$. Assume that every ϕ_{n} with respect to the L^{2} norm $\left\|\phi_{n}\right\|_{2}=1, n=1,2, \cdots$. We split the space $H^{1}(\Omega)$ into the following three subspaces spanned by the eigenfunctions of (2) as follows:

$$
\hat{H}=\operatorname{span}\left\{\phi_{1}, \cdots, \phi_{k-1}\right\}
$$

$$
\begin{aligned}
& \bar{H}=\operatorname{span}\left\{\phi_{k}, \cdots, \phi_{k+m-1}\right\}, \\
& \tilde{H}=\operatorname{span}\left\{\phi_{k+m}, \phi_{k+m+1}, \cdots\right\}
\end{aligned}
$$

Then

$$
H^{1}(\Omega)=\hat{H} \oplus \bar{H} \oplus \tilde{H}
$$

with $\operatorname{dim} \hat{H}=k-1, \operatorname{dim} \bar{H}=m, \operatorname{dim} \tilde{H}=\infty$. Of course, if $k=1$ then $m=1$ (μ_{1} is a simple eigenvalue) and $\hat{H}=\varnothing$. We also split an element $u \in H^{1}(\Omega)$ as $u=\hat{u}+\bar{u}+\tilde{u}$, and split a function $h \in L^{2}(\Omega)$ as $h=\bar{h}+h^{\perp}$, where $\hat{u} \in \hat{H}, \bar{u} \in \bar{H}, \tilde{u} \in \tilde{H}$ and

$$
\int_{\Omega} h^{\perp} v d x=0, \text { for any } v \in \bar{H}
$$

The generalization of $(\mathrm{LL})_{ \pm}$and $(\mathrm{p}-\mathrm{LL})_{ \pm}$for the existence of a solution of problem (1), reads as follows:
$(\mathrm{GLL})_{ \pm}$If $\left\{u_{n}\right\} \subset H^{1}(\Omega)$ is a sequence such that $\left\|u_{n}\right\|_{2} \rightarrow \infty$ and there exists $\phi_{0} \in \bar{H}, \frac{u_{n}}{\left\|u_{n}\right\|_{2}} \rightarrow \phi_{0}$ in $L^{2}(\Omega)$ as $n \rightarrow \infty$, then

$$
\lim _{n \rightarrow \infty}\left(\int_{\Omega} G\left(u_{n}\right) d x-\int_{\Omega} \bar{h} u_{n} d x\right)= \pm \infty
$$

Suppose $\left\|u_{n}\right\|_{2} \rightarrow \infty$ and $\frac{u_{n}}{\left\|u_{n}\right\|_{2}} \rightarrow \phi_{0}$ for some eigenfunction ϕ_{0}. Then an easy computation yields, by l'Hospital's rule,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{\left\|u_{n}\right\|_{2}}\left(\int_{\Omega} G\left(u_{n}\right) d x-\int_{\Omega} \bar{h} u_{n} d x\right) \\
= & \lim _{n \rightarrow \infty} \int_{\Omega}\left(\frac{G\left(u_{n}\right)}{u_{n}} d x-\bar{h}\right) \frac{u_{n}}{\left\|u_{n}\right\|_{2}} d x \\
= & \int_{\Omega}(g(+\infty)+\bar{h}) \phi_{0}^{+} d x-\int_{\Omega}(g(-\infty)+\bar{h}) \phi_{0}^{-} d x
\end{aligned}
$$

and directly

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{\left\|u_{n}\right\|_{2}}\left(\int_{\Omega} G\left(u_{n}\right) d x-\int_{\Omega} \bar{h} u_{n} d x\right) & =\lim _{n \rightarrow \infty} \int_{\Omega}\left(\frac{G\left(u_{n}\right)}{u_{n}} d x-\bar{h}\right) \frac{u_{n}}{\left\|u_{n}\right\|_{2}} d x \\
& =\int_{\Omega}\left(G^{+}+\bar{h}\right) \phi_{0}^{+} d x-\int_{\Omega}\left(G^{-}+\bar{h}\right) \phi_{0}^{-} d x
\end{aligned}
$$

where $G^{ \pm}=\lim _{s \rightarrow \pm \infty} \frac{G(s)}{s}$. Due to the last two expressions above, either (LL) ${ }_{ \pm}$or (p-LL) $)_{ \pm}$imply $(\mathrm{GLL})_{ \pm}$. In addition, from [33], we know (p-LL) ${ }_{+}$is more general than the condition (4). That is, (GLL) \pmare more general than conditions $(\mathrm{LL})_{ \pm},(\mathrm{p}-\mathrm{LL})_{ \pm}$and (4).

In this paper, we consider Neumann boundary value problems (1) under the Landesman-Lazer type condition (GLL) $)_{ \pm}$, and obtain the existence theorems by saddle point theorem together with a standard eigenspace decomposition. The main results in the paper are next summarized.

Theorem 1. Under the hypothesis (GLL)_, the problem (1) has at least one solution in the Sobolev space $H^{1}(\Omega)$.

Theorem 2. Under the hypothesis (GLL) ${ }_{+}$, the problem (1) has at least one solution in the Sobolev space $H^{1}(\Omega)$.

Remark 3. Compared with conditions $(\mathrm{LL})_{ \pm},(\mathrm{p}-\mathrm{LL})_{ \pm}$and (5)-(7), the advantages of (GLL) \pmare illustrated by some examples.
(i) The verification of $(\mathrm{GLL})_{ \pm}$does not require the existence of limits $g(\pm \infty)$ at all. Set $g(s)=\arctan s+$ $\pi \cos s$. An easy calculation yields that

$$
\lim _{|s| \rightarrow \infty} G(s)=\lim _{|s| \rightarrow \infty}\left(s \arctan s-\frac{1}{2} \ln \left(1+s^{2}\right)+\pi \sin s\right)=\infty
$$

which means (GLL) ${ }_{+}$holds for $h \in L^{2}(\Omega)^{\perp}$, where

$$
L^{2}(\Omega)^{\perp}=\left\{h \in L^{2}(\Omega): \int_{\Omega} h \phi d x=0 \text { for all } \phi \in \bar{H}\right\} \subseteq L^{2}(\Omega)
$$

However, the limits $g(\pm \infty)$ do not exist. That is, the condition (LL) $)_{ \pm}$do not apply.
(ii) (GLL) \pm hold for $h \in L^{2}(\Omega)^{\perp}$. However, both $(\mathrm{LL})_{ \pm}$and (p-LL) ${ }_{ \pm}$do not apply even if the limits $g(\pm \infty)$ exist. Set $g(s)=\frac{\operatorname{sgn} s}{(e+|s|) \ln (e+|s|)}$. Then we easily obtain

$$
\lim _{|s| \rightarrow \infty} G(s)=\lim _{|s| \rightarrow \infty} \ln (\ln (e+|s|))=+\infty,
$$

which means (GLL) ${ }_{+}$holds for $h \in L^{2}(\Omega)^{\perp}$. However, we also get $g(\pm \infty)=0$ and $G^{ \pm}=0$ which, respectively, imply the conditions (LL) \pm and (p-LL) $)_{ \pm}$are empty.
(iii) $(\mathrm{GLL})_{ \pm}$hold for $h \in L^{2}(\Omega)^{\perp}$. However, all of the conditions (5)-(7), (LL) $)_{ \pm}$and (p-LL) do not apply. Set $g(s)=\frac{2 s}{1+s^{2}}+2 \cos s$. Then we easily obtain

$$
\begin{aligned}
& \lim _{|s| \rightarrow \infty} G(s)=\lim _{|s| \rightarrow \infty} \ln \left(1+s^{2}\right)+2 \sin s=+\infty \\
& \lim _{|s| \rightarrow \infty} \frac{G(s)}{s}=\lim _{|s| \rightarrow \infty} \frac{\ln \left(1+s^{2}\right)+2 \sin s}{s}=0
\end{aligned}
$$

and

$$
F(s)=\frac{2 G(s)}{s}-g(s)=\frac{\ln \left(1+s^{2}\right)+2 \sin s}{s}-\frac{2 s}{1+s^{2}}-2 \cos s
$$

Obviously it holds

$$
\underline{F}(-\infty)=\underline{F}(+\infty)=-2, \bar{F}(+\infty)=\bar{F}(-\infty)=2
$$

which implies that conditions (5), (6) and (7) are empty. That is, they do not apply. Moreover, (GLL) + holds for $h \in L^{2}(\Omega)^{\perp}$. However, the conditions (LL) $)_{ \pm}$and (p-LL) ${ }_{ \pm}$do not apply since the limits $g(\pm \infty)$ do not exist and the condition ($\mathrm{p}-\mathrm{LL})_{ \pm}$is empty by $G^{ \pm}=0$.

The functions $g(s)$ and $h(x)$ satisfy our Theorems but not satisfying the corresponding results published in the literature so far, such as Theorems A and B.

2. Proof of Theorems

The methods to prove the theorems are variational basically based upon minmax methods together with a standard eigenspace decomposition. To make the statements precise, let us introduce some notation.

It is well known that, by Sobolev's inequality, there exists a constant $M>0$ such that

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)} \leq M\|u\| \tag{8}
\end{equation*}
$$

Since the function g is a bounded continuous, we can easy prove that φ is continuously differentiable in $H^{1}(\Omega)$, in a way similar to Theorem 1.4 in [25]. To prove Theorems 1 and 2, we recall an abstract critical point theorem, i.e., the Saddle point Theorem under the (PS) condition, the readers can refer to [27].

Lemma 1 Let H be a Banach space with a decomposition $H=H^{-}+H^{+}$, where H^{-}and H^{+}are two
subspaces of H with $\operatorname{dim} H^{-}<+\infty$. Assume that $\varphi: X \longrightarrow R$ is a C^{1}-function, satisfying (PS) condition and
(a) there exist constants $\rho>0$ and α such that $\left.\varphi\right|_{\partial B_{\rho}} \leq \alpha$,
(b) there exist a constant $\beta>\alpha$ such that $\left.\varphi\right|_{H^{+}} \geq \beta$,

Then the functional φ possesses a critical point in H.
In addition, we need the following lemmas.
Lemma 2 There exist $C_{1}>0, C_{2}>0$ such that for any $u \in H$ we have

$$
\begin{align*}
& \int_{\Omega}|\nabla \hat{u}|^{2} d x-\mu_{k} \int_{\Omega}|\hat{u}|^{2} d x \leq-C_{1}\|\hat{u}\|^{2} \tag{9}\\
& \int_{\Omega}|\nabla \tilde{u}|^{2} d x-\mu_{k} \int_{\Omega}|\tilde{u}|^{2} d x \geq C_{2}\|\tilde{u}\|^{2} \tag{10}
\end{align*}
$$

Proof The inequalities (9) and (10) follow from the variational characterization of μ_{k}.
Lemma 3 There exist $C_{3}>0, C_{4}>0, C_{5}>0$ such that for any $u \in H$ we have

$$
\begin{align*}
& \left|\int_{\Omega} g(u) \hat{u} d x-\int_{\Omega} h \hat{u} d x\right| \leq C_{3}\|\hat{u}\|, \tag{11}\\
& \left|\int_{\Omega} g(u) \tilde{u} d x-\int_{\Omega} h \tilde{u} d x\right| \leq C_{4}\|\tilde{u}\|, \tag{12}\\
& \left|\int_{\Omega} G(u) d x-\int_{\Omega} h u d x\right| \leq C_{5}\|u\|_{2} . \tag{13}
\end{align*}
$$

Proof The inequalities (11),(12) and (13) follow from the Hölder inequality, the boundedness of g and the fact $h \in L^{2}(\Omega)$.

Lemma 4 Under the assumption (GLL) $)_{ \pm}$, the functional φ satisfies (PS) condition. That is, $\left\{u_{n}\right\}$ possesses a convergent subsequence if $\left\{u_{n}\right\}$ is a sequence of H such that $\left\{\varphi\left(u_{n}\right)\right\}$ is bounded and $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof Step 1. We claim that $\left\{u_{n}\right\}$ is bounded in $L^{2}(\Omega)$. We argue by contradiction. So, suppose that $\left\|u_{n}\right\|_{2} \rightarrow \infty$ as $n \rightarrow \infty$. Put $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{2}}$. Then $\left\|v_{n}\right\|_{2}=1$. So, by boundedness of $\left\{\varphi\left(u_{n}\right)\right\}$ and $\left\|u_{n}\right\|_{2} \rightarrow \infty$, it holds

$$
\begin{align*}
\frac{\varphi\left(u_{n}\right)}{\left\|u_{n}\right\|_{2}^{2}} & =\frac{1}{2} \int_{\Omega}\left|\nabla v_{n}\right|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}\left|v_{n}\right|^{2} d x-\int_{\Omega} \frac{G\left(u_{n}\right)}{\left\|u_{n}\right\|_{2}^{2}} d x+\frac{1}{\left\|u_{n}\right\|_{2}^{2}} \int_{\Omega} h u_{n} d x \\
& =\frac{1}{2}\left\|v_{n}\right\|^{2}-\frac{\mu_{k}+1}{2}-\int_{\Omega} \frac{G\left(u_{n}\right)}{\left\|u_{n}\right\|_{2}^{2}} d x+\frac{1}{\left\|u_{n}\right\|_{2}^{2}} \int_{\Omega} h u_{n} d x \rightarrow 0 \tag{14}
\end{align*}
$$

Due to (13), we easily obtain

$$
\int_{\Omega} \frac{G\left(u_{n}\right)}{\left\|u_{n}\right\|_{2}^{2}} d x+\frac{1}{\left\|u_{n}\right\|_{2}^{2}} \int_{\Omega} h u_{n} d x \rightarrow 0
$$

It follows from (14) that

$$
\left\|v_{n}\right\|^{2} \rightarrow \mu_{k}+1
$$

which means $\left\{v_{n}\right\}$ is bounded in H. Passing to a subsequence, if necessary, we may assume that there exists $v \in H$ such that

$$
v_{n} \rightharpoonup v \text { in } H \text { and } v_{n} \rightarrow v \text { in } L^{2}(\Omega) .
$$

For arbitrary $w \in H$, then we obtain

$$
\begin{gathered}
\int_{\Omega} \nabla v_{n} \nabla w d x \rightarrow \int_{\Omega} \nabla v \nabla w d x \text { by } v_{n} \rightharpoonup v \text { in } H \\
\int_{\Omega} v_{n} w d x \rightarrow \int_{\Omega} v w d x \text { by } v_{n} \rightarrow v \text { in } L^{2}(\Omega) \\
\frac{1}{\left\|u_{n}\right\|_{2}} \int_{\Omega} g\left(u_{n}\right) w d x \rightarrow 0 \text { and } \frac{1}{\left\|u_{n}\right\|_{2}} \int_{\Omega} h w d x \rightarrow 0
\end{gathered}
$$

by the boundedness of $g, h \in L^{2}(\Omega)$ and the hypothesis $\left\|u_{n}\right\|_{2} \rightarrow \infty$. Moreover, by $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ and $\left\|u_{n}\right\|_{2} \rightarrow \infty$, one has

$$
\begin{align*}
0 \leftarrow \frac{\left(\varphi^{\prime}\left(u_{n}\right), w\right)}{\left\|u_{n}\right\|_{2}}= & \int_{\Omega} \nabla v_{n} \nabla w d x-\mu_{k} \int_{\Omega} v_{n} w d x \\
& -\frac{1}{\left\|u_{n}\right\|_{2}} \int_{\Omega} g\left(u_{n}\right) w d x+\frac{1}{\left\|u_{n}\right\|_{2}} \int_{\Omega} h w d x . \tag{15}
\end{align*}
$$

Thus by (15), for arbitrary $w \in H$, we have

$$
\int_{\Omega} \nabla v \nabla w d x-\mu_{k} \int_{\Omega} v w d x=0
$$

which means $v=\phi_{0} \in \bar{H}$ is an eigenfunction corresponding to μ_{k}. Obviously,

$$
v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{2}} \rightarrow \phi_{0} \text { in } L^{2}(\Omega)
$$

An easy computation yields, by (9) and (11),

$$
\begin{align*}
\left(\varphi^{\prime}\left(u_{n}\right), \hat{u}_{n}\right) & =\int_{\Omega}\left|\nabla \hat{u}_{n}\right|^{2} d x-\mu_{k} \int_{\Omega}\left|\hat{u}_{n}\right|^{2} d x-\int_{\Omega} g\left(u_{n}\right) \hat{u}_{n} d x+\int_{\Omega} h \hat{u}_{n} d x \\
& \leq-C_{1}\left\|\hat{u}_{n}\right\|^{2}+C_{3}\left\|\hat{u}_{n}\right\| . \tag{16}
\end{align*}
$$

Due to (16) and $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$, we obtain $\left\|\hat{u}_{n}\right\|$ is bounded.
Similarly, it holds

$$
\begin{aligned}
\left(\varphi^{\prime}\left(u_{n}\right), \tilde{u}_{n}\right) & =\int_{\Omega}\left|\nabla \tilde{u}_{n}\right|^{2} d x-\mu_{k} \int_{\Omega}\left|\tilde{u}_{n}\right|^{2} d x-\int_{\Omega} g\left(u_{n}\right) \tilde{u}_{n} d x+\int_{\Omega} h \tilde{u}_{n} d x \\
& \geq C_{2}\left\|\tilde{u}_{n}\right\|^{2}-C_{4}\left\|\tilde{u}_{n}\right\|
\end{aligned}
$$

which implies $\left\|\tilde{u}_{n}\right\|$ is bounded by $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$.
Now we rewrite $\varphi\left(u_{n}\right)$ as follows:

$$
\begin{align*}
\varphi\left(u_{n}\right)= & \underbrace{\frac{1}{2} \int_{\Omega}\left|\nabla \hat{u}_{n}\right|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}\left|\hat{u}_{n}\right|^{2} d x}_{A}+\underbrace{\frac{1}{2} \int_{\Omega}\left|\nabla \tilde{u}_{n}\right|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}\left|\tilde{u}_{n}\right|^{2} d x}_{C} \\
& \underbrace{-\int_{\Omega} G\left(u_{n}\right) d x+\int_{\Omega} \bar{h} u_{n} d x}_{B}+\underbrace{\int_{\Omega} h^{\perp} \hat{u}_{n} d x+\int_{\Omega} h^{\perp} \tilde{u}_{n} d x}_{D} . \tag{17}
\end{align*}
$$

Since $\left\|\hat{u}_{n}\right\|$ and $\left\|\tilde{u}_{n}\right\|$ are bounded, A, B and D are bounded. Moreover, since $\left\|u_{n}\right\|_{2} \rightarrow \infty, \frac{u_{n}}{\left\|u_{n}\right\|_{2}} \rightarrow \phi_{0}$, and $(\mathrm{GLL})_{ \pm}$holds, we have

$$
-\int_{\Omega} G\left(u_{n}\right) d x+\int_{\Omega} \bar{h} u_{n} d x \rightarrow-\infty \text { and }+\infty
$$

by (GLL) $)_{+}$and (GLL)_ respectively. That is, $C \rightarrow \pm \infty$. Thus, by (17) it holds

$$
\varphi\left(u_{n}\right) \rightarrow \pm \infty
$$

Obviously it contradicts the assumption of the boundedness of $\varphi\left(u_{n}\right)$. So $\left\{u_{n}\right\}$ is bounded in $L^{2}(\Omega)$.
Step 2. We claim that $\left\{u_{n}\right\}$ is bounded in H. In fact, we again use the following equation:

$$
\begin{align*}
\varphi\left(u_{n}\right) & =\frac{1}{2} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}\left|u_{n}\right|^{2} d x-\int_{\Omega} G\left(u_{n}\right) d x+\int_{\Omega} h u_{n} d x \\
& =\frac{1}{2}\left\|u_{n}\right\|^{2}-\frac{\mu_{k}+1}{2} \int_{\Omega}\left|u_{n}\right|^{2} d x-\int_{\Omega} G\left(u_{n}\right) d x+\int_{\Omega} h u_{n} d x \tag{18}
\end{align*}
$$

Since $\left\{u_{n}\right\}$ is bounded in $L^{2}(\Omega), \int_{\Omega}\left|u_{n}\right|^{2} d x, \int_{\Omega} G\left(u_{n}\right) d x$ and $\int_{\Omega} h u_{n} d x$ are bounded. Moreover $\varphi\left(u_{n}\right)$ is bounded, thus by (18), we have $\left\|u_{n}\right\|$ must be also bounded.

Step 3. We claim $\left\{u_{n}\right\}$ has a strongly convergent subsequence in H. In fact, since $\left\|u_{n}\right\|$ is bounded in H, $\left\{u_{n}\right\}$ has a subsequence, still denoted by $\left\{u_{n}\right\}$ for the convenience, such that

$$
u_{n} \rightharpoonup u \text { in } H \text { and } u_{n} \rightarrow u \text { in } L^{2}(\Omega) .
$$

Then one has

$$
-\mu_{k} \int_{\Omega} u_{n}\left(u_{n}-u\right) d x-\int_{\Omega} g\left(u_{n}\right)\left(u_{n}-u\right) d x+\int_{\Omega} h\left(u_{n}-u\right) d x \rightarrow 0
$$

Moreover, it holds

$$
\begin{aligned}
0 \leftarrow\left(\varphi^{\prime}\left(u_{n}\right), u_{n}-u\right)= & \int_{\Omega} \nabla u_{n} \nabla\left(u_{n}-u\right) d x-\mu_{k} \int_{\Omega} u_{n}\left(u_{n}-u\right) d x \\
& -\int_{\Omega} g\left(u_{n}\right)\left(u_{n}-u\right) d x+\int_{\Omega} h\left(u_{n}-u\right) d x .
\end{aligned}
$$

So we deduce that

$$
\int_{\Omega} \nabla u_{n} \nabla\left(u_{n}-u\right) d x \rightarrow 0
$$

That is,

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x-\int_{\Omega} \nabla u_{n} \nabla u d x \rightarrow 0 .
$$

Due to the weak convergence $u_{n} \rightharpoonup u$ in H, it holds

$$
\int_{\Omega} \nabla u_{n} \nabla u d x-\int_{\Omega} \nabla u \nabla u d x \rightarrow 0 .
$$

Thus we get

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x-\int_{\Omega}|\nabla u|^{2} d x \rightarrow 0
$$

which , together with $u_{n} \rightarrow u$ in $L^{2}(\Omega)$, implies

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x+\int_{\Omega}\left|u_{n}\right|^{2} d x=\left\|u_{n}\right\|^{2} \rightarrow\|u\|^{2}=\int_{\Omega}|\nabla u|^{2} d x+\int_{\Omega}|u|^{2} d x
$$

The uniform convexity of H then implies that $u_{n} \rightarrow u$ in H. Hence the functional φ satisfies (PS) condition.
Proof of Theorem 1. Under the assumption (GLL) $)_{-}$, we set $H=H^{1}(\Omega)=H^{-} \oplus H^{+}$, where $H^{-}=\hat{H}$ is a finite dimension subspace and $H^{+}=\bar{H}+\tilde{H}$.

On the one hand, we claim that there is a constant β such that

$$
\inf _{u \in H^{+}} \varphi(u) \geq \beta
$$

If not, there exists a sequence $\left\{u_{n}\right\} \subset H^{+}$such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi\left(u_{n}\right)=-\infty \tag{19}
\end{equation*}
$$

Then $\left\|u_{n}\right\|_{2} \rightarrow \infty$, and for $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{2}} \in H^{+}$, by (19) we obtain

$$
\begin{align*}
0 \geq \frac{\varphi\left(u_{n}\right)}{\left\|u_{n}\right\|_{2}^{2}} & =\frac{1}{2} \int_{\Omega}\left|\nabla v_{n}\right|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}\left|v_{n}\right|^{2} d x-\int_{\Omega} \frac{G\left(u_{n}\right)}{\left\|u_{n}\right\|_{2}^{2}} d x+\int_{\Omega} h \frac{u_{n}}{\left\|u_{n}\right\|_{2}^{2}} d x \\
& =\frac{1}{2}\left\|v_{n}\right\|^{2}-\frac{\mu_{k}+1}{2}-\int_{\Omega} \frac{G\left(u_{n}\right)}{\left\|u_{n}\right\|_{2}^{2}} d x+\int_{\Omega} h \frac{u_{n}}{\left\|u_{n}\right\|_{2}^{2}} d x \tag{20}
\end{align*}
$$

However, by (13), we know

$$
\begin{equation*}
-\int_{\Omega} \frac{G\left(u_{n}\right)}{\left\|u_{n}\right\|_{2}^{2}} d x+\int_{\Omega} h \frac{u_{n}}{\left\|u_{n}\right\|_{2}^{2}} d x \rightarrow 0 \tag{21}
\end{equation*}
$$

So by (20) and (21), we get

$$
\left\|v_{n}\right\|^{2} \rightarrow \mu_{k}+1
$$

which implies $\left\|v_{n}\right\|$ is bounded. Passing to a subsequence, if necessary, we may assume that there is $v \in H^{+}$ such that

$$
v_{n} \rightharpoonup v \text { in } H \text { and } v_{n} \rightarrow v \text { in } L^{2}(\Omega)
$$

Due to the weak lower semicontinuity of the norm in H, we know

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla v_{n}\right|^{2} d x \geq \int_{\Omega}|\nabla v|^{2} d x \tag{22}
\end{equation*}
$$

Thus by (20), (21) and (22), we have

$$
\int_{\Omega}|\nabla v|^{2} d x-\mu_{k} \int_{\Omega}|v|^{2} d x \leq 0
$$

which, together with (10), implies that $v=\phi_{0} \in \bar{H}$ is an eigenfunction associated with μ_{k}. Clearly,

$$
v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{2}} \rightarrow \phi_{0} \text { in } L^{2}(\Omega)
$$

For all $u_{n}=\tilde{u}_{n}+\bar{u}_{n} \in H^{+}$, one has

$$
\begin{align*}
\varphi\left(u_{n}\right) & =\frac{1}{2} \int_{\Omega}\left|\nabla \tilde{u}_{n}\right|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}\left|\tilde{u}_{n}\right|^{2} d x-\int_{\Omega} G\left(u_{n}\right) d x+\int_{\Omega} \bar{h} u_{n} d x+\int_{\Omega} h^{\perp} \tilde{u}_{n} d x \\
& \geq C_{2}\|\tilde{u}\|^{2}-\left\|h^{\perp}\right\|_{2}\|\tilde{u}\|_{2}-\int_{\Omega} G\left(u_{n}\right) d x+\int_{\Omega} \bar{h} u_{n} d x \tag{23}
\end{align*}
$$

which, together with (GLL)_, yields

$$
\varphi\left(u_{n}\right) \rightarrow+\infty \text { as } n \rightarrow+\infty
$$

Obviously it contradicts with (9). That is, the conclusion is verified.
On the other hand, for $\hat{u} \in H^{-}$, we have

$$
\begin{aligned}
\varphi(\hat{u}) & =\frac{1}{2} \int_{\Omega}|\nabla \hat{u}|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}|\hat{u}|^{2} d x-\int_{\Omega} G(\hat{u}) d x+\int_{\Omega} h \hat{u} d x \\
& \leq-C_{1}\|\hat{u}\|^{2}-\int_{\Omega} G(\hat{u}) d x+\int_{\Omega} h \hat{u} d x
\end{aligned}
$$

which implies

$$
\varphi(\hat{u}) \rightarrow-\infty \text { as }\|\hat{u}\| \rightarrow+\infty .
$$

Hence there exist constants α and $R>0$ such that

$$
\sup _{u \in \partial D} \varphi(u)<\alpha<\beta
$$

where $D=\left\{u \in H^{-} \mid\|u\| \leq R\right\}$.
Therefore, the hypotheses (a) and (b) in Lemma 1 are satisfied. Recall that the functional φ satisfies (PS) condition in Lemma 4, the proof of Theorem 1 is finished via Lemma 1.

Proof of Theorem 2. Under the assumption (GLL) $)_{+}$, we put $H=H^{1}(\Omega)=H^{-} \oplus H^{+}$, where

$$
H^{-}=\hat{H} \oplus \bar{H} \text { and } H^{+}=\tilde{H} .
$$

On the one hand, we claim that

$$
\lim _{\|u\| \rightarrow \infty} \varphi(u)=-\infty, u \in H^{-} .
$$

If not, there exist a sequence $\left\{u_{n}\right\}$ in H^{-}and a constant C_{6} such that $\left\|u_{n}\right\| \rightarrow \infty$ and

$$
\begin{equation*}
\varphi\left(u_{n}\right) \geq C_{6} . \tag{24}
\end{equation*}
$$

Since H^{-}is a finite dimension space, the two norms $\|\cdot\|$ and $\|\cdot\|_{2}$ are equivalent on H^{-}. In fact, for all $u \in H^{-}$, one has

$$
\int_{\Omega}|\nabla u|^{2} d x-\mu_{k} \int_{\Omega}|u|^{2} d x \leq 0
$$

Thus it holds

$$
\begin{equation*}
\|u\|^{2}=\int_{\Omega}|\nabla u|^{2} d x+\int_{\Omega}|u|^{2} d x \leq\left(1+\mu_{k}\right) \int_{\Omega}|u|^{2} d x=\left(1+\mu_{k}\right)\|u\|_{2}^{2} \tag{25}
\end{equation*}
$$

Obviously, by the definition of the two norms, one has

$$
\begin{equation*}
\|u\|_{2}^{2}=\int_{\Omega}|u|^{2} d x \leq\|u\|^{2} \tag{26}
\end{equation*}
$$

Due to (25) and (26), the two norms $\|\cdot\|$ and $\|\cdot\|_{2}$ are equivalent on H^{-}. Then it holds

$$
\left\|u_{n}\right\|_{2} \rightarrow \infty .
$$

Put $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{2}} \in H^{-}$. Since H^{-}is a finite dimension space, there exists $v \in H^{-}$satisfying

$$
\begin{equation*}
v_{n} \rightarrow v \text { both in } H \text { and } L^{2}(\Omega) . \tag{27}
\end{equation*}
$$

Moreover, by (13), we know

$$
\begin{equation*}
-\int_{\Omega} \frac{G\left(u_{n}\right)}{\left\|u_{n}\right\|_{2}^{2}} d x+\int_{\Omega} \frac{h u_{n}}{\left\|u_{n}\right\|_{2}^{2}} d x \rightarrow 0 \tag{28}
\end{equation*}
$$

Then via (27) and (28) we obtain

$$
\begin{aligned}
0 & \leq \liminf _{n \rightarrow \infty} \frac{\varphi\left(u_{n}\right)}{\left\|u_{n}\right\|_{2}^{2}} \\
& =\liminf _{n \rightarrow \infty}\left[\frac{1}{2} \int_{\Omega}\left|\nabla v_{n}\right|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}\left|v_{n}\right|^{2} d x-\int_{\Omega} \frac{G\left(u_{n}\right)}{\left\|u_{n}\right\|_{2}^{2}} d x+\int_{\Omega} \frac{h u_{n}}{\left\|u_{n}\right\|_{2}} d x\right] \\
& =\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}|v|^{2} d x .
\end{aligned}
$$

However, we all know

$$
\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}|v|^{2} d x \leq 0
$$

Thus it holds

$$
\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x=\frac{1}{2} \mu_{k} \int_{\Omega}|v|^{2} d x
$$

which implies that $v=\phi_{0} \in \bar{H}$ is an eigenfunction associated with μ_{k}. Clearly,

$$
v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{2}} \rightarrow \phi_{0} \text { in } L^{2}(\Omega)
$$

For all $u_{n}=\hat{u}_{n}+\bar{u}_{n} \in H^{-}$, one has

$$
\begin{aligned}
\varphi\left(u_{n}\right) & =\frac{1}{2} \int_{\Omega}\left|\nabla \hat{u}_{n}\right|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}\left|\hat{u}_{n}\right|^{2} d x-\int_{\Omega} G\left(u_{n}\right) d x+\int_{\Omega} \bar{h} u_{n} d x+\int_{\Omega} h^{\perp} \hat{u}_{n} d x \\
& \leq-C_{1}\left\|\hat{u}_{n}\right\|^{2}+\left\|h^{\perp}\right\|_{2}\left\|\hat{u}_{n}\right\|_{2}-\int_{\Omega} G\left(u_{n}\right) d x+\int_{\Omega} \bar{h} u_{n} d x
\end{aligned}
$$

which, together with (GLL) $)_{+}$, implies

$$
\varphi\left(u_{n}\right) \rightarrow-\infty \text { as } n \rightarrow+\infty
$$

This contradicts (24). The conclusion is verified.
On the other hand, by (8), (10) and (13), for $u \in H^{+}$, we have

$$
\begin{aligned}
\varphi(u) & =\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{1}{2} \mu_{k} \int_{\Omega}|u|^{2} d x-\int_{\Omega} G(u) d x+\int_{\Omega} h u d x \\
& \geq C_{3}\|u\|^{2}-C_{5}\|u\|_{2} \geq C_{3}\|u\|^{2}-C_{7}\|u\|
\end{aligned}
$$

which implies

$$
\varphi(u) \rightarrow+\infty \text { as }\|u\| \rightarrow+\infty
$$

Hence there exist constants α and $R>0$ such that

$$
\sup _{u \in \partial D} \varphi(u)<\alpha<\beta,
$$

where $D=\left\{u \in H^{-} \mid\|u\| \leq R\right\}$.
Therefore, the hypotheses (a) and (b) in Lemma 1 are satisfied. Recall that the functional φ satisfies (PS) condition in Lemma 4, Theorem 2 is proved via Lemma 1.

References

[1] H. Brezis, L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa 5 (1978), 225-326.
[2] D. G. Costa; An invitation to variational methods in differential equations, Birkhauser, 2007.
[3] D. de Figueiredo, The Dirichlet problem for nonlinear elliptic equations: a Hilbert space approach, Lecture Notes in Math., vol. 446, Springer, Berlin, 1975.
[4] P. Drábek, Landesman-Lazer type condition and nonlinearities with linear growth, Czechoslovak Math. J. 40 (1990), 70-86.
[5] P. Drábek, Landesman-Lazer condition for nonlinear problems with jumping nonlinearities, J. Differential Equations. 85 (1990), 186-199.
[6] P. Drábek, Landesman-Lazer condition revisited: the influence of vanishing and oscillating nonlinearities, Electronic Journal of Qualitative Theory of Differential Equations. 2015, No. 68, 1-11.
[7] C. Fabry, Landesman-Lazer conditions for periodic boundary value problems with asymmetric nonlinearities, J. Differential Equations. 116 (1995), 405-418.
[8] C. Fabry and A. Fonda, Periodic solutions of nonlinear differential equations with double resonance, Ann. Mat. Pura Appl. 157 (1990), 99-116.
[9] C. Fabry and A. Fonda, Nonlinear equations at resonance and generalized eigenvalue problems, Nonlinear Anal. 18 (1992), 427-444.
[10] A. Fonda,M. Garrione, Double resonance with Landesman-Lazer conditions for planar systems of ordinary differential equations, J. Differential Equations. 250 (2011), 1052-1082. doi:10.1016/j.jde.2010.08.006.
[11] S. Fučik, Solvability of Nonlinear Equations and Boundary Value Problems, Reidel, Boston, 1980.
[12] A. M. Krasnosel'skii, On bifurcation points of equations with Landesman-Lazer type nonlinearities, Nonlinear Anal. 18 (1992), 1187-1199.
[13] J. Mawhin, Landesman-Lazer's type problems for nonlinear equations, Confer. Sem. Mat. Univ. Bari 147 (1977), 1-22.
[14] C.P. Gupta, Perturbations of second order linear elliptic problems by unbounded nonlinearities, Nonlinear Anal. 6 (1982), 919-933.
[15] R. Iannacci, M.N. Nkashama, Nonlinear two point boundary value problem at resonance without Landesman-Lazer condition, Proc. Amer. Math. Soc. 10 (1989), 943-952.
[16] R. Iannacci, M.N. Nkashama, Nonlinear boundary value problems at resonance, Nonlinear Anal. 11 (1987), 455-473.
[17] Q. Jiang, S. Ma, Existence and multiplicity of solutions for semilinear elliptic equations with Neumann boundary conditions, Electronic Journal of Differential Equations. 2015, No. 200, pp. 1-8.
[18] C.C. Kuo, On the solvability of a nonlinear second-order elliptic equations at resonance, Proc. Amer. Math. Soc. 124 (1996), 83-87.
[19] E. M. Landesman, A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19(1970), 609-623.
[20] A. C. Lazer, D. E. Leach, Bounded perturbations of forced harmonic oscillators at resonance, Ann. Mat. Pura Appl. 82 (1969), 49-68.
[21] C.Y. Li, Q. Zhang, F.F. Chen, Pairs of sign-changing solutions for sublinear elliptic equations with Neumann boundary conditions, Electronic Journal of Differential Equations. 2014, No. 112, 1-9.
[22] C. Li, S. J. Li, Multiple solutions and sign-changing solutions of a class of nonlinear elliptic equations with Neumann boundary condition, J. Math. Anal. Appl. 298(2004), 14-32.
[23] J. Mawhin, Necessary and sufficient conditions for the solvability of nonlinear equations through the dual least action principle, in: X. Pu (Ed.), Workshop on Applied Differential Equations, Beijing, 1985, World Scientific, Singapore, 1986, 91-108.
[24] J. Mawhin, Semi-coercive monotone variational problems, Acad. Roy. Belg. Bull. Cl. Sci. 73 (1987), 118-130.
[25] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
[26] P.H. Rabinowitz, On a class of functionals invariant under a Zn action, Trans. Amer. Math. Soc. 310 (1) (1988) 303-311.
[27] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Amer. Math. Soc., Providence, RI, 1986.
[28] C.L. Tang, Solvability for two boundary value problems, J. Math. Anal. Appl. 216(1997), 368-374.
[29] C.L. Tang, Solvability of Neumann problem for elliptic equation at resonance, Nonlinear Anal. 44 (2001), 323-335.
[30] C.L. Tang, Some existence theorems for sublinear Neumann boundary value problem, Nonlinear Anal. 48 (2002), 1003-1011.
[31] C.L. Tang, X.P. Wu, Existence and multiplicity for solutions of Neumann problem for semilinear elliptic equations,J. Math. Anal. Appl. 288 (2003), 660-670.
[32] C.L. Tang, X.P. Wu; Multiple solutions of a class of Neumann problem for semilinear elliptic equations, Nonlinear Analysis: TMA. 62(2005), 455-465.
[33] P. Tomiczek, A generalization of the Landesman-Lazer condition, Electronic Journal of Differential Equations. 2001, No. 4, 1-11.

[^0]: 2010 Mathematics Subject Classification. 35J20, 35J25, 35B34, 35B38
 Keywords. elliptic equations; Neumann problems; critical point; Landesman-Lazer condition; Saddle point Theorem
 Received: 02 March 2019; Accepted: 17 May 2019
 Communicated by Miodrag Spalević
 Corresponding author: Qin Jiang
 Supported by the Natural Science Foundation of Hubei Provincial(No.2018CFC825).
 Email address: jiangqin999@126.com (Qin Jiang)

