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Some Existence Theorems for Semilinear Neumann Problems with
Landesman-Lazer Condition Revisited
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Abstract. In this paper, existence theorems are established for Neumann problems for semilinear elliptic
equations at resonance together with Landesman-Lazer condition revisited. Our existence results follow as
an application of the Saddle point Theorem together with a standard eigenspace decomposition.

1. Introduction and main results

In the paper, we are concerned with the following Neumann boundary value problems−∆u = µku + 1(u) − h(x) in Ω,
∂u
∂n = 0 on ∂Ω,

(1)

where ∆ is the Laplacian operator, Ω ⊂ RN(N ≥ 1) is a bounded domain with smooth boundary and outer
normal vector n = n(x), ∂u

∂n = n(x) · ∇u, the function 1 : R → R is a bounded continuous function with
G(u) =

∫ u

0 1(s)ds as its primitive, h ∈ L2(Ω) and µk, k ≥ 1, is the k-th eigenvalue of the eigenvalue problem−∆u = µu in Ω,
∂u
∂n = 0 on ∂Ω.

(2)

Let m ≥ 1 be a multiplicity of µk. Then we set the eigenvalues of (2) be the increasing sequence:.

µ1 < µ2 ≤ · · · ≤ µk−1 < µk = · · · = µk+m−1 < µk+m ≤ µk+m+1 ≤ · · · → ∞.

Define the functional ϕ on H1(Ω) by

ϕ(u) =
1
2

∫
Ω

|∇u|2dx −
1
2
µk

∫
Ω

|u|2dx −
∫

Ω

G(u)dx +

∫
Ω

hudx, u ∈ H1(Ω),
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Corresponding author: Qin Jiang
Supported by the Natural Science Foundation of Hubei Provincial(No.2018CFC825).
Email address: jiangqin999@126.com (Qin Jiang)



Sheng Ma et al. / Filomat 34:2 (2020), 339–350 340

where the Sobolev space H1(Ω) is the usual space of L2(Ω) functions with weak derivative in L2(Ω), endowed
with the norm defined by

‖u‖ =

(∫
Ω

|u(x)|2dx +

∫
Ω

|∇u(x)|2dx
) 1

2

for all u ∈ H1(Ω). It’s well known that finding solutions of problem (1) is equivalent to finding critical
points of ϕ in H1(Ω).

There exists a lot of published literatures related to the solvability conditions for Neumann boundary
value problems, see [2][17][21][22][31][32] and there references. For problem (1), the common solvabil-
ity conditions were the periodicity condition, see [26], the monotonicity condition, see[23][24], the sign
condition, see[14][15], the Landesman-Lazer type condition, see[16][18][29][30][33].

We focus on the so called Landesman-Lazer condition, introduced by Lazer and Leach [20] in 1969 in
the case

1(t, x) = λNx + h(x) − e(t),

where λN = ( 2πN
T )2 and h is bounded. In the settings of [20], this condition ensures existence of one periodic

solution for the following problemu′′ + 1(t, x) = 0,
u(0) = u(T),u′(0) = u′(T),

In the case when 1(t, x) = λNx + h(t, x), it can be written as follows:∫
{v>0}

lim inf
x→+∞

h(t, x)v(t)dt +

∫
{v<0}

lim sup
x→−∞

h(t, x)v(t)dt > 0,

for every v solving the homogeneous equation

x′′ + λNx = 0.

Just as an intuitive idea, one can qualitatively think that a suitable shape for h(t, x) to satisfy such a condition
requires that h is positive for x→ +∞ and negative for x→ −∞.

This paper [20] opened the way towards what today is usually called the Landesman-Lazer condition,
introduced one year later to a semilinear elliptic problem by Landesman and Lazer [19], and read as follows:

(LL)± for any nontrivial φ in the eigenspace associated with µk,

1(∓∞)
∫

Ω

φ+dx − 1(±∞)
∫

Ω

φ−dx <
∫

Ω

h̄φdx < 1(±∞)
∫

Ω

φ+dx − 1(∓∞)
∫

Ω

φ−dx.

After the pioneering works [19][20], this type of conditions has inspired several authors in the attempt
of finding the right abstract formulation and providing different generalizations. Contributions in this
direction were given, among others, by [1][3][4][5][7][8][9][11][12][13] for a quite rich bibliography about
the subject see [10]. In particular, in [28], Tang defined the function F(t) = 2G(t)/t − 1(t) and the constants
F(+∞) = lim inft→+∞ F(t),F(−∞) = lim supt→−∞ F(t) to prove that a resonance problem about the first
eigenvalue of a linear operatoru′′(x) + m2u + 1(x,u) = h(x), x ∈ (0, π)

u(0) = u(π) = 0,
(3)

is solvable under the Landesman-Lazer type condition:∫ π

0
[F(−∞)(sin x)+

− F(+∞)(sin x)−]dx

<

∫ π

0
h sin xdx <

∫ π

0
[F(+∞)(sin x)+

− F(−∞)(sin x)−]dx. (4)
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Later in 2001, Tomiczek [33] studied two-point boundary value problems (3) and introduced a rather gen-
eral sufficient condition so called potential Landesman-Lazer type:

(p-LL)± for any nontrivial φ in the eigenspace associated with µk,

G∓
∫

Ω

φ+dx − G±
∫

Ω

φ−dx <
∫

Ω

h̄φdx < G±
∫

Ω

φ+dx − G∓
∫

Ω

φ−dx,

as a generalization to conditions (4) and (LL)±, where G± = lims→±∞
G(s)

s and in [33], µk = m2, φ = sin x.
In addition, in 2001, Tang [30] considered the Neumann boundary value problem (1) under the condition
similar to (4) and obtained the following results:

Theorem A[30] Suppose that 1 ∈ C(R,R) such that

0 ≤ lim inf
|t|→∞

1(t)
t
≤ lim sup

|t|→∞

1(t)
t
< µ2.

Assume that h ∈ Lq(Ω) satisfying

F(−∞) <
1
|Ω|

∫
Ω

h(x)dx < F(+∞), (5)

where q > 2N
N+2 if N ≥ 3 (q > 1, if N = 1, 2),|Ω| is the volume of Ω,

F(+∞) = lim inf
t→+∞

F(t), F(−∞) = lim sup
t→−∞

F(t),

and
F(t) = 2G(t)/t − 1(t), for t , 0, F(0) = 1(0).

Then the problem (1), where k = 1, has at least one solution in the Sobolev space H1(Ω).

Theorem B [30] Suppose that 1 ∈ C(R,R) such that

lim
|t|→∞

1(t)
t

= 0.

Assume that h ∈ Lq(Ω) satisfying either∣∣∣∣∣∫
Ω

hφdx
∣∣∣∣∣ < 1

2
(F(−∞) − F(+∞)), (6)

or ∣∣∣∣∣∫
Ω

hφdx
∣∣∣∣∣ < 1

2
(F(+∞) − F(−∞)), (7)

for any nontrivial φ in the eigenspace associated with µk, with ‖φ‖1 = 1, where q > 2N
N+2 if N ≥ 3 (q > 1, if

N = 1, 2), Then the problem (1), where k > 1, has at least one solution in the Sobolev space H1(Ω).

The purpose of this paper is to introduce a rather generalization of (LL)± and (p-LL)± for the existence
of a solution of problem (1). For readers’ convenience, we first give the following statements.

The corresponding eigenfunctions, (φn), form an orthogonal basis for both L2(Ω) and H1(Ω). Assume
that every φn with respect to the L2 norm ‖φn‖2 = 1,n = 1, 2, · · · . We split the space H1(Ω) into the following
three subspaces spanned by the eigenfunctions of (2) as follows:

Ĥ = span{φ1, · · · , φk−1},
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H̄ = span{φk, · · · , φk+m−1},

H̃ = span{φk+m, φk+m+1, · · · }.

Then
H1(Ω) = Ĥ ⊕ H̄ ⊕ H̃

with dimĤ = k − 1, dimH̄= m, dim H̃ = ∞. Of course, if k = 1 then m = 1 (µ1 is a simple eigenvalue) and
Ĥ = ∅. We also split an element u ∈ H1(Ω) as u = û + ū + ũ, and split a function h ∈ L2(Ω) as h = h̄ + h⊥,
where û ∈ Ĥ, ū ∈ H̄, ũ ∈ H̃ and ∫

Ω

h⊥vdx = 0, for any v ∈ H̄.

The generalization of (LL)± and (p-LL)± for the existence of a solution of problem (1), reads as follows:

(GLL)± If {un} ⊂ H1(Ω) is a sequence such that ‖un‖2 → ∞ and there exists φ0 ∈ H̄, un
‖un‖2

→ φ0 in
L2(Ω) as n→∞, then

lim
n→∞

(∫
Ω

G(un)dx −
∫

Ω

h̄undx
)

= ±∞.

Suppose ‖un‖2 → ∞ and un
‖un‖2

→ φ0 for some eigenfunction φ0. Then an easy computation yields, by
l’Hospital’s rule,

lim
n→∞

1
‖un‖2

(∫
Ω

G(un)dx −
∫

Ω

h̄undx
)

= lim
n→∞

∫
Ω

(
G(un)

un
dx − h̄

)
un

‖un‖2
dx

=

∫
Ω

(1(+∞) + h̄)φ+
0 dx −

∫
Ω

(1(−∞) + h̄)φ−0 dx

and directly

lim
n→∞

1
‖un‖2

(∫
Ω

G(un)dx −
∫

Ω

h̄undx
)

= lim
n→∞

∫
Ω

(
G(un)

un
dx − h̄

)
un

‖un‖2
dx

=

∫
Ω

(G+ + h̄)φ+
0 dx −

∫
Ω

(G− + h̄)φ−0 dx,

where G± = lims→±∞
G(s)

s . Due to the last two expressions above, either (LL)± or (p-LL)± imply (GLL)±.
In addition, from [33], we know (p-LL)+ is more general than the condition (4). That is, (GLL)± are more
general than conditions (LL)±, (p-LL)± and (4).

In this paper, we consider Neumann boundary value problems (1) under the Landesman-Lazer type
condition (GLL)±, and obtain the existence theorems by saddle point theorem together with a standard
eigenspace decomposition. The main results in the paper are next summarized.

Theorem 1. Under the hypothesis (GLL)−, the problem (1) has at least one solution in the Sobolev space
H1(Ω).

Theorem 2. Under the hypothesis (GLL)+, the problem (1) has at least one solution in the Sobolev space
H1(Ω).

Remark 3. Compared with conditions (LL)±, (p-LL)± and (5)-(7), the advantages of (GLL)± are illus-
trated by some examples.
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(i) The verification of (GLL)± does not require the existence of limits 1(±∞) at all. Set 1(s) = arctan s +
π cos s. An easy calculation yields that

lim
|s|→∞

G(s) = lim
|s|→∞

(
s arctan s −

1
2

ln(1 + s2) + π sin s
)

= ∞,

which means (GLL)+ holds for h ∈ L2(Ω)⊥, where

L2(Ω)⊥ =

{
h ∈ L2(Ω) :

∫
Ω

hφdx = 0 for all φ ∈ H̄
}
⊆ L2(Ω).

However, the limits 1(±∞) do not exist. That is, the condition (LL)± do not apply.
(ii) (GLL)± hold for h ∈ L2(Ω)⊥. However, both (LL)± and (p-LL)± do not apply even if the limits 1(±∞)

exist. Set 1(s) =
sgns

(e+|s|) ln(e+|s|) . Then we easily obtain

lim
|s|→∞

G(s) = lim
|s|→∞

ln(ln(e + |s|)) = +∞,

which means (GLL)+ holds for h ∈ L2(Ω)⊥. However, we also get 1(±∞) = 0 and G± = 0 which, respectively,
imply the conditions (LL)± and (p-LL)± are empty.

(iii) (GLL)± hold for h ∈ L2(Ω)⊥. However, all of the conditions (5)-(7), (LL)± and (p-LL)± do not apply.
Set 1(s) = 2s

1+s2 + 2 cos s. Then we easily obtain

lim
|s|→∞

G(s) = lim
|s|→∞

ln(1 + s2) + 2 sin s = +∞,

lim
|s|→∞

G(s)
s

= lim
|s|→∞

ln(1 + s2) + 2 sin s
s

= 0,

and

F(s) =
2G(s)

s
− 1(s) =

ln(1 + s2) + 2 sin s
s

−
2s

1 + s2 − 2 cos s.

Obviously it holds
F(−∞) = F(+∞) = −2, F(+∞) = F(−∞) = 2,

which implies that conditions (5), (6) and (7) are empty. That is, they do not apply. Moreover, (GLL)+ holds
for h ∈ L2(Ω)⊥. However, the conditions (LL)± and (p-LL)± do not apply since the limits 1(±∞) do not exist
and the condition (p-LL)± is empty by G± = 0.

The functions 1(s) and h(x) satisfy our Theorems but not satisfying the corresponding results published
in the literature so far, such as Theorems A and B.

2. Proof of Theorems

The methods to prove the theorems are variational basically based upon minmax methods together with
a standard eigenspace decomposition. To make the statements precise, let us introduce some notation.

It is well known that, by Sobolev’s inequality, there exists a constant M > 0 such that

‖u‖L2(Ω) ≤M‖u‖. (8)

Since the function 1 is a bounded continuous, we can easy prove that ϕ is continuously differentiable in
H1(Ω) , in a way similar to Theorem 1.4 in [25]. To prove Theorems 1 and 2, we recall an abstract critical
point theorem, i.e., the Saddle point Theorem under the (PS) condition, the readers can refer to [27].

Lemma 1 Let H be a Banach space with a decomposition H = H− + H+, where H− and H+ are two
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subspaces of H with dim H− < +∞. Assume that ϕ : X −→ R is a C1-function, satisfying (PS) condition and

(a) there exist constants ρ > 0 and α such that ϕ|∂Bρ ≤ α,

(b) there exist a constant β > α such that ϕ|H+ ≥ β,
Then the functional ϕ possesses a critical point in H.

In addition, we need the following lemmas.

Lemma 2 There exist C1 > 0,C2 > 0 such that for any u ∈ H we have∫
Ω

|∇û|2dx − µk

∫
Ω

|û|2dx ≤ −C1‖û‖2, (9)∫
Ω

|∇ũ|2dx − µk

∫
Ω

|ũ|2dx ≥ C2‖ũ‖2. (10)

Proof The inequalities (9) and (10) follow from the variational characterization of µk.

Lemma 3 There exist C3 > 0,C4 > 0,C5 > 0 such that for any u ∈ H we have∣∣∣∣∣∫
Ω

1(u)ûdx −
∫

Ω

hûdx
∣∣∣∣∣ ≤ C3‖û‖, (11)∣∣∣∣∣∫

Ω

1(u)ũdx −
∫

Ω

hũdx
∣∣∣∣∣ ≤ C4‖ũ‖, (12)∣∣∣∣∣∫

Ω

G(u)dx −
∫

Ω

hudx
∣∣∣∣∣ ≤ C5‖u‖2. (13)

Proof The inequalities (11),(12) and (13) follow from the Hölder inequality, the boundedness of 1 and the
fact h ∈ L2(Ω).

Lemma 4 Under the assumption (GLL)±, the functional ϕ satisfies (PS) condition. That is, {un} pos-
sesses a convergent subsequence if {un} is a sequence of H such that {ϕ(un)} is bounded and ϕ′(un) → 0 as
n→∞.

Proof Step 1. We claim that {un} is bounded in L2(Ω). We argue by contradiction. So, suppose that
‖un‖2 →∞ as n→∞. Put vn = un

‖un‖2
. Then ‖vn‖2 = 1. So, by boundedness of {ϕ(un)} and ‖un‖2 →∞, it holds

ϕ(un)
‖un‖

2
2

=
1
2

∫
Ω

|∇vn|
2dx −

1
2
µk

∫
Ω

|vn|
2dx −

∫
Ω

G(un)
‖un‖

2
2

dx +
1
‖un‖

2
2

∫
Ω

hundx

=
1
2
‖vn‖

2
−
µk + 1

2
−

∫
Ω

G(un)
‖un‖

2
2

dx +
1
‖un‖

2
2

∫
Ω

hundx→ 0. (14)

Due to (13), we easily obtain ∫
Ω

G(un)
‖un‖

2
2

dx +
1
‖un‖

2
2

∫
Ω

hundx→ 0.

It follows from (14) that
‖vn‖

2
→ µk + 1,

which means {vn} is bounded in H. Passing to a subsequence, if necessary, we may assume that there exists
v ∈ H such that

vn ⇀ v in H and vn → v in L2(Ω).
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For arbitrary w ∈ H, then we obtain∫
Ω

∇vn∇wdx→
∫

Ω

∇v∇wdx by vn ⇀ v in H,∫
Ω

vnwdx→
∫

Ω

vwdx by vn → v in L2(Ω),

1
‖un‖2

∫
Ω

1(un)wdx→ 0 and
1
‖un‖2

∫
Ω

hwdx→ 0,

by the boundedness of 1, h ∈ L2(Ω) and the hypothesis ‖un‖2 →∞. Moreover, byϕ′(un)→ 0 and ‖un‖2 →∞,
one has

0←
(ϕ′(un),w)
‖un‖2

=

∫
Ω

∇vn∇wdx − µk

∫
Ω

vnwdx

−
1
‖un‖2

∫
Ω

1(un)wdx +
1
‖un‖2

∫
Ω

hwdx. (15)

Thus by (15), for arbitrary w ∈ H, we have∫
Ω

∇v∇wdx − µk

∫
Ω

vwdx = 0,

which means v = φ0 ∈ H̄ is an eigenfunction corresponding to µk. Obviously,

vn =
un

‖un‖2
→ φ0 in L2(Ω).

An easy computation yields, by (9) and (11),

(ϕ′(un), ûn) =

∫
Ω

|∇ûn|
2dx − µk

∫
Ω

|ûn|
2dx −

∫
Ω

1(un)ûndx +

∫
Ω

hûndx

≤ −C1‖ûn‖
2 + C3‖ûn‖. (16)

Due to (16) and ϕ′(un)→ 0, we obtain ‖ûn‖ is bounded.
Similarly, it holds

(ϕ′(un), ũn) =

∫
Ω

|∇ũn|
2dx − µk

∫
Ω

|ũn|
2dx −

∫
Ω

1(un)ũndx +

∫
Ω

hũndx

≥ C2‖ũn‖
2
− C4‖ũn‖,

which implies ‖ũn‖ is bounded by ϕ′(un)→ 0.
Now we rewrite ϕ(un) as follows:

ϕ(un) =
1
2

∫
Ω

|∇ûn|
2dx −

1
2
µk

∫
Ω

|ûn|
2dx︸                                  ︷︷                                  ︸

A

+
1
2

∫
Ω

|∇ũn|
2dx −

1
2
µk

∫
Ω

|ũn|
2dx︸                                  ︷︷                                  ︸

B

−

∫
Ω

G(un)dx +

∫
Ω

h̄undx︸                          ︷︷                          ︸
C

+

∫
Ω

h⊥ûndx +

∫
Ω

h⊥ũndx︸                         ︷︷                         ︸
D

. (17)

Since ‖ûn‖ and ‖ũn‖ are bounded, A,B and D are bounded. Moreover, since ‖un‖2 → ∞,
un
‖un‖2

→ φ0, and
(GLL)± holds, we have

−

∫
Ω

G(un)dx +

∫
Ω

h̄undx→ −∞ and +∞,
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by (GLL)+ and (GLL)− respectively. That is, C→ ±∞. Thus, by (17) it holds

ϕ(un)→ ±∞.

Obviously it contradicts the assumption of the boundedness of ϕ(un). So {un} is bounded in L2(Ω).
Step 2. We claim that {un} is bounded in H. In fact, we again use the following equation:

ϕ(un) =
1
2

∫
Ω

|∇un|
2dx −

1
2
µk

∫
Ω

|un|
2dx −

∫
Ω

G(un)dx +

∫
Ω

hundx

=
1
2
‖un‖

2
−
µk + 1

2

∫
Ω

|un|
2dx −

∫
Ω

G(un)dx +

∫
Ω

hundx. (18)

Since {un} is bounded in L2(Ω),
∫

Ω
|un|

2dx,
∫

Ω
G(un)dx and

∫
Ω

hundx are bounded. Moreoverϕ(un) is bounded,
thus by (18), we have ‖un‖must be also bounded.

Step 3. We claim {un} has a strongly convergent subsequence in H. In fact, since ‖un‖ is bounded in H,
{un} has a subsequence, still denoted by {un} for the convenience, such that

un ⇀ u in H and un → u in L2(Ω).

Then one has

−µk

∫
Ω

un(un − u)dx −
∫

Ω

1(un)(un − u)dx +

∫
Ω

h(un − u)dx→ 0.

Moreover, it holds

0← (ϕ′(un),un − u) =

∫
Ω

∇un∇(un − u)dx − µk

∫
Ω

un(un − u)dx

−

∫
Ω

1(un)(un − u)dx +

∫
Ω

h(un − u)dx.

So we deduce that ∫
Ω

∇un∇(un − u)dx→ 0.

That is, ∫
Ω

|∇un|
2dx −

∫
Ω

∇un∇udx→ 0.

Due to the weak convergence un ⇀ u in H, it holds∫
Ω

∇un∇udx −
∫

Ω

∇u∇udx→ 0.

Thus we get ∫
Ω

|∇un|
2dx −

∫
Ω

|∇u|2dx→ 0,

which , together with un → u in L2(Ω), implies∫
Ω

|∇un|
2dx +

∫
Ω

|un|
2dx = ‖un‖

2
→ ‖u‖2 =

∫
Ω

|∇u|2dx +

∫
Ω

|u|2dx.

The uniform convexity of H then implies that un → u in H. Hence the functional ϕ satisfies (PS) condition.

Proof of Theorem 1. Under the assumption (GLL)−, we set H = H1(Ω) = H− ⊕ H+, where H− = Ĥ is
a finite dimension subspace and H+ = H̄ + H̃.
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On the one hand, we claim that there is a constant β such that

inf
u∈H+

ϕ(u) ≥ β.

If not, there exists a sequence {un} ⊂ H+ such that

lim
n→∞

ϕ(un) = −∞. (19)

Then ‖un‖2 →∞, and for vn = un
‖un‖2
∈ H+, by (19) we obtain

0 ≥
ϕ(un)
‖un‖

2
2

=
1
2

∫
Ω

|∇vn|
2dx −

1
2
µk

∫
Ω

|vn|
2dx −

∫
Ω

G(un)
‖un‖

2
2

dx +

∫
Ω

h
un

‖un‖
2
2

dx

=
1
2
‖vn‖

2
−
µk + 1

2
−

∫
Ω

G(un)
‖un‖

2
2

dx +

∫
Ω

h
un

‖un‖
2
2

dx. (20)

However, by (13), we know

−

∫
Ω

G(un)
‖un‖

2
2

dx +

∫
Ω

h
un

‖un‖
2
2

dx→ 0. (21)

So by (20) and (21), we get
‖vn‖

2
→ µk + 1,

which implies ‖vn‖ is bounded. Passing to a subsequence, if necessary, we may assume that there is v ∈ H+

such that
vn ⇀ v in H and vn → v in L2(Ω).

Due to the weak lower semicontinuity of the norm in H, we know

lim inf
n→∞

∫
Ω

|∇vn|
2dx ≥

∫
Ω

|∇v|2dx. (22)

Thus by (20), (21) and (22), we have ∫
Ω

|∇v|2dx − µk

∫
Ω

|v|2dx ≤ 0,

which, together with (10), implies that v = φ0 ∈ H̄ is an eigenfunction associated with µk. Clearly,

vn =
un

‖un‖2
→ φ0 in L2(Ω).

For all un = ũn + ūn ∈ H+, one has

ϕ(un) =
1
2

∫
Ω

|∇ũn|
2dx −

1
2
µk

∫
Ω

|ũn|
2dx −

∫
Ω

G(un)dx +

∫
Ω

h̄undx +

∫
Ω

h⊥ũndx

≥ C2‖ũ‖2 − ‖h⊥‖2‖ũ‖2 −
∫

Ω

G(un)dx +

∫
Ω

h̄undx, (23)

which, together with (GLL)−, yields
ϕ(un)→ +∞ as n→ +∞.

Obviously it contradicts with (9). That is, the conclusion is verified.
On the other hand, for û ∈ H−, we have

ϕ(û) =
1
2

∫
Ω

|∇û|2dx −
1
2
µk

∫
Ω

|û|2dx −
∫

Ω

G(û)dx +

∫
Ω

hûdx

≤ −C1‖û‖2 −
∫

Ω

G(û)dx +

∫
Ω

hûdx,
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which implies
ϕ(û)→ −∞ as ‖û‖ → +∞.

Hence there exist constants α and R > 0 such that

sup
u∈∂D

ϕ(u) < α < β,

where D = {u ∈ H−| ‖u‖ ≤ R}.
Therefore, the hypotheses (a) and (b) in Lemma 1 are satisfied. Recall that the functional ϕ satisfies (PS)

condition in Lemma 4, the proof of Theorem 1 is finished via Lemma 1.

Proof of Theorem 2. Under the assumption (GLL)+, we put H = H1(Ω) = H− ⊕H+, where

H− = Ĥ ⊕ H̄ and H+ = H̃.

On the one hand, we claim that
lim
‖u‖→∞

ϕ(u) = −∞, u ∈ H−.

If not, there exist a sequence {un} in H− and a constant C6 such that ‖un‖ → ∞ and

ϕ(un) ≥ C6. (24)

Since H− is a finite dimension space, the two norms ‖ · ‖ and ‖ · ‖2 are equivalent on H−. In fact, for all u ∈ H−,
one has ∫

Ω

|∇u|2dx − µk

∫
Ω

|u|2dx ≤ 0.

Thus it holds

‖u‖2 =

∫
Ω

|∇u|2dx +

∫
Ω

|u|2dx ≤ (1 + µk)
∫

Ω

|u|2dx = (1 + µk)‖u‖22. (25)

Obviously, by the definition of the two norms, one has

‖u‖22 =

∫
Ω

|u|2dx ≤ ‖u‖2. (26)

Due to (25) and (26), the two norms ‖ · ‖ and ‖ · ‖2 are equivalent on H−. Then it holds

‖un‖2 →∞.

Put vn = un
‖un‖2
∈ H−. Since H− is a finite dimension space, there exists v ∈ H− satisfying

vn → v both in H and L2(Ω). (27)

Moreover, by (13), we know

−

∫
Ω

G(un)
‖un‖

2
2

dx +

∫
Ω

hun

‖un‖
2
2

dx→ 0. (28)

Then via (27) and (28) we obtain

0 ≤ lim inf
n→∞

ϕ(un)
‖un‖

2
2

= lim inf
n→∞

[
1
2

∫
Ω

|∇vn|
2dx −

1
2
µk

∫
Ω

|vn|
2dx −

∫
Ω

G(un)
‖un‖

2
2

dx +

∫
Ω

hun

‖un‖
2
2

dx
]

=
1
2

∫
Ω

|∇v|2dx −
1
2
µk

∫
Ω

|v|2dx.
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However, we all know
1
2

∫
Ω

|∇v|2dx −
1
2
µk

∫
Ω

|v|2dx ≤ 0.

Thus it holds
1
2

∫
Ω

|∇v|2dx =
1
2
µk

∫
Ω

|v|2dx,

which implies that v = φ0 ∈ H̄ is an eigenfunction associated with µk. Clearly,

vn =
un

‖un‖2
→ φ0 in L2(Ω).

For all un = ûn + ūn ∈ H−, one has

ϕ(un) =
1
2

∫
Ω

|∇ûn|
2dx −

1
2
µk

∫
Ω

|ûn|
2dx −

∫
Ω

G(un)dx +

∫
Ω

h̄undx +

∫
Ω

h⊥ûndx

≤ −C1‖ûn‖
2 + ‖h⊥‖2‖ûn‖2 −

∫
Ω

G(un)dx +

∫
Ω

h̄undx,

which, together with (GLL)+, implies

ϕ(un)→ −∞ as n→ +∞.

This contradicts (24). The conclusion is verified.
On the other hand, by (8), (10) and (13), for u ∈ H+, we have

ϕ(u) =
1
2

∫
Ω

|∇u|2dx −
1
2
µk

∫
Ω

|u|2dx −
∫

Ω

G(u)dx +

∫
Ω

hudx

≥ C3‖u‖2 − C5‖u‖2 ≥ C3‖u‖2 − C7‖u‖,

which implies
ϕ(u)→ +∞ as ‖u‖ → +∞.

Hence there exist constants α and R > 0 such that

sup
u∈∂D

ϕ(u) < α < β,

where D = {u ∈ H−| ‖u‖ ≤ R}.
Therefore, the hypotheses (a) and (b) in Lemma 1 are satisfied. Recall that the functional ϕ satisfies (PS)

condition in Lemma 4, Theorem 2 is proved via Lemma 1.
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[5] P. Drábek, Landesman-Lazer condition for nonlinear problems with jumping nonlinearities, J. Differential Equations. 85 (1990), 186-199.
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