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Generalized Contraction Involving an Open Ball and Common Fixed
Point of Multivalued Mappings in Ordered Dislocated Quasi Metric
Spaces
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Abstract. The aim of this work is to obtain fixed point results for multivalued mappings satisfying
generalized contractions on the intersection of an open ball and a sequence in left (right) K-sequentially
complete ordered dislocated quasi metric space. An example has been built to demonstrate the novelty of
results. Our results generalize and extend the results of Altun et al. (J. Funct. Spaces, Article ID 6759320,
2016)

1. Introduction and Preliminaries

By excluding one and a half condition, out of three conditions of a metric space, we obtain dislocated
quasi metric space [19]. Complete dislocated quasi metric space is a generalization of 0-complete and
complete quasi-partial metric space [12, 14]. Dislocated quasi metric also generalizes dislocated metric,
partial metric and quasi metric [9]. Fixed point results in dislocated quasi metric space can be seen in
[4,17,22,23].

Ran and Reurings [16] gave a fixed point result in partially ordered sets and obtained solution to
matrix equations as an application. Nieto et al. [15] gave an extension to the result in [16] for ordered
mappings and used it to give a unique solution for ODE with periodic boundary conditions. Altun et al.
[1] introduced a new approach to common fixed point of mappings, satisfying a generalized contraction
with a new restriction of order, in a complete ordered metric space. For more results in ordered spaces see
[2,6,8,10,11,13].

Arshad et al. [3] observed that there was mappings which had fixed point but there were no results
to ensure the existence of fixed point of such mappings. They introduced a contraction on closed ball to
achieve common fixed point for such mappings, see also [20]. Fixed point results for multivalued mappings
generalizes the results for single-valued mappings, for example, see [5, 7, 18].

In this paper, we extend the result of Altun et al. [1] in four different ways by using

(i) multivalued mappings instead of single-valued mappings;

(ii) open ball instead of whole space;
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(iii) Ciric type contraction instead of Banach type contraction;
(iv) left (right) K-sequentially complete dislocated quasi metric space instead of complete metric space.
We give the following definitions and results which will be useful to understand the paper.
Definition 1.1 [1] Let W denotes the set of functions 1 : [0, c0) — [0, o0) satisfying the conditions:
(V1) ¢ is non-decreasing.
(W,) For all £ > 0, we have

B =) ¥F(t) <o,
k=0

where, ¥ is the k" iterate of 1. The function 1 € W is called comparison function.
Lemma 1.2 [1] Let ¢ € W. Then

@y <t forallt >0,

(ii) 1 (0) = 0.
Definition 1.3 [19] Let X be a nonempty set and let d; : XX X — [0, o) be a function satisfying the following
axioms forall x,y,z € X :

() If dy(x, y) = dy(y, x) = 0, then x = y; (ii) d;(x, y) < dy(x,2) + dy(z, y).
Then the pair (X, d;) is called a dislocated quasi metric space.

It is clear that if dy(x, y) = d,(y,x) = 0, then from (i), x = y. But if x = y, then d,(x, y) or d,(y, x) may
not be 0. It is observed that if d,(x,y) = d,(y,x) for all x,y € X, then (X, d;) becomes a dislocated metric
space (metric-like space) (X,d;). For x € X and ¢ > 0, By (x,¢) = {y € X : dy(x,y) < € and dy(y,x) < ¢}

and By, (x, €) = {y € X : dy(x, y) < € and d;(y, x) < ¢} are open and closed balls in (X, d;) respectively.
Example 1.4 [19] Let X = R* U {0} and d,(x, y) = x + max{x, y} for any x, y € X. Then (X, d,) is a dislocated
quasi metric space.

Definition 1.5 [19] Let (X, d;) be a dislocated quasi metric space.

(i) A sequence {x,} in (X, d,) is called left (right) K-Cauchy if V ¢ > 0, 3 ng € N such that V. n > m > ng
(respectively ¥ m > n > no), dg(xm, xn) < €.

(ii) A sequence {x, } dislocated quasi-converges (for short d, -converges) to x if &g{}o dy(xp, x) = 1}1_{{)10 dg(x,x,) =0
or for any ¢ > 0, there exists 19 € N, such that for all n > ny, d;(x, x,) < € and d;(x;,x) < €. In this case x is
called a d;-limit of {x,}.

(iii) (X, d,) is called left (right) K-sequentially complete if every left (right) K-Cauchy sequence in X converges
to a point x € X such that d,(x, x) = 0.

Definition 1.6 [19] (X, <, d,) is called an ordered dislocated quasi metric space, if

(i) (X, dy) is dislocated quasi metric space

(ii) < is a partial order on X.

Definition 1.7 [19] Let (X, d;) be a dislocated quasi metric space. Let K be a nonempty subset of X and let
x € X. An element yy € K is called a best approximation in K if

dy(x,K) = dy(x,y0), where d,(x,K) = inlgdq(x, Y)
ye

and d,(K,x) = dy(vo,x), where dy(K, x) = iyr;lgdq(y, X).

If each x € X has at least one best approximation in K, then K is called a proximinal set. We denote the set
of all proximinal subsets of X by P(X).
Definition 1.8 [19] The function Hy, : P(X) X P(X) — [0, o), defined by

Hg, (A, B) = max{sup d,(a, B), sup dy(A, b)}
acA beB

is called dislocated quasi Hausdorff metric on P(X). Also (P(X), Hy,) is known as dislocated quasi Hausdorff
metric space.

Lemma 1.9 [19] Let (X,d;) be a dislocated quasi metric space. Let (P(X),H,,) be the dislocated quasi
Hausdorff metric space on P(X). Then, for all A, B € P(X) and for each a € A, there exists b, € B, such that
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Hg (A, B) > dy(a, b,) and Hy (B, A) > d;(ba, a).
Lemma 1.10 [19] Every closed ball Y in a left (right) K-sequentially complete dislocated quasi metric space
X is left (right) K-sequentially complete.
2. Main Result

Let (X, d;) be a dislocated quasi metricspace, xo € Xand T : X — P(X)be amultivalued mappingon X. As
Txo is a proximinal set, then there exists x; € Txo such that d,(xo, Txo) = dy(xo, x1) and d,(Txo, xo) = dy(x1, Xo).
Now, for x; € X, there exist x, € Tx; be such that d;(x1, Tx1) = dy(x1, x2) and dy(Tx1, x1) = dy(x2, x1). Contin-
uing this process, we construct a sequence x,, of points in X such that x,,1 € Txy, dg(xy, Txn) = dg(xn, Xn41)

and dy(Tx,, xn) = dy(xXn41, X4). We denote this iterative sequence {XT(x,)} and say that {XT(x,)} is a sequence
in X generated by xy.

Theorem 2.2 Let (X, <, d;) be an ordered left (right) K-sequentially complete dislocated quasi metric space,
5, T : X — P(X) be the multivalued mappings. Suppose that the following assertions hold:
(i) There exists a function u € WV, xo € X and r > 0 such that for every (x, y) € X X X, we have
max{H,(Tx, Ty), Hy(Ty, Tx)} < u(Dy(x, y)),
forallx,y € Bg, (x0,7) N {XT(x,)} with x > Sx, y < Sy, where
Dq(x/ y) = max{dq(xl ]/)/ dq(x/ Tx)/ dq(y/ Ty)}
(ii) If x € By, (x0,7), dg(x, Tx) = dy(x, y) and dy(Tx, x) = dy(y, x), then
(a) x < Sx, implies y > Sy (b) x > Sx, implies y < Sy
(iii) The set G(S) = {x :x < Sxand x € By, (xo, r)} is closed and contains xj.
(iv)
Z max{yi(dq(xl,xg), /Ji(dq(xo,xl))} <rforallneN.
i=0

Then the subsequence {x2,} of {XT(x,)} is a sequence in G(S) and {x2,} — x* € G(S) and d,(x*, x*) = 0. Also,
if the inequality (i) holds for x*, then S and T have a common fixed point x" in By, (xo, 7).

Proof: As x( be an element of G(S), from condition (iii) xo < Sxo. Consider the sequence {XT(x,)}. Then
there exists x1 € Txg such that

d(xo, Txo) = d (xo, x1) and d(Txo, x0) = d (x1,%o) -

From condition (ii) x; > Sxj. From condition (iv), we have

j
max{dy,(x1, xo), dg(xo, x1)} < Z max{p’(dg(x1, x0), ' (dg(x0, x1))} < 7.
i=0

It follows that, d,(x1, xo) < r and d,(xo, x1) < . So, we have x; € Ba, (xo,7). Also,
dg (x1,Tx1) = dg (x1,x2) and dy (Txy, x1) = dj (x2,x1) -
As x1 > 5x1, so from condition (ii), we have x, < Sx,. By triangular inequality, we have

dy (x0,x2) < dj (xo,%1) +dg (x1,X2) . (2.1)
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Now, by Lemma 1.9, we have

dg (x1,%2) Hgg (Txo, Tx1)

<

< max{Hg, (Txo, Tx1), Hag (Tx1, Tx0)}.

As xg,x1 € By, (x0, 1) N{XT(xy)}, x1 = Sx1 and xo < Sxo, then by (i), we have
dg (x1,x2) < w(D(x1,x0))

< p(max {dq (x1,%0),dy (x1,%2) , d, (x()/xl)})'

If max {dq (x1,%0) ,dy (x1,x2),dy (xo,xl)} = dy (x1,x2), then a contradiction arise by the fact u(t) < t, so, we
have

dy (¥1,%2) < p(max {d, (x1,%0) , dy (xo, ¥1)}). (22)
Now, inequality (2.1) implies

dy (x0,x2) < dq(xo,x1)+y(maX{dq(xl,xO),dq(xo,xl)})

IA

max {d; (x1,X0) , dy (xo, %1)} + p(max {d, (x1, %0, dy (xo, 1)}

1
) max{pi(dy (v, x0), 1 (dy (0, x1))-
i=0

By using (iv), we have

dy(xo,x2) <. (2.3)
Now, by triangular inequality, we have

dy (x2,x0) < dy (x2,x1) +dy (x1, %0) - (2.4)
Now, by Lemma 1.9, we have

dg (x2,x1) H gy (Tx1, Txo)

<
< max{qu (Txo, Tx1), Hy, (Txo, Tx1)}.

As x1,x9 € By (x0,7) N{XT(xn)}, x1 = Sx1 and x < Sxo, then by (i), we have
dy (2, %1) < p(max {d, (x1, o), dy (1, %2) , dy (x0, 31))).

If max {dq (x1,x0) , dg (x1,x2) ,dg (x0, xl)} =d,; (x1,x2), then by (2.2), we have
dy (2, x1) < pmax {d, (x1, o) , p(max {d, (x1, Xo) , dy (x0, x1)}), dy (xo, x1)})-

If max {dq (xx1, x0) , dg (xo, xl)} =d,; (xo,x1), then, we have

A

dy (2, 1) < p(max{d, (v1,%0), u(dy (xo, 1)), dy (xo, 1))

IN

p(max {dq (x1,%0) , dy (xofx1)})-

Similarly, if max {dq (x1, x0) , dy (x0, x1)} =d, (x1,x0), then, we have

dg (x2,x1) < p(max {dq (x1,x0) ,dy (xofxl)})~
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Now, inequality (2.4) implies

A

dg (x2,%0) < dq(xl,xo)+y(maX{dq(xl,xO),dq(xO,xl)})

IN

1
Y max{yi'(dy (1, Xo), 1l o, x1)} <.
i=0

It follows that, d,(x2, xo) < 7. By (2.3), d;(x0, x2) < 1.So0, x2 € Bg, (xo, 7). Also,
dg (x2, Txa) = d; (x2,x3) and dy (Tx, x2) = dj (x3,x2) -

As x; < Sx, so from condition (ii), we have x3 > Sx3. Let x3,- -+, x; € Bg, (x0,7) N{XT(x,)}, x4 < Sxy4, x5 = Sxs,

X¢ =< Sx6, X7 = Sx7 up to x; < Sxj and xj41 > Sxjy1 for some j € IN, where j = 2i,i = 2,3...%. Now, by Lemma
1.9, we obtain

dg(xi, X2i+1) < Hag(Txai-1,Tx2:)
< max{Hgy(Tx2i-1, Tx2i), Hag(Tx2i, Txoi-1)}.
As x3i-1, X2i € By (x0,7) N {XT(xp)}, X2i-1 = Sx2i-1, X2i < Sx2i, then by (i), we have
dg(x2i, X2i41) < p(max {dq(x2i—1/ X2i), dg(X2i-1, X2i), dg(X2i, X2i41 })

< p(max {dq(x2i—1r X2i), dg(Xai, Xair1 )})-

If max {dq(xzi—1, X2i), dg(X2i, x2i+1)} = dg(x2i, X2i+1), then dg(xa;, X2i+1) < p(dy(x2i, X2i+1)), which is contradiction to

the fact u(t) < t. Therefore max {dq(xZi_l,xZi), dg(x2i, xz,-+1)} = dy(x2i-1,X2i). Then, we have

dy(xai, Xoiv1) < pldg(x2i-1, X21)), (2.5)
which implies that
dg(x2i, X2i+1) < max {[J(dq(x2i—1/x2i)/ p(dy(x2i, xZifl)}- (2.6)

Now, by Lemma 1.9
dg(x2i-1,%2)) < Hag(Tx2i—2, TX2i-1)

< max {qu(szi—z, Tx2i-1), Hag(Tx2i-1, szi—z)} .
AS X2i-1,X2i-2 € By, (0, ) N{XT(xy)}, X2i-1 = Sx2i—1 and xpi—» < Sxp;_», then by (i), we have
dg(x2i-1, X2i) < p(max dy(xai-1, X2i-2), (dg(Xai-1, X21), dg(x2i-2, X2i-1)}.

If max {dq(xzi_l, X2i-2), (dg(x2i-1, X2i), dq(xz,-_z,xzi_l)} = dy(x2i-1, X2;), then contradiction arise to the fact u(t) < t.
Now,

dyg(x2i-1,X2;) < p(maxdy(xoi-1, X2i-2), dg(Xai-2, X2i-1)}-
As 1 is non decreasing function, so

u (dq(xzi—l/ xzi)) < pA(maxdy(xai-1, X2i-2), dg(X2i-2, X2i-1)}

u (dq(xzi—lfxzi)) < max {#2(%(9(21'—1,9621'—2)), Hz(dq(XZi—z,xzi—l))}~ (2.7)
Now, using (2.7) in (2.5), we have

dq(xzi, X2i1) < Max {#z(dq (x2i-1, X2i-2)), #z(dq (x2i-2, xzi—l))} ’ (2.8)
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Now, by Lemma 1.9

IN

dg(X2i-2, X2i-1) Hag(Tx2i-3, Tx2i-2)

max {qu(szi—3/ Tx2i-2), Hig(Tx2i-2, szi—s)} .

IA

AS X2i-3, X2i-2 € Ba, (x0, ) N{XT(xy)}, X2i-3 = Sx2i—3 and x2;—» < Sxy;_5, then by (i), we have
dy(x2i-2, X2i-1) < p(max {dq(xZi—Sr X2i-2), dg(X2i-2, X2i—1)})-

If max {dq(le;3, X2i-2), dg(X2i-2, leq)} = dy(x2i-2, X2i-1), then contradiction arise to the fact p(t) < t. Therefore
dg(x2i-2, X2i-1) < p(dg(x2i-3, X2i-2)) (2.9)
dy(x2i-2, X2i-1) < p(max {dq(xZi—3r X2i-2), dg(X2i-2, X2i73)})

12 dg(xim2, X2im1) < p*(max {dq (x2i-3, X2i-2), dg(x2i-2, x2i—3)})- (2.10)

Now, by Lemma 1.9

A

dg(X2i-1,%2i-2) < Hag(Tx2i2, Tx2i-3)
< max {qu(szi—3, Tx2i-2), Hig(Tx2i-2, szi—3)} .

AS X2i-3,X2i-2 € By, (x0,7) N{XT(x4)}, X2i—3 = Sxpi—3 and xpi_p < Sxp;_», then by (i), we have
dy(x2i-1, X2i-2) < p(max {dq(xm‘—s, X2i-2), dg(X2i-2, xZi—l)})-
By using inequality (2.9), we have

dg(x2i-1,%2i-2) < p(max {dq(XZi—a,XZi—z)/#(dq(xzi—slxzi—z))})

p(dg(x2i-3, X2i-2))-

Which implies that

2 dy(x2i-1, Xoi—2) < p2(p(max {dq (x2i-3, X2i-2), dg(X2i-2, x21—3)}))- (2.11)
Combining inequalities (2.8), (2.10) and (2.11), we have

dy (0021, %2i41) < max {1 (dy(ai-a, Xai2)), 12 (dg (x2i-2, %26-3))} (2.12)
Following the patterns of inequalities (2.6), (2.8) and (2.12), we have

dg(x2i, X2i+1) < max {#Zi(dq(xo, x1)), (¥ (dg 1, Xo))} :
Similarly, we have

dg(x2i-1, %2i) < max {yZi_l(dq(xo, x1)), w2 (dy (x1, Xo))} .
Combining the above two inequalities, we have

dy(xj, xXjs1) < max {(dy (xo, x1), 1/ (dg (x1,0))} - (2.13)
Now, by Lemma 1.9, we have

dg(x2iv1,%21) < Hag(Tx2i, Tx2i-1)

< max {qu(szi—l, Txa:), Hag(Tx2i, sz:’—l)}
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As x3i-1,X2; € By, (x0,7) N {XT(xn)}, x2i-1 = Sx2i—1 and xp; < Sxy;, then by (i), we have
dy(x2i11, X21) < p(max {dq(xzi—lr X2i), dg(X2i, X2i41 )})-
By inequality (2.5), we have
dg(Xai1, X2i) < p(max {dq(x2i71/x2i)/ H(dq(x2i71/x2i)})-
As u(t) < t, we have

dg(x2is1, X2i) < p(dq(x2i-1, X2i))-

Now,
dg(x2i41, X2i) < max {# (dq(XZi—l, xzi)) , 1(dg(x2i, x2i—1)= .
Now, using (2.7) in (2.15), we have
dy(x2i41, X2;) < max {#z(dq (X2i-1, X2i-2)), 12 (dg(x2i-2, x2i—1))} :
Combining inequalities (2.10), (2.11) and (2.17), we have
dg(x2i+1, X2i) < mMax {[-13(dq (X2i-3, X2i-2)), 1 (dg (x2i-2, x2i—3))} :
Following the patterns of inequalities (2.16), (2.17) and (2.18), we have
dy(x2i11, X2i) < max {MZi(dq(xo, x1)), 12 (dy(x1, xo))} .
Similarly, we have
dy(x2i, X2i-1) < max {Hzi_l(dq(xo, x1)), 12N (dg(xr, xo))} .
Combining the above two inequalities, we have
dy(xjo1, %) < max {(dy (xo, x1), 2/ (dy (61, 0))} -
By using inequalities (2.13), (iv) and triangle inequality, we have

dg(x0,xj41) < dg(xo,x1) + ... +dg(x), Xj41)

< dg(xo,x1) + .+ max (i (dg (1, x0)), 1/ (dg (o, x1)))

j
dy(xo, xj31) < ) max{u'(dg(xn, %o), 1'(dy(xo, 1))} <.
i=0

Similarly, by using inequalities (2.19), (iv) and triangle inequality, we have

j
dy(xju1,%0) < ) max{p(dy (1, Xo), 1 (dy(xo, x1))} < -
i=0

By inequality (2.20) and (2.21), we have x;j.1 € By,(xo, ). Also,

dq (x]'+1, TXj+1) = dq (Xj+1,Xj+2) and dq (ij+1,x]~+1) = dq (x]'+2, x]'+1) .

329

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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As xj1 = Sxj;1, so from condition (ii), we have xj,2 < Sxj;». Similarly, we get

dy(xXjs1, Xj32) < max (/1 dy (1, x0)), 4/ dy(xo, 1))}, (2.22)
and

dy((xja2, xj41) < max {1 (dy (1, %0))), 1+ (dg (x0, x1))) (2.23)
Also,

dy(xo,xj12) < rand dy(xjs2,Xx0) <.
It follows that xj,, € Bg, (xo, 7). Also,

dy (x]-+2, ij+z) =d, (xj+2, xj+3) and d, (Tx]-+2, x]-+2) =d, (x]-+3, x]-+2).

As xj2 < Sxjy2,50 from condition (ii), we have xj;3 > Sxj;3. Hence by mathematical induction x,, € Bgy(xo, 1),
Xon = Sxoy and X441 = Sx2441 for all n € IN. Also x3, € G(S). Now inequalities (2.13), (2.19), (2.22) and (2.23)
can be merged as

(%, Xs1) < max (1" (dg(x1, 0)), 1" (dy(x0, 31))} (2.24)

dg(xXn+1,Xy) < Max {H"(dq(x1,x0))/ [Jn(dq(xo/xl))}/ (2.25)

for all n € N. Fix ¢ > 0 and let ki(¢) € N such that Y, max{u*(d,(x1, x0)), " (dy(x0,x1))} < &. Let n,m € N
K=k (e)

with m > n > kq(¢), then

m—1

dg(xn, Xm) < qu(xk,xk+1)
k=n

m—1
<) max{pt(dy (v, x0)), 14 (dy(xo, x1))), by (224)
k=n
dyCon, %) <Y max{(dy(xn, X0)), " (dg (xo, 1))} < .
k=ki ()

Thus, we proved that {XT(x,)} is a left K-Cauchy sequence in (B, (xo, 1), dy). Similarly, by using (2.25), we
have

3
N

dg (X, Xn) < dg(Xps1, xx) < €.

n

o~
1]

Hence, {XT(x,)} is aright K-Cauchy sequence in (Bg, (xo, 7), ;). As every closed set in left(right) K-sequentially
complete dislocated quasi metric space is left(right) K-sequentially complete and G(S) is closed set, so G(S)
is left(right) K-sequentially complete. As {xy,} is a left(right) K-Cauchy sequence in G(S), so there exists
x* € G(S) such that {x,,} — x, thatis

lim d(x2,, x7) = lim dy(x", x2,) = 0. (2.26)
n—o0 n—oo

X< Sx' (2.27)



A. Shoaib et al. / Filomat 34:2 (2020), 323-338 331
Now,
dq(x*/ X*) < dq(x*/ x271) + dq(XZn/ x*)'
This implies d,(x*, x*) = 0 as n — c0. Now

dq(x*r Tx) < dq(x*z Xon+2) + dq(xZVH—Zr Tx")
< dy(X7, xon42) + Hy (Tx2p41, TXY), (by Lemma 1.9)

dy(x', Xans2) + max {Hy (Txansn, Tx'), Hy (Tx', Txou 1)} -

IN

By assumption, inequality (i) holds for x*. Also xp,+1 > Sx2,441 and x* < 5x*, so

dy(x", Tx")

IA

dy(x', Xans2) + pu(max {dg(Xane, X), dg(X2ns1, Xans2), dg(x°, Tx)})
dg(x", Xon+2) + p(max{d,(x2n+1, Xon+2) + dg(X2n42, X7),
dg(X2n+1, X2n+2), dg(x*, TXT)}).

IA

Letting n — oo and by using inequalities (2.24) and (2.26), we obtain
dy(x", Tx") < u(dy(x", Tx")).

This implies that
dy(x", Tx") = 0. (2.28)
Now,
dy(Tx',x") < dy(Tx", xon12) + dg(xX2n42, X7)
<

qu(Tx*/ Txop41) + dq(x2n+2/ x")
< max{Hy, (Txas1, TX'), Hy (TX, Totaue1)] + dy(xanea, X°).

As inequality (i) holds for x*, x* < Sx* and xp,41 > Sx2441, then, we obtain

dg(Tx', x°) < r(max {dg(xanen, X°), dg(anst, Xans2), dg(x", TX)) + dy((ansz, ).
Taking n — oo and by using inequalities (2.24), (2.26) and (2.28), we have
dy(Tx", x*) = 0. (2.29)

From inequalities (2.28) and (2.29), we have x* € Tx". As x* < Sx" and d,(x", Tx") = dy(Tx", x*) = 0 = dy(x", x7),
then from (ii)

x> Sx". (2.30)

From (2.27) and (2.30), we have x* < Sx* < x*. This implies x* < y < x*, for all y € 5x*. Therefore x* = y, for
all y € Sx* or Sx* = {x*}. Hence, x* is a common fixed point for S and T.
Example 2.2 Let X = [0, o0), u(t) = %tand

dy(x,y) =x+2y, (x,y) € XXX

Then (X, <, d;) be an ordered left(right) K sequentially complete dislocated quasi metric space. Let R be the
binary relation on X defined by

R = {(x,x):xeX}U{(x,%):xe{l,%,l L }}

x 11 1
U{(§/x)~xe{§,2—7,ﬁ, ..... }}
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Consider the partial order on X defined by
(x,y) € Xx X, x <yifand only (x,y) € R.

Define the pair of mapping T, S : X — P(X) by

Tx_[g 2] Sy _{ {g}:xe0,1]

[x+3}:x>1
Let
A = {x:xﬁSx}:{O,l,%,l L }
B = {y:yESy}:{O,%,z%,zl—s, ....... }
Letxg =1and r = 7, then
Bag(xo,r) = {y 1 dy(1,y) <7 Ady(y, 1) <7} = [0,3).
Then

G(S) {x:x < Sxand x € Byy(xo, 1)}

11 1
B {01981729 """ }

1
Now, as g € Byy(xo, 1),

1 1 1 1
(G Tge) = A(Gug 35cgnt)
and
1 1 1 1
g gir) = W35G o)
Alsol (9%1/ M%) € R SO 91111 < Sgnll AS (9X9n 1/ 3><9n 1) € R SO 3X;n1 z
satisfied. Now, as 3X9,, o1 € Bag(xo,7),
1 1 1 1
d ,T =d ,
"(3><9n—1 3><9n—1) "(3><9"—1 9><9"—1)
and
1 1 1 1
d (T , =4 , )
A 3 x 91 3><9n—1) "(9><9n—1 3><9"—1)
Also, zg 3><9" 597 = Sy, implies 9><9" oot = S9><9" T

(ii)(b) are trivially satisfied for 0 € By,(xo, 7). Now

1111 1 1 1

BugGeo, 1) 0 XT60) = {13,555 57 55 7357 315 -
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=——. Hence, condition (ii)(a) is

Hence, condition (ii)(b) is satisfied. Also, condition (ii)(a) and

Now for x,y € By (xo,7) N {XT(x,)} with x = Sx and y < Sy, then x € B and y € A. In general for some

n,me N

_ 1 -1
- 3X9m—1’ y= gn-1°
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Case i: Let n < m, we have

1 1 1 1
ATy ) = H(| 555 355 |a30em a9 )
(Ty, Tx) 3% 91" 2% 91| [9x 9m1" § x 9n-1
2 1 1 }
+ , +
2x9n=1 g xgm-1"3 5 gn-1 = 3% gm-1

I9x 9" 44 9N 4] 9x 9" 4+ 4
= max , = .
18 x 9m-1 7 3 x 9m-1 18 x 9m-1

H(Ty, Tx) = max{

Now,

[sx5 e | 35 7305 )

9x 9m=1" 6 x 9m-1]"[3 x 9n-1"2 x 9n-1
L2 1 +L}

6x9m=1 = 3x9n-1"9x9gm-1 = gn-1

34+12x9"" 14+9x9m" 2418 x 9"
= max , =
18 x 9m-1 9 x 9m-1 18 x 9m-1

H(Tx, Ty) = H(

H(Tx, Ty) = max{

Also

max {Hq (Ty, Tx),H, (Tx, Ty)} 18 x9m1 ' 18 x gl

2+ 18 x 9m"
18 x 9m-1

{9><9m‘”+4 2+18><9m‘”}
ma

Now, we have

1 1 1 1 11
Dy(x, y) = max {dq (3 X gn-1’ W)’dq (3 o1’ L 3% gm )’dq (w_fl’Tﬁ)}

Dot vy - max [ LEEXO 12 1,2
1Y) = 3x9n1 '3x 91 T gxgnl/gul T 3y gul

1+6x9™ " 3+2 3+2 _1+6><9’”‘”
3x9m-1 "9x9gm-1"3xon-1[ " 3xgm-1

30\ 3x9m1 3 x 9m-1
3418 x9m™" - §(1+6><9m—”)
18 x 9m-1 8\ 3x9m-l
2+ 18 x 9" 5(1+6x9m‘”)

or Bxom1  ~ 8| 3xont

u(Dyx, ).

Case ii: Let n > m, then by using (2.31), we have

{9+4><9”‘m 1 +9""”}
max

24(1+6><9’””) - 1+6x9m™

or

A

or max {Hq (Tx, Ty),H; (Ty, Tx)}

Hy (Ty, Tx) 18x 971 ' 3x 91

6+6Xx9" M
18 x 9n-1 °

333

(2.31)

(2.32)

(2.33)
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Similarly, by using (2.32), we have

3X 9" +12 9 49
H{IxTy) = ax{ 18X 91 " 9x g }
3% 9 +12
18 x 91

Now,

max {H, (Ty, Tx), Hy (Tx, Ty)} x{6+6><9‘ 3x 9" +1z}

18 x9m-1 7 18 x 9n-1

6+6x9"™
18 x 91
Now, by (2.33), we have
Dy(xy) = ax{l+6><9"‘m 3+2 3+2 }
e 3x 9=l 79 x9gm-1’3 x gn-1
1+6x9"™
3 x9n-1
As
40 +40 x 9" < 30 + 180 x 9™
18 x 9n-1 18 x 9n-1
6+ 6x9" " 5(1+6x9"™
Bx91 é( 3x 91 )

max {Hq (Tx,Ty),H, (Ty, Tx)} < u (Dq(x, y)) .

Case iii: Let

1
x=0,y= g
We have
H(Tx,Ty) = max{[O 0] [ ! ! ]}
Y= 3% 2% o
S T
- 3 x 9n-1’ gn-1 - ogn-1°
Also,
1 1 1
H(Ty, Tx) = , ,O,O}Z—.
Ty, T2) max{[3><9n—1 2><9”—1] 0.0]) = 5o
Now,
max {H, (Tx, Ty), Hy (Ty, Tx)} = =t
Also,
1 1 1
Dq(x,y) = max{dq(O,971—_1),d,7(0,T0),dq(9n—_1,Tﬁ)}

{ 2 3+2 } 2
= MmMaX\——, ——— (= —.
9n—1 3 X 9n—1 9n—1

334
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Clearly

max (H (Tx, Ty), Hy (Ty, Tx)} < p(Dy(x, ).

Caseiv: Let

1
=, =0.
BT TIE
We have
1 1 1
H(Tx, Ty) = , - .
(Tx Ty) max{6><9n—1 9><9n—1} 6% 91
Also,
2 1 1
H(Ty, Tx) = , - .
(Ty, Tx) max{9><9n—1 3><9n—1} 3% 91
Now,
{H, (Tx, Ty), H, (T T)}—L
max {H, (Tx, Ty),H, (Ty, Tx = 3ot
Also,
5
Pyl ) = 35 g
Clearly

max {Hq (Tx,Ty),H, (Ty, Tx)} <u (Dq(x, y)) .

Case v: The contraction trivially holds for x = 0 and y = 0. Also

) max{yii(dy (1, x0), 1 (dg (0, x1)))
i=0

1 7 .5
max{u'(3), W' ()}
;;4 3 3

7 35 175

3724 12
56
?<7:7’
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Thus all the conditions of Theorem 2.1 are satisfied. Hence S and T have a common fixed point 0 in B4, (xo, 7).

By taking D,(x, y) = d,;(x, y), we obtain the following result.

Corollary 2.3 Let (X, <, d;) be an ordered left (right) K-sequentially complete dislocated quasi metric space,

5, T : X — P(X) be the multivalued mappings. Suppose that the following assertions hold:
(i) There exists a function u € W, xo € X and r > 0 such that for every (x, y) € X X X, we have

max{H,(Tx, Ty), Hy(Ty, Tx)} < u(dy(x, y)),

for all x, y € By, (x0,7) N {XT(xy)} with x > Sx, y < Sy.
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(i) If x € By, (x0,7), dg(x, Tx) = dy(x, y) and dy(Tx, x) = dy(y, x), then
(a) x < Sx, implies y > Sy (b) x > Sx, implies y < Sy.

(iii) The set G(S) = {x :x < Sxand x € By, (xo, r)} is closed and contains xj.
(iv)
Z max{yi(dq(xl,xg), [Ji(dq(xo,xl))} < rforalln e N.
i=0
Then the subsequence {xz,} of {XT(x,)} is a sequence in G(S) and {x2,} — x* € G(S) and d,(x", x") = 0. Also,

if the inequality (i) holds for x*, then S and T have a common fixed point x* in Ba, (x0, 7).

By taking complete metric space instead of left (right) K-sequentially complete dislocated quasi metric
space, we obtain the following result.
Corollary 2.4 Let (X, <,d;) be an ordered complete metric space, S,T : X — P(X) be the multivalued
mappings. Suppose that the following assertions hold:

(i) There exists a function u € WV, xo € X and r > 0 such that for every (x, y) € X X X, we have

Hy(Tx, Ty) < p(max{dy(x, y),dy(x, Tx),d,(y, Ty)}),

forallx,y € By, (x0,7) N {XT(x,)} with x > Sx, y < Sy.
(ii) If x € By, (x0,7), dg(x, Tx) = dy(x, y) and dy(Tx, x) = dy(y, x), then

(a) x < Sx, implies y > Sy (b) x > Sx, implies y < Sy.
(iii) The set G(S) = {x :x < Sxand x € By, (xo, r)} is closed and contains xj.
(iv)

Z pi(dq(xo,xl)) <rforalln e N.

i=0

Then the subsequence {xz,} of {XT(x,)} is a sequence in G(S) and {x2,} — x* € G(S) and d,(x", x") = 0. Also,
if the inequality (i) holds for x*, then S and T have a common fixed point x" in By, (xo, 7).

By excluding open ball, we obtain the following result.
Corollary 2.5 Let (X, <, d;) be an ordered left (right) K-sequentially complete dislocated quasi metric space,
5, T : X — P(X) be the multivalued mappings. Suppose that the following assertions hold:

(i) There exists a function u € W, xg € X such that for every (x,y) € X X X, we have

max{H,(Tx, Ty), Hy(Ty, Tx)} < u(Dy(x, v)),
for all x, y € {XT(x,)} with x > Sx, y < Sy, where
Dy(x, y) = max{dy(x, y), dq(x, Tx), dy(y, Ty)}.
(ii) If dy(x, Tx) = dy(x, y) and dy(Tx, x) = dy(y, x), then
(a) x < Sx, implies y > Sy (b) x > Sx, implies y < Sy.

(iii) The set G(S) = {x : x < Sx} is closed and contains xg.
Then the subsequence {x2,} of {XT(x,)} is a sequence in G(S) and {x;,} — x* € G(S) and d,(x*, x*) = 0. Also,
if the inequality (i) holds for x*, then S and T have a common fixed point x* in X.



A. Shoaib et al. / Filomat 34:2 (2020), 323-338 337

By taking self mappings, we obtain the following result.

Corollary 2.6 Let (X, <, d;) be an ordered left (right) K-sequentially complete dislocated quasi metric space,
S, T : X — X be the self mappings. Suppose that the following assertions hold:

for

(i) There exists a function € W, xp € X, r > 0 and x,, = Tx,,—1 such that for every (x, y) € X X X, we have
max{d,(Tx, Ty),d,(Ty, Tx)} < w(D,(x, y)),

all x, y € By (xo,7) N {x,} with x > Sx, y < Sy, where
Dy(x, y) = max{dy(x, y), dg(x, Tx), dg(y, Ty)}.

(i) If x € By, (x0, ), then
(@) x < Sx, implies Tx > STx (b) x > Sx, implies Tx < STx.

(iii) The set G(S) = {x :x < Sxand x € By, (xo, r)} is closed and contains xg.

(iv)

Z max{u!(d, (x1, Xo), ' (dy(xo, x1))} < r for all n € N.
i=0

Then the subsequence {xy,} of {x,} is a sequence in G(S) and {x2,} — x* € G(S) and d,(x", x) = 0. Also, if the
inequality (i) holds for x*, then S and T have a common fixed point x* in Bg, (x0, 7).
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