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Abstract. In this paper, we study an inverse source problem of the bioluminescence tomography in
three dimensional case. Our aim is to reconstruct a bioluminescent source distribution within a body
from the knowledge of the boundary measurements. The inverse source problem is reformulated as a
topology optimization one minimizing an energy like type functional. It measures the difference between
the solutions of two auxiliary boundary value problems. An asymptotic expansion of the considered
functional with respect to a set of ball-shaped anomalies is computed using the topological sensitivity
analysis method. The obtained theoretical result leads to build a non-iterative reconstruction algorithm.
Finally, some numerical examples in 3D are presented in order to show the effectiveness of the devised
reconstruction algorithm.

1. Introduction

The inverse problem identifying the source in Partial Differential Equations (PDEs) from overdeter-
mined boundary data have been involved in several areas of science and engineering covering a wide
spectrum of applications: Environmental applications [7, 8, 20], Medical applications [1] and Biolumines-
cence tomography [42].

In this work, we are interested in the inverse problem of the bioluminescence tomography that consists
of determining an internal bioluminescent source distribution generated by luciferase inducted by reporter
genes [42]. More precisely, we work with the simplest mathematical model for the bioluminescence
tomography in three dimensional case which is the diffusion approximation of the radiative transport
equation [21]: Then, let Ω be an open bounded domain of R3 with sufficiently regular boundary ∂Ω. Let
ψ : Ω→ R denote the photon density. Thus,

−div(D∇ψ) + µψ = f ∗ in Ω. (1)

where f ∗ represents the bioluminescent source function. Moreover, we assume that the absorption coeffi-
cient µ ≥ 0 as well as the diffusion coefficientD ≥ D0 > 0 for some positive constantD0.

The main purpose of this work concerns the problem of recovering the bioluminescent source f ∗ in the
diffusion equation (1) from the Cauchy data (∂νψ|Γ, ψ|Γ) prescribed on the boundary Γ = ∂Ω where ∂ν = ∂.

∂ν
and ν is the outward unit normal to Γ.
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The major difficulty of this inverse source problem from boundary data concerns the non-uniqueness
of general sources term, see [21, Corollary 2.4] for example. Theoretically, the bioluminescent source
uniqueness shows that a priori information has a quite effect on source detection. Here, to cope with these
difficulties the source term f ∗ is modeled as a linear combination of a finite number of solid ball sources,
namely,

f ∗(x) =

m∑
i=1

γiχ(ω∗i ) with ω∗i ∩ ω
∗

j = ∅ for all i , j and i, j ∈ {1, ...,m}, (2)

where ω∗i ⊂ Ω is a solid ball of center s∗i ∈ Ω and radii r∗i , that is,

ω∗i = {x ∈ R3 : |x − s∗i | < r∗i },

with χ(ω∗i ) is the characteristic function of the set ω∗i , m is a given non-negative integer, the intensity γi is
non-null scalar. See the sketch in Figure 1.

Figure 1: The inverse source problem.

Practically, we know that the source intensity is closely related to the strength of the molecular/cellular
activity, such as gene expression. Thus, it is often reasonable to take the intensity or its parametric form as
known to find the unique solution. Hence, in this article, we assume that the source intensity γi is known
and we reconstruct the geometrical support of the sources ω∗ = ∪m

i=1ω
∗

i with the help of the Cauchy data
(∂νψ|Γ, ψ|Γ). In addition, for the sake of simplicity, we assume that γ1 = ... = γm = γ.

Then our inverse source problem is formulated as follows: given γ ∈ R∗, D > 0, µ ≥ 0, and (ϕ,φ) ∈
H−1/2(Γ) × H1/2(Γ), reconstruct the source term f ∗ =

∑m
i=1 γχ(ω∗i ) (i.e ω∗ = ∪m

i=1ω
∗

i ) such that the solution of
the following boundary value problem

−div(D∇ψ) + µψ = f ∗ in Ω,

D∂νψ = ϕ on Γ,
(3)

satisfies

ψ = φ on Γ. (4)

In the literature, there have been many authors who were interested in similar works. In the particular
case µ = 0, in [9, 23, 27, 28, 33] the authors applied some iterative algorithm to reconstruct the shape of a
source. In the case µ , 0 (with µ = −k2 and D = 1) EL Badia and Nara in [18] proposed a direct method
the so-called algebraic method, requires algebraic relationships between source parameters and observable
data. For the diffusion equation in [11, 13, 21, 22] the authors used a regularization procedure performed to
determine the source function f ∗ = γχ(ω∗) (i.eω∗1 = ... = ω∗m = ω∗) such that γ is unknown function andω∗ is
a given permissible region about the source function. While Kreutzmann and Rieder [32] reconstructed the
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source f ∗, using a method based on the minimization of the Mumford-Shah like functional which penalizes
the perimeter of the domains ω∗i , i = 1, ...,m. More recently, in the context of source-term problem of the
Poisson equation Canelas et al [12] proposed a reconstruction approach based on the minimization of the
L2(Ω)-norm of the error function by using the topological derivative method. Moreover, there have been
closer works to our problem was presented in [2, 14–17, 39, 40].

In this paper, we follow the approach introduced in [26] (see also [25]) and we propose a non-iterative
algorithm for the reconstruction of the source term f ∗ from a single Cauchy data, but without using the
Newtonian potential to complement the unavailable information about the hidden boundary as presented
in [12]. The proposed approach is based on the advantage of the Kohn-Vogelius formulation [31] and
the topological sensitivity analysis method [3, 19]. The Kohn-Vogelius formulation is a self regularization
technique and rephrases the inverse source problem as a topology optimization problem, where the support
of the bioluminescent source is the unknown variable. The main advantage of the proposed approach is
that, it provides fast and accurate results for detection (location and shape).

The main contribution of this work concerns the theoretical and numerical aspects. In the theoretical
part, we study the diffusion equation in the three dimensional case. We derive a topological sensitivity of an
energy like functional with respect to a set of ball-shaped sources. In the numerical part, from the obtained
theoretical results, we present a non-iterative reconstruction algorithm to recover the location, shape and
the size of a hidden source within a body in 3D domain.

The outline of the paper is as follows. In Section 2, we prove that the considered inverse problem
does not have a unique solution when we want to determine both, the topology of ω∗ and the intensity γ.
Then, Section 3 is devoted to solve the inverse problem. In Section 4, we derive a topological asymptotic
expansion of an energy like functional with respect to a finite number of perturbed source. Based of this
asymptotic expansion, we propose in Section 5 a fast and accurate reconstruction algorithm.

2. Non-uniqueness result

As is pointed out in the introduction, without a priori information on the source, the uniqueness is not
guaranteed for general sources. We consider in this section the sources f ∗ of the form

f ∗ = γχ(ω) with ω = {x ∈ R3 : 0 ≤ r0 < |x − s∗| < r1}, (5)

where s∗ ∈ Ω and ω ⊂ Ω is hollow ball if r0 > 0 and a solid ball if r0 = 0.
The purpose of this section is to prove that the inverse problem (3)-(4) cannot be solved uniquely when

both, the topology of ω∗ and the intensity γ, are unknown simultaneously.
Before establishing non-uniqueness result, for sources term of the form (5), we need the following lemma

for the diffusion equation given in [42, Lemma D.2]:

Lemma 2.1. For any constantD > 0, µ ≥ 0 and any solution ψ0 of

−div(D∇ψ0) + µψ0 = 0 in BR(x0),

we have ∫
r0<|x−x0 |<r1

ψ0dx =

(∫ r1

r0

Vdrd−1ξ(r) dr
)
ψ0(x0),

where BR(x0) is the sphere of center x0 and radius R, 0 ≤ r0 < r1 < R, Vd is the surface area of the unit sphere in Rd,
and ξ(r) is the unique positive radial solution of

−D∆ξ + µξ = −D

(
ξ
′′

+
d − 1

r
ξ
′

)
+ µξ = 0

with ξ(0) = 1 and ξ′ (0) = 0. Moreover, we have, for µ = 0,

ξ(r) = 1,
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and for µ > 0,

ξ(r) =


J0(

√
µ

D
r), if d = 2

sinh(
√

µ
D

r)√
µ
D

r
, if d = 3,

where J0 is a Bessel function of the first kind.

Now, we prove that both the intensity γ and the domain ω cannot uniquely be reconstructed from the
Cauchy data. To do that one has to establish two different sources f ∗i = γiχ(ωi)and two functions ψi such
that

−div(D∇ψi) + µψi = f ∗i in Ω, ψ1 = ψ2, ∂νψ1 = ∂νψ2 on Γ.

Let f ∗i = γiχ(ωi), i = 1, 2,where ωi are two hollow or solid balls with same center x0 and different radii ri
0, r

i
1,

such that

γ1

∫ r1
1

r1
0

r2
sinh(

√
µ
D

r)√
µ
D

r
dr = γ2

∫ r2
1

r2
0

r2
sinh(

√
µ
D

r)√
µ
D

r
dr. (6)

Define the function w by

−div(D∇w) + µw = f ∗2 − f ∗1 in Ω,

w = 0 on Γ,
(7)

and let ϑ be an arbitrary function in the space of the homogeneous diffusion equationVµ defined by

Vµ = {ϑ ∈ H1(Ω) : −div(D∇ϑ) + µϑ = 0}.

By multiplying the first equation of (7) by ϑ and by integrating parts, we have

−

∫
Γ

∂νw ϑds +

∫
Γ

∂νϑ wds = γ2

∫
ω2

ϑdx − γ1

∫
ω1

ϑdx. (8)

Thus, from lemma 2.1, one has∫
ωi

ϑdx = 4πϑ(x0)
∫ ri

1

ri
0

r2
sinh(

√
µ
D

r)√
µ
D

r
dr, i = 1, 2.

Then, we deduce that

−

∫
Γ

∂νw ϑds +

∫
Γ

∂νϑ wds = γ24πϑ(x0)
∫ r2

1

r2
0

r2
sinh(

√
µ
D

r)√
µ
D

r
dr − γ14πϑ(x0)

∫ r1
1

r1
0

r2
sinh(

√
µ
D

r)√
µ
D

r
dr.

Consequently, from (6) and (7), we obtain∫
Γ

∂νw ϑds =

∫
Γ

∂νϑ wds = 0.

Moreover, using that H1/2(Γ) is dense in L2(Γ) [10], we get:

∂νw = 0 on Γ.

Therefore, the desired result is obtained by choosing the functions ψ1 and ψ2 = ψ1 + w.
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Remark 2.2. A similar result is obtained for the Helmholtz equation was presented in [18].

Next, we present the proposed approach to solve the inverse source problem (3)-(4).

3. Problem reformulation

Since the considered inverse problem is written in the form of an ill-posed boundary value problem,
the idea is to rewrite it as a topology optimization problem. In particular, an energy like functional is
minimized with respect to a set of ball-shaped anomalies by using the concept of topological sensitivity.
More precisely, Subsection 3.1, is devoted to minimize the misfit between the solutions of two forward
problems that contain information on the boundary measurements. In other words, we minimize a Kohn-
Vogelius type functional obtained from the Kohn-Vogelius formulation. While in Subsection 3.2, we
introduce the topological sensitivity analysis method to minimize this functional.

We define the following class of admissible sources:

Uad(Ω) := {h ∈ L∞(Ω) : h = γχ(ω), ω ⊂ Ω is a Lebesgue measurable set}.

Here, χ(ω) denotes the indicator function of the set ω and γ ∈ R∗ is given. Moreover, we assume that the
sets ω inUad(ω) are of the form:

ω =

m⋃
i=1

ωi with ωi ∩ ω j = ∅ for i , j and i, j ∈ {1, ...,m},

where each ωi ⊂ Ω is a solid ball of center si ∈ Ω and radii ri, that is,

ωi = {x ∈ R3 : |x − si| < ri}.

3.1. The Kohn-Vogelius formulation
The Kohn-Vogelius formulation is a self regularization technique and rephrase the considered inverse

source problem into a topology optimization one. It leads to define for any given source f ∈ Uad(Ω) two
auxiliary problems. The first one is associated to the Neumann datum ϕ, which will be named as the
“Neumann problem”:

−div(D∇ψN[ f ]) + µψN[ f ] = f in Ω,

D∂νψN[ f ] = ϕ on Γ.
(9)

The second one is associated to the Dirichlet (measured) datum φ :

−div(D∇ψD[ f ]) + µψD[ f ] = f in Ω,

ψD[ f ] = φ on Γ.
(10)

The existence and the uniqueness of ψN[ f ] and ψD[ f ] is guaranteed by Lax-Milgram Lemma [10]. Notice
that in the particular case µ = 0, the problem (9) has a unique solution up to an additive constant. To ensure
uniqueness, the boundary force ϕ and the source f should satisfy the compatibility condition:∫

Ω

f dx +

∫
Γ

ϕ ds = 0.

One can remark that if ω = ∪m
i=1ωi coincides with the actual support sources ω∗ = ∪m

i=1ω
∗

i (i.e f ∗ = f )
then ψN[ f ] = ψD[ f ] in Ω. According to this observation, we propose a reconstruction process based on the
minimization of the so-called Kohn-Vogelius functional :

J( f ) =

∫
Ω

D

∣∣∣∣∇(ψN[ f ] − ψD[ f ]
)∣∣∣∣2 dx.
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Thus, the inverse source problem can be formulated as an optimization problem as follows :

Find the source term f ∗ =

m∑
i=1

γχ(ω∗i ) such that J( f ∗) = min
f∈Uad(Ω)

J( f ). (11)

Remark 3.1. It is not difficult to verify that for any f , 1 ∈ L∞(Ω),

J(t f + (1 − t)1) ≤ tJ( f ) + (1 − t)J(1) for all t ∈ (0, 1).

Hence, the functional J is convex.

The theoretical aspect of the inverse source problem for the diffusion equation (3)-(4) has been the subject
of various researcher’s works. Particularly, in [42] Wang et al. discussed the uniqueness solution of the
inverse source problem (3)-(4) in the two and three dimensional cases. They established the uniqueness
in determining the bioluminescent source f ∗ from a measurement on a part P0 of the exterior boundary Γ.
Thus, we have the following identifiability theorem from [42, Theorem IV.3]:

Theorem 3.2. Let

f1(y) =

n∑
i=1

γiχ(Bri
0,r

i
1
(xi)) and f2(y) =

M∑
i=1

Λiχ(BRi
0,R

i
1
(Xi))

be two solutions to the problem (3)-(4), then n = M and there exist a permutation τ of [1,n] and a map C : [1,n]→
[1,T] such that xi = Xτ(i) and

γi

∫ ri
1

ri
0

rd−1ξC(i)(r)dr = Λτ(i)

∫ Rτ(i)
1

Rτ(i)
0

rd−1ξC(i)(r)dr, for i = 1, ...,T,

where Br,R(z) = {x ∈ Rd : r < |x − z| < R} with d ∈ {2, 3}, 0 ≤ r < R < ∞ and ξi is the unique solution of

−Di

(
ξ
′′

i +
d − 1

r
ξ
′

i

)
+ µiξi = 0,

ξi(0) = 1, ξ
′

i(0) = 0.

The following corollary follows from the identifiability Theorem 3.2. It gives the uniqueness solution of
the considered inverse problem.

Corollary 3.3. The source term f ∗ =
∑m

i=1 γχ(ω∗i ) (see (2)) and the function ψ that satisfy (3) and (4) are uniquely
defined by the nontrivial Cauchy data (ϕ,φ).

Proof. The proof of this corollary is a direct consequence of Theorem 3.2 and Lemma 2.1.

Thanks to Corollary 3.3, we obtain the following uniqueness result of the minimization problem (11):

Lemma 3.4. Let (ϕ,φ) ∈ H−1/2(Γ) × H1/2(Γ) be given nontrivial Cauchy data. If f ∗ =
∑m

i=1 γχ(ω∗i ) ∈ Uad(Ω) is
the solution of the inverse problem with respect to the data (ϕ,φ) then f ∗ is the unique equilibrium function of the
Kohn-Vogelius cost functional J :

J( f ∗) ≤ J( f ) for all f ∈ Uad(Ω).

Proof. If f ∗ =
∑m

i=1 γχ(ω∗i ) ∈ Uad(Ω) is the solution of the overdetermined problem (3)-(4), then φ = ψN[ f ∗] +
constant which implies ∇ψN[ f ∗] = ∇ψD[ f ∗]. Consequently, f ∗ will be the minimum of the functionalJ with
J( f ∗) = 0. Let f =

∑m
i=1 γχ(ωi) ∈ Uad(Ω) be another minimizer of J . Then ψN[ f ] verifies problem (3) with

ψN[ f ] = φ on Σ. From the Corollary 3.3, we get ωi = ω∗i for i = 1, ...,m(i.e f = f ∗).

Now, to solve the optimization problem (11), we apply a method based on the concept of the topolog-
ical sensitivity. This concept was originally introduced by Sokolowski and Zochowski [38]. Since then,
this concept has been successfully applied to many relevant scientific and engineering problems such as
geometry inverse problems [5, 25, 30, 37], topology optimization [3, 6, 34, 35], structural mechanics [19, 41],
image processing [24, 29], and damage evolution modeling [4], and many other applications.
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3.2. Topological sensitivity analysis
The topological sensitivity analysis consists to study the variations of a given shape functional with

respect to the insertion of a small topological perturbation, such as cavities, inclusions, source-terms or
even cracks. For more details about this approach we refer the reader to the book by Novotny and
Sokolowski [36] and references therein.

To present the main idea of this method, let us consider a geometry perturbation of ωi, 1 ≤ i ≤ m,
confined in a small set ωzi,ε = zi + εOi where ε > 0, zi ∈ Ω and Oi ⊂ R3 is a given fixed and bounded domain
containing the origin. We consider the particular case ωzi,ε = Bε(zi), where Bε(zi) is a small ball of radius ε
and center zi ∈ Ω for i = 1, ...,m. Moreover, we assume that Bε(zi) ∩ Γ = ∅ and Bε(zi) ∩ Bε(z j) = ∅ for each
i , j and i, j ∈ {1, ...,m}.

To this end, for a given source term f in the diffusion equation (1), let δ fz,ε be a finite topological
perturbation of f on the form

δ fz,ε(x) =

m∑
i=1

γχ(Bε(zi)), (12)

where z = (z1, ..., zm) ∈ Ω×...×Ω.Then the Kohn-Vogelius shape functionalJ associated with the topological
perturbation δ fz,ε is written as

J( f + δ fz,ε) =

∫
Ω

D

∣∣∣∣∇(ψN[ f + δ fz,ε] − ψD[ f + δ fz,ε]
)∣∣∣∣2 dx,

with ψN[ f + δ fz,ε] be the solution of the perturbed Neumann boundary value problem

−div(D∇ψN[ f + δ fz,ε]) + µψN[ f + δ fz,ε] = f + δ fz,ε in Ω,

D∂νψN[ f + δ fz,ε] = ϕ on Γ
(13)

and ψD[ f + δ fz,ε] be the solution of the perturbed Dirichlet boundary value problem

−div(D∇ψD[ f + δ fz,ε]) + µψD[ f + δ fz,ε] = f + δ fz,ε in Ω,

ψD[ f + δ fz,ε] = φ on Γ.
(14)

From these elements, the topological sensitivity analysis leads to an asymptotic expansion of the shape
functional J of the form,

J( f + δ fz,ε) = J( f ) + ζ(ε)δJ(z) + o(ζ(ε)), for all zi ∈ Ω, (15)

where
• ε 7→ ζ(ε) is a scalar positive function such that ζ(ε)→ 0, when ε→ 0.
• The function z 7→ δJ(z) is independent of ε and it is called the “topological sensitivity” or “topological
gradient” of J at z. Therefore, this gradient can be seen as a first order correction of J( f ) to approximate
J( f + δ fz,ε). In particular, after rearranging (15) we obtain

J( f + δ fz,ε) −J( f )
ζ(ε)

= δJ(z) +
o(ζ(ε))
ζ(ε)

.

The limit passage ε→ 0 in the above expression leads to the definition for the topological gradient

δJ(z) := lim
ε→0

J( f + δ fz,ε) −J( f )
ζ(ε)

.

Hence, if we want to minimize the functional J , the best location of the source function δ fz,ε in Ω is where
the so-called topological gradient δJ is most negative. In fact if δJ(z) < 0, we haveJ( f + δ fz,ε) < J( f ) for
small ε > 0. Particularly, if f = 0 the solution of the minimization problem;

min
δ fz,ε∈Uad(Ω)

J(δ fz,ε)
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is given by δ f ∗z∗,ε =

m∑
i=1

γχ(Bε(z∗i )), such that δJ(z∗) < 0 and δJ(z∗) < δJ(z), for all z ∈ Ωm.

Next, we calculate the exact expression of the function ζ and the topological gradient δJ .

4. Asymptotic expansion

In this section, we derive a topological sensitivity analysis for the diffusion equation with respect to a
small topological perturbation of the source term. More precisely, for a given source term f in the diffusion
equation (1), we study the variation of the Kohn-Vogelius functional J with respect to a finite topological
perturbation δ fz,ε defined in (12) of f on the form (15).

Let us introduce θN[ f ] and θD[ f ] are solutions to the following adjoint problems:
Find θN[ f ] ∈ H1(Ω), such that

A(w, θN[ f ]) = −2
∫

Ω

D∇(ψN[ f ] − ψD[ f ]).∇wdx for all w ∈ H1(Ω), (16)


Find θD[ f ] ∈ H1

0(Ω), such that

A(w, θD[ f ]) = −2
∫

Ω

D∇(ψD[ f ] − ψN[ f ]).∇wdx for all w ∈ H1
0(Ω), (17)

with

A(u, v) =

∫
Ω

D∇u.∇v dx + µ

∫
Ω

u v dx for all u, v ∈ H1(Ω).

The following theorem gives us the topological asymptotic expansion of the Kohn-Vogelius functional
J :

Theorem 4.1. Let δ fz,ε be a small topological perturbation defined in (12) of a given source term f , then the Kohn-
Vogelius functional J admits the following topological asymptotic expansion:

J( f + δ fz,ε) = J( f ) + ε3
m∑

i=1

δJ(zi) + o(ε3), (18)

with δJ is the topological gradient given by

δJ(x) =
4π
3
γ(θN(x) + θD(x)), for all x ∈ Ω.

To prove Theorem 4.1, we need to establish the following preliminary lemma.

Lemma 4.2. Let ψN[ f + δ fz,ε] and ψD[ f + δ fz,ε] be the solutions to the perturbed value problems (13) and (14),
respectively. Then there exists a constant c > 0, independent of ε, such that the inequalities∥∥∥ψN[ f + δ fz,ε] − ψN[ f ]

∥∥∥
H1(Ω)

≤ cε5/2, (19)∥∥∥ψD[ f + δ fz,ε] − ψD[ f ]
∥∥∥

H1(Ω)
≤ cε5/2. (20)

are satisfied for any small parameter ε > 0.

Proof. Here, we will prove only the estimate (19) and the other estimate is treated analogous.
Posing uN[ f ] = ψN[ f + δ fz,ε] − ψN[ f ]. One can easily remark that uN[ f ] is solution to the system

−div(D∇uN[ f ]) + µ uN[ f ] = δ fz,ε in Ω,

D∂νuN[ f ] = 0 on Γ.
(21)
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The variational formulation of (21) is: find uN[ f ] ∈ H1(Ω) such that∫
Ω

D∇uN[ f ].∇ξdx + µ

∫
Ω

uN[ f ]ξdx

=

∫
Ω

δ fz,εξdx, for all ξ ∈ H1(Ω).
(22)

By taking ξ = uN[ f ] in (22) as a test function, we have∫
Ω

D|∇uN[ f ]|2dx +

∫
Ω

µ|uN[ f ]|2dx =

∫
Ω

δ fz,εuN[ f ]dx. (23)

Then, there exists a constant c > 0, independent of ε, such that

‖uN[ f ]‖2H1(Ω) ≤ c
∫

Ω

∣∣∣δ fz,εuN[ f ]
∣∣∣ dx.

Using Hölder inequality (p = 6/5 and q = 6) and the fact that H1(Ω) ↪→ L6(Ω) (see for example [10]), it
follows∫

Ω

∣∣∣δ fz,εuN[ f ]
∣∣∣ dx ≤ c‖δ fz,ε‖L6/5(Ω)‖uN[ f ]‖L6(Ω) ≤ c‖δ fz,ε‖L6/5(Ω)‖uN[ f ]‖H1(Ω).

From the definition of δ fz,ε (see (12)) and the fact that |Bε(zi)| ∼ 4π
3 ε

3, we obtain

‖uN[ f ]‖2H1(Ω) ≤ c
m∑

i=1

|Bε(zi)|5/6‖uN[ f ]‖H1(Ω)

≤ cε5/2
‖uN[ f ]‖H1(Ω).

Hence,

‖ψN[ f + δ fz,ε] − ψN[ f ]‖H1(Ω) = ‖uN[ f ]‖H1(Ω) ≤ cε5/2.

Now, we are ready to prove the Theorem 4.1.

Proof of Theorem 4.1.. The Kohn-Vogelius functional J can be decomposed as

J( f + δ fz,ε) = JNN( f + δ fz,ε) +JDD( f + δ fz,ε) − 2 JDN( f + δ fz,ε),

where

JNN( f + δ fz,ε) =

∫
Ω

D|∇ψN[ f + δ fz,ε]|2 dx,

JDD( f + δ fz,ε) =

∫
Ω

D|∇ψD[ f + δ fz,ε]|2 dx,

JDN( f + δ fz,ε) =

∫
Ω

D∇ψD[ f + δ fz,ε].∇ψN[ f + δ fz,ε] dx.

Next, we calculate the variation of each functional JNN, JDD and JDN separately.
• Variation of JNN : the variation of JNN reads

JNN( f + δ fz,ε) −JNN( f ) =

∫
Ω

D|∇ψN[ f + δ fz,ε]|2 dx −
∫

Ω

D|∇ψN[ f ]|2 dx,

= 2
∫

Ω

D∇ψN[ f ].∇(ψN[ f + δ fz,ε] − ψN[ f ]) dx +

∫
Ω

D|∇(ψN[ f + δ fz,ε] − ψN[ f ])|2 dx. (24)
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Let ϑN[ f ] ∈ H1(Ω) be the solution of the following auxiliary variational problem:∫
Ω

D∇w.∇ϑN[ f ] dx + µ

∫
Ω

w ϑN[ f ] dx = 2
∫

Ω

D∇ψN[ f ].∇w dx, for all w ∈ H1(Ω). (25)

By taking w = ψN[ f + δ fz,ε] − ψN[ f ] in (25) as a test function, we obtain∫
Ω

D∇(ψN[ f + δ fz,ε] − ψN[ f ]).∇ϑN[ f ] dx + µ

∫
Ω

(ψN[ f + δ fz,ε] − ψN[ f ])ϑN[ f ] dx

= 2
∫

Ω

D∇ψN[ f ].∇(ψN[ f + δ fz,ε] − ψN[ f ]) dx. (26)

Inserting (26) into (24), we deduce

JNN( f + δ fz,ε) −JNN( f ) =

∫
Ω

D∇(ψN[ f + δ fz,ε] − ψN[ f ]).∇ϑN[ f ] dx

+

∫
Ω

µ(ψN[ f + δ fz,ε] − ψN[ f ])ϑN[ f ] dx +

∫
Ω

D|∇(ψN[ f + δ fz,ε] − ψN[ f ])|2 dx. (27)

Choosing ξ = ϑN[ f ] in (22) as a test function, we get∫
Ω

D∇(ψN[ f + δ fz,ε] − ψN[ f ]).∇ϑN[ f ]dx +

∫
Ω

µ(ψN[ f + δ fz,ε] − ψN[ f ])ϑN[ f ]dx

=

∫
Ω

δ fz,εϑN[ f ]dx.

Consequently,

JNN( f + δ fz,ε) −JNN( f ) =

∫
Ω

δ fz,εϑN[ f ] dx +

∫
Ω

D|∇(ψN[ f + δ fz,ε] − ψN[ f ])|2 dx.

Thanks to Lemma 4.2 and using definition of δ fz,ε (see (12)), we obtain

JNN( f + δ fz,ε) −JNN( f ) =

∫
Ω

δ fz,εϑN[ f ] dx + o(ε3)

=

m∑
i=1

γ|Bε(zi)|ϑN[ f ](zi) +

m∑
i=1

∫
Bε(zi)

γ{ϑN[ f ] − ϑN[ f ](zi)} dx + o(ε3).

Now, we estimate
m∑

i=1

∫
Bε(zi)

γ{ϑN[ f ] − ϑN[ f ](zi)} dx. Using the smoothness of ϑN[ f ] in Bε(zi), Taylor’s

theorem, and the change of variable x = zi + εy for i = 1, ...,m, one obtains

ϑN[ f ](zi + εy) = ϑN[ f ](zi) + ε∇ϑN[ f ](ξi
y)y, with ξi

y ∈ Bε(zi).

Then there exist a positive constant c independent of ε such that∣∣∣∣∣∣∣
m∑

i=1

∫
Bε(zi)

γ{ϑN[ f ] − ϑN[ f ](zi)} dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
m∑

i=1

γε

∫
Bε(zi)
∇ϑN[ f ](ξi

y)(y) dx

∣∣∣∣∣∣∣ ≤ c ε4 = o(ε3). (28)

Therefore, from (28) and |Bε(zi)| ∼ 4π
3 ε

3, we have

JNN( f + δ fz,ε) −JNN( f ) =

m∑
i=1

ε3 4π
3
γϑN[ f ](zi) + o(ε3). (29)
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• Variation of JDD : in a similar way as we get (29), we obtain

JDD( f + δ fz,ε) −JDD( f ) =

m∑
i=1

ε3 4π
3
γϑD[ f ](zi) + o(ε3) (30)

with ϑD[ f ] ∈ H1
0(Ω) is the solution to the adjoint problem:∫

Ω

D∇w.∇ϑD[ f ] dx +

∫
Ω

µw ϑD[ f ] dx

= 2
∫

Ω

D∇ψD[ f ].∇w dx, for all w ∈ H1
0(Ω). (31)

• Variation of JDN : we have

JDN( f + δ fz,ε) −JDN( f ) =

∫
Ω

D∇(ψD[ f + δ fz,ε] − ψD[ f ]).∇(ψN[ f + δ fz,ε] − ψN[ f ]) dx

+

∫
Ω

D∇ψN[ f + δ fz,ε].∇ψD[ f ] dx −
∫

Ω

D∇ψD[ f ].∇ψN[ f ] dx.

+

∫
Ω

D∇ψD[ f + δ fz,ε].∇ψN[ f ] dx −
∫

Ω

D∇ψD[ f ].∇ψN[ f ] dx. (32)

Let us first study
∫

Ω

D∇(ψD[ f + δ fz,ε] − ψD[ f ]).∇(ψN[ f + δ fz,ε] − ψN[ f ]) dx. Using the Cauchy-Schwarz

inequality and Lemma 4.2, we have∣∣∣∣∣∫
Ω

D∇(ψD[ f + δ fz,ε] − ψD[ f ]).∇(ψN[ f + δ fz,ε] − ψN[ f ]) dx
∣∣∣∣∣

≤ c‖ψD[ f + δ fz,ε] − ψD[ f ]‖H1(Ω)‖ψN[ f + δ fz,ε] − ψN[ f ]‖H1(Ω)

≤ cε5.

Then, the first term on the right-hand-side of the equality (32), it can be estimated as∫
Ω

D∇(ψD[ f + δ fz,ε] − ψD[ f ]).∇(ψN[ f + δ fz,ε] − ψN[ f ]) dx = o(ε3). (33)

To examine the second terms on the right-hand-side of (32), let us introduce an adjoint stat ρN[ f ] ∈ H1(Ω)
as the solution of the following adjoint problem∫

Ω

D∇w.∇ρN[ f ] dx +

∫
Ω

µw ρN[ f ] dx

=

∫
Ω

D∇ψD[ f ].∇w dx, for all w ∈ H1(Ω). (34)

Then, we have∫
Ω

D∇ψN[ f + δ fz,ε].∇ψD[ f ] dx −
∫

Ω

D∇ψN[ f ].∇ψD[ f ] dx

=

∫
Ω

D∇(ψN[ f + δ fz,ε] − ψN[ f ]).∇ψD[ f ] dx.

Choosing w = ψN[ f + δ fz,ε] − ψN[ f ] in (34) and ξ = ρN[ f ] in (22) as test functions, we get∫
Ω

D∇(ψN[ f + δ fz,ε] − ψN[ f ]).∇ψD[ f ] dx =

∫
Ω

δ fz,ερN[ f ]dx.
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Therefore,∫
Ω

D∇ψN[ f + δ fz,ε].∇ψD[ f ] dx −
∫

Ω

D∇ψD[ f ].∇ψN[ f ] dx =

∫
Ω

δ fz,ερN[ f ]dx

=

m∑
i=1

γ|Bε(zi)|ρN[ f ](zi) dx +

m∑
i=1

∫
Bε(zi)

γ{ρN[ f ] − ρN[ f ](zi)} dx.

Using the same argument as the one used in the deduction of (28), we obtain∣∣∣∣ m∑
i=1

∫
Bε(zi)

γ{ρN[ f ] − ρN[ f ](zi)} dx
∣∣∣∣ ≤ cε4 = o(ε3).

Consequently,∫
Ω

D∇ψN[ f + δ fz,ε].∇ψD[ f ] dx −
∫

Ω

D∇ψD[ f ].∇ψN[ f ] dx =

m∑
i=1

ε3 4π
3
γρN[ f ](zi) + o(ε3). (35)

Similarly, we have∫
Ω

D∇ψD[ f + δ fz,ε].∇ψN[ f ] dx −
∫

Ω

D∇ψD[ f ].∇ψN[ f ] dx =

m∑
i=1

ε3 4π
3
γρD[ f ](zi) + o(ε3), (36)

with ρD[ f ] ∈ H1
0(Ω) is the solution to the following adjoint problem∫

Ω

D∇w.∇ρD[ f ] dx +

∫
Ω

µw ρD[ f ] dx

=

∫
Ω

D∇ψN[ f ].∇w dx, for all w ∈ H1
0(Ω). (37)

Gathering (33), (35) and (36), we obtain

JDN( f + δ fz,ε) −JDN( f ) =

m∑
i=1

ε3 4π
3
γ{ρD[ f ](zi) + ρN[ f ](zi)} + o(ε3). (38)

Combining (29), (30) and (38), the variation of the Kohn-Vogelius functional J has the form:

J( f + δ fz,ε) −J( f ) =

m∑
i=1

ε3 4π
3
γ{ϑD[ f ] + ϑD[ f ](zi) − 2ρD[ f ] − 2ρN[ f ]}(zi) + o(ε3).

From (25) and (34) one can deduce that the adjoint state θN[ f ] ∈ H1(Ω) solution to (16) can be written as

θN[ f ] = ϑN[ f ] − 2ρN[ f ].

Similarly, from (31) and (37) the adjoint state θD ∈ H1
0(Ω) solution to (17) can be written as

θD[ f ] = ϑD[ f ] − 2ρD[ f ].

Finally, combining the above equalities the functional J has the following asymptotic expansion:

J( f + δ fz,ε) −J( f ) =

m∑
i=1

ε3 4π
3
γ(θD[ f ](zi) + θD[ f ](zi)) + o(ε3).

�

This result was proved in [25] to describe the variation of a Kohn-Vogelius type functional with respect
to a single small topological perturbation of sources.
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5. Numerical Results

In this section, we present some numerical experiments in three dimensions. The use of the topological
gradient aims to give us the number of sources and their qualitative location. We propose a fast and efficient
reconstruction procedure. Our numerical algorithm is based on the asymptotic formula (18) to reconstruct
and locate an internal bioluminescence source distribution subject to Cauchy data. The measurements
data φ are synthetic, that is, generated by a numerical computation: we fix a support source ω∗, solve
the diffusion problem (3) and extract the measurement φ by computing ψ on Γ. To make the numerical
simulations presented here, we use P2 finite elements discretization to solve the problems (16), (17), (9) and
(10).

For our numerical results, Ω is the cube [0, 1]3. The parameters γ, µ, and µ′ are chosen as γ = 1, the
absorption coefficient µ = 0.21 and the reduced scattering coefficient µ′ = 0.2. Moreover, having µ and µ′,
we can derive the diffusion coefficient by relation

D =
1

3(µ + µ′)
.

In the particular case f = 0, the variation of the functional J with respect to a small topological
perturbation δ fz,ε = χ(z + εB(0, 1)) (i.e m = 1), is given by (see Theorem 4.1)

J(δ fz,ε) −J(0) = ε3δJ(z) + o(ε3), (39)

with δJ is the topological gradient given by

δJ(x) =
4π
3

(θN[0] + θD[0])(x), for all x ∈ Ω, (40)

where θN[0] and θD[0] solve respectively problems (16) and (17) with f = 0.
Our reconstruction procedure is a non-iterative algorithm based on the following steps.

Non-iterative algorithm:
1. Solve the problems (9) and (10) in Ω with f = 0,
2. Solve the problems (16) and (17) in Ω with f = 0,
3. Compute the topological gradient function δJ defined in (40).
4. Determine the support ω∗ of the source term f ∗.

The location of ω∗ is given by the point z∗ ∈ Ω where the topological gradient δJ is most negative. The
size of ω∗ is approximated using numerical simulation. Let δmin = δJ(z∗) ≤ δJ(x) for all x ∈ Ω, the support
source ω∗ is approximated as follows

ω∗ = {x ∈ Ω, δJ(x) ≤ c∗ = α∗δmin} ,

where α∗ ∈ (0, 1) such that
J(γχ(ωα∗ )) ≤ J(γχ(ωα)) for all α ∈ (0, 1),

with ωα = {x ∈ Ω, δJ(x) ≤ c = αδmin} .

Remark 5.1. In the particular case when the exact support source ω∗ is known, the best value α∗ of the parameter α
can be determined as the minimum of the following error functional,

dα = [meas(ω∗ ∪ ωα) −meas(ω∗ ∩ ωα)]/meas(ω∗), α ∈ [0, 1] (41)

where meas(E) is the Lebesgue measure of the set E.

Concerning the mesh, we impose a fixed number of discretization points for the exterior boundary Γ,
that is 35 points for each direction (in order to have a uniform mesh h = 1/35, see Figure 2).

Next, we show the effectiveness of the proposed reconstruction algorithm by presenting some numerical
examples. We will consider four numerical examples. The first one concerns the reconstruction of a ball-
shaped source. Then in the second example, we test our algorithm to reconstruct an ellipsoidal-shaped
source. While in the third example, we test our numerical algorithm to determine the total number of
sources. In the fourth example we investigate the robustness of the numerical algorithm with respect to
noisy boundary measurement. All the numerical experiments are done using the free software FreeFem ++.
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5.1. Example 1: Reconstruction of spherical-shaped sources
In this example, we test our algorithm on ball-shaped support source. In Figure 3(a)-(b), we apply the

procedure described above on a ball centered at (0.5, 0.5) with radii r∗ = 0.35 where in Figure 3(a) we plot
the sensitivity function δJ in Ω (the negative zone of δJ is the red zone) while the iso-values of δJ are
projected on xz-, xy- and yz-planes (i.e y = 0, z = 0 and x = 0 respectively) was presented in Figure 3(b)-(d).

As one can observe in Figure 3(a)-(b), the unknown support of the source is located in the region where
the topological gradient δJ is the most negative (see Figure 3(a) red zone).

To reconstruct the exact source in Figure 3(a) (ball centered at (0.5, 0.5) with radii r∗ = 0.35), we minimize
the error function dα and we take α∗ = arg minα∈(0,1) dα. In order to compute numerically an approximation of
the minimum of the function dα,we divide the interval (0, 1) into M equal subintervals (i.e., of size 1/M). We
denote by αi = i/M, 1 ≤ i ≤M the (M + 1) endpoints of these intervals and we take α∗ = arg minα∈{α1,...,αM}

dα.
The reconstruction results are illustrated in Figures 4 and 5.

5.2. Example 2: Reconstruction of ellipsoidal-shaped sources
In this example, the unknown support source ω∗ is described by an ellipsoid centered at (0.5, 0.5, 0.5).

We represent the detection results in Figure 6. Here again, as one can see from Figure 6, the non-iterative
algorithm gives quite efficient reconstruction result of ellipsoid-shaped source.

Next, we prove that the computation of the topological gradient does not depend on the number of
sources.

5.3. Example 3: Reconstruction of multiples sources
Now we suppose that the number of sources is unknown and we apply our reconstruction algorithm

to find the correct number of balls. More precisely, we reconstruct two balls with centers z∗1 = (0.5, 0.5, 0.5),
z∗2 = (0.8, 0.5, 0.7) and with shared radii r∗ = 0.15. Therefore, from the detection result in Figure 7, we
observe that the algorithm reconstruct the location and the number of the sources (two balls) and we give
an acceptable approximation of its shape. We emphasize that this result is again obtained in only one
iteration. The obtained results serve as a good initial guess for an iterative optimization process based on
the shape derivative, for instance, level-set method [3, 27].

5.4. Example 4: Effect of noisy data
Reconstruction stability with respect to the noise level is examined in this example. More precisely, the

boundary measurement φ is replaced by

φς(x) = φ(x)(1 + ς × rand(−1, 1)), x ∈ Γ (42)

where rand(−1, 1) is a random number uniformly distributed in (−1, 1) and the scaling parameter ς > 0
indicates a relative noise level.

The idea is to verify the stability of the reconstruction algorithm with respect to noisy data. The
source configuration is the same as the one when the actual support source ω∗ is defined by two balls
in example 3 (see Figure 7(a)). The reconstruction results of ω∗ with respect to each level of noisy ς ∈
{0.1%, 0.2%, 0.5%, 1.2%} are presented in Figure 8. One observes that if ς is no more than 5% the algorithm is
able to reconstruct the source reasonably and if ς is more than 1.2% the reconstruction becomes completely
wrong.

6. Conclusions

In this paper, we consider the inverse source problem for the bioluminescence tomography from mea-
surements on the boundary in three dimensional case. We want to detect the location, the number and
the shape of the hidden sources within a body. We transform the detection problem into an optimization
problem, where the support of the bioluminescent source distribution is the unknown variable. The Kohn-
Vogelius type functional is minimized using the topological sensitivity analysis method. An asymptotic
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expansion is derived with the help of preliminary estimation describing the influence of the perturbed
source on a Dirichlet and Neumann solutions. The unknown bioluminescent source is reconstructed using
a level-set curve of the topological gradient. An accurate and fast reconstruction algorithm is proposed.

The presented approach is general and can be adapted for various geometric inverse source problems.

Acknowledgements

The author would like to thank the professor Maatoug Hassine for his assistance, for many helpful
suggestions he made of the manuscript.

References

[1] A. B. Abda, F. B. Hassen, J. Leblond, and M. Mahjoub. Sources recovery from boundary data: a model related to electroen-
cephalography. Math. Comput. Modelling, 49(11):2213–2223, 2009.
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Figure 2: Discretization of the domain Omega.

(a)Topological gradient δJ in Ω (b)Isovalues of δJ projected on xz-plane

(c) Isovalues of δJ projected on xy-plane (d) Isovalues of δJ projected on yz-plane

Figure 3: Topological gradient and the isovalues projected on xz-, xy- and yz-planes
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(a) True source term (b) Reconstruction with α∗ = 0.42

Figure 4: Reconstruction of ball-shaped source

Figure 5: The variation of the error function dα with respect to α

(a) True source term (b) Reconstruction α∗ = 0.75

Figure 6: Reconstruction of ellipsoidal-shaped source
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(a) True source term (b) Reconstruction α∗ = 0.016

Figure 7: Reconstruction of two balls

(a) α∗ = 0.016 and ς = 0.1% (b) α∗ = 0.016 and ς = 0.2%

(c) α∗ = 0.016 and ς = 0.5% (d) α∗ = 0.016 and ς = 1.2%

Figure 8: Effect of noisy data


