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Abstract. The current work concentrates on generating different topologies by using the concept of the
ideal. These topologies are used to make more thorough studies on generalized rough set theory. The
rough set theory was first proposed by Pawlak in 1982. Its core concept is upper and lower approximations.
The principal goal of the rough set theory is reducing the vagueness of a concept to uncertainty areas at
their borders by increasing the lower approximation and decreasing the upper approximation. For the
mentioned goal, different methods based on ideals are proposed to achieve this aim. These methods are
more accurate than the previous methods. Hence it is very interesting in rough set context for removing
the vagueness (uncertainty).

1. Introduction

The observation that one cannot distinguish objects on the basis of given information about them is
the starting point of the rough set theory. In other words, imperfect information causes indiscernibility
of objects. The indiscernibility relation induces an approximation space made of equivalence classes of
indiscernible objects. The originally rough set was described by a pair of approximation operator, called
a lower and an upper approximation in term of these equivalence classes. An equivalence relation is
sometimes difficult to be obtained in real-world problems due to the vagueness incompleteness of human
knowledge. From this point of view, many proposals have been introduced for generalizing and inter-
preting the rough sets for more details see, [8, 9, 12, 18, 24, 25]. Lin [17] and Yao [30] studied the rough
sets using neighbourhood systems for the interpretation of granules. Abd El-Monsef et al. [2] introduced
mixed neighbourhood systems to approximate the rough sets. In 2014, Abd El-Monsef et al. [1] applied the
concept of “ j-neighborhood space” (in briefly, j-NS) to generalize the classical rough set theory by using
different general topologies induced from binary relations. An interesting and natural research topic in the
rough set theory is to study the rough set theory via topology [3, 14–16, 20–23, 28, 31]. Ideal is a funda-
mental concept in the topological spaces and plays an important role in the study of topological problems.
Kuratowski [13] and Vaidyanathaswamy [27] were the first who studied the notion of the ideal topologi-
cal spaces. Few researchers [6, 10, 26] interesting in applying the concept of the ideals in the rough set theory.
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One of the primary motivations of this paper is there exists a close relationship between topologies and
rough sets. So, the main contribution of the present work is to generate different topologies by using the
notion of ideals. It is showed that these topologies are finner than the previous one [1]. Additionally, these
topologies are used to define and generalize the main concepts of rough set. This paper explores rough set
theory from the point of view of topology. It generalize the notions of rough sets based on the topological
space which generated by ideals. The current approximations are defined by using a closure operator and
a interior operator of the topologies induced by ideals. The topologies induced by ideals are stronger than
the topologies generated by j-NS which were used in the previous methods to define the approximations.
The main aim of rough set is to reduce the boundary region by increasing the lower approximation and
decreasing the upper approximation. This aim is achieved as it appears through the following sections.

This paper is organized as follows. After the introduction. Section 2 presents the main concepts of Abd
El-Monsef et al.’s approach [1] and the necessary definitions required in the sequel to the present work.
The main purpose of Section 3 is to generate different topologies by using ideal I. The relationships among
these topologies are presented. The current topologies are compared to the previous one in [1] and shown
to be more general. If I = {φ}, then the current definitions are coincided with Abd El-Monsef et al.’s [1]
definitions. So, Abd El-Monsef et al.’s [1] definitions are special case of the current definitions. In Section 4,
a new approximations namelyI- j-approximations are constructed by using the generated topologies which
are introduced in the previous section. Moreover, the basic properties of this new type of approximations
are presented. These approximations are extended the notation of j-approximations [1]. Theorem 4.1 and
Corollary 4.1 are introduced the comparisons between the current approximations and the previous one
[1]. Theorem 4.1 shows that the present method reduced the boundary region by increasing the I- j-lower
approximations and decreasing the I- j-upper approximations with the comparison of previous method 2.5
[1]. Moreover, Corollary 4.1 shows that the current accuracy is greater than the previous one. At the end
of this section, the relationships among the I- j-lower, I- j-upper approximations, I- j-boundary regions
and I- j-accuracy are summarized in Table 2. Finally, new method is suggested for new approximations
based on ideal in Section 5. The method is depended on using the properties of ideal in the definition
of j-approximation spaces instead of using the usual properties of interior and closure. This method is
satisfied all properties of the previous method [1]. Comparisons between this type of approximations, the
approximations in the previous section and Abd El-Monsef et al.’s approximations 2.5 [1] are studied. The
conclusion of this work is discussed in Section 6.

2. Preliminaries

The aim of this section is to present the basic concepts and properties of ideals, j-neighborhood space
and j-approximations.

Definition 2.1. [7] A non-empty collection I of subsets of a set X is called an ideal on X, if it satisfies the following
conditions

1. A ∈ I and B ∈ I ⇒ A ∪ B ∈ I,
2. A ∈ I and B ⊆ A⇒ B ∈ I.

i.e., I is closed under finite unions and subsets.

Definition 2.2. [1] Let R be an arbitrary binary relation on a non-empty finite set U. The j-neighborhood of
x ∈ U(N j(x)), j ∈ {r, l, < r >,< l >, i,u, < i >,< u >} is defined as:

1. r-neighborhood: Nr(x) = {y ∈ U : xRy}.
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2. l-neighborhood: Nl(x) = {y ∈ U : yRx}.
3. < r >-neighborhood: N<r>(x) =

⋂
x∈Nr(y) Nr(y).

4. < l >-neighborhood: N<l>(x) =
⋂

x∈Nl(y) Nl(y)
5. i-neighborhood: Ni(x) = Nr(x) ∩Nl(x).
6. u-neighborhood: Nu(x) = Nr(x) ∪Nl(x).
7. < i >-neighborhood: N<i>(x) = N<r>(x) ∩N<i>(x).
8. < u >-neighborhood: N<u>(x) = N<r>(x) ∪N<i>(x).

Remark 2.1. It should be noted that the concept of j-neighborhood of x ∈ U(N j(x)), j ∈ {r, l, < r >,< l >, i,u, < i >},
in [1] is the same as the notion of

1. the after set and fore sets in [5] if j = r, l respectively.
2. the intersection of after set and fore sets and their union in [29] if j = i,u respectively.
3. the minimal right set and the minimal left set in [4] if j =< r >,< l > respectively.
4. the intersection of minimal right set and minimal left set in [11] if j =< i > .

Definition 2.3. [1] Let R be an arbitrary binary relation on a non-empty finite set U and ξ j : U → P(U) be a
mapping which assigns for each x in U its j-neighborhood in P(U). The triple (U,R, ξ j) is called a j-neighborhood
space (in briefly, j-NS).

Theorem 2.1. [1] Let (U,R, ξ j) be a j-NS, and A ⊆ U. Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}, the collection
τ j = {A ⊆ U : ∀p ∈ A,N j(p) ⊆ A} is a topology on U.

Definition 2.4. [1] Let (U,R, ξ j) be a j-NS. A subset A ⊆ U is called j-open set if A ∈ τ j, and the complement of j-open
set is called j-closed set. The family Γ j of all j-closed sets of a j-neighborhood space is defined by Γ j = {F ⊆ U : F′ ∈ τ j},
where F′ is the complement of F.

Definition 2.5. [1] Let (U,R, ξ j) be a j-NS, A ⊆ U and ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}. The j-lower,
j-upper approximations, j-boundary regions and j-accuracy of A are defined respectively by:
R j(A) = ∪{G ∈ τ j : G ⊆ A} = int j(A), where int j(A) represents j-interior of A.

R j(A) = ∩{H ∈ Γ j : A ⊆ H} = cl j(A), where cl j(A) represents j-closure of A.
B j(A) = R j(A) − R j(A).

σ j(A) =
|R j(A)|

|R j(A)|
, where |R j(A)| , 0.

Definition 2.6. [1] Let (U,R, ξ j) be a j-NS, and ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >} A subset A ⊆ U is called
j-exact set if R j(A) = R j(A). Otherwise, A is called j-rough set.

3. Generalized topology based on different neighbourhoods by using ideal

Abd El-Monsef et al. [1] introduced eight different topologies based on different neighbourhoods. In
this section, I generalize these topologies by using ideal. The relationships among these topologies are
presented.

Theorem 3.1. Let (U,R, ξ j) be a j-NS, A ⊆ U andI be an ideal on U.Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >},
the collection τIj = {A ⊆ U : ∀p ∈ A,N j(p) ∩ A′

∈ I} is a topology on U.

Proof.

1. Clearly U and φ belong to τIj .

2. Let Ai ∈ τIj (∀i ∈ I) and a ∈ ∪i∈IAi. Then,
∃ i0 ∈ I such that a ∈ Ai0

⇒ N j(a) ∩ A′

i0
∈ I

⇒ N j(a) ∩ (∪i∈IAi)
′

∈ I

⇒ ∪i∈IAi ∈ τIj .
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3. Let A,B ∈ τIj , and a ∈ A ∩ B.
⇒ N j(a) ∩ A′

∈ I and N j(a) ∩ B′ ∈ I
⇒ (N j(a) ∩ A′

) ∪ (N j(a) ∩ B′ ) ∈ I
⇒ N j(a) ∩ (A′

∪ B′ ) ∈ I
⇒ (N j(a) ∩ (A ∩ B)

′

) ∈ I
⇒ A ∩ B ∈ τIj .

From 1, 2 and 3 τIj is a topology on U.

The current type of this topologies are finner than the previous one [1] as it is shown in the following
theorem.

Theorem 3.2. Let (U,R, ξ j) be a j-NS, A ⊆ U andI be an ideal on U.Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >},
τ j ⊆ τIj .

Proof. Let A ∈ τ j. Then, N j(p) ⊆ A ∀p ∈ A and consequently N j(p) ∩ A′

= φ ∈ I ∀p ∈ A. Therefore, A ∈ τIj .

Hence, τ j ⊆ τIj .

Remark 3.1. It should be noted that

1. if I = {φ} in Theorem 3.2, then the present generated topologies coincide with the previous one in Theorem 2.1
[1]. So, the current work is consider as a generalization of Abd El-Monsef et al.’s work [1].

2. τ j ( τIj as it is shown in the following example.

Example 3.1. Let U = {a, b, c, d},R = {(a, a), (a, b), (a, c), (b, c), (c, d)} and I = {φ, {b}, {c}, {b, c}}. It’s clear that

1. τr = {U, φ, {d}, {c, d}{a, d}, {b, c, d}} andτIr = {U, φ, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}}.
Thus, τr ( τIr .

2. τl = {U, φ, {a}, {a, b}, {a, b, c}} and τIl = {U, φ, {a}, {d}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}}. Thus, τl (

τIl .

3. τu = {U, φ, } and τIu = {U, φ, {a}, {b}, {d}, {a, b}, {a, d}, {a, b, d}, {a, c, d}}. Thus, τu ( τIu .
4. τ<r> = {U, φ, {c}, {d}, {c, d}, {1, 2, c}} andτI<r> = {U, φ, {a}, {c}, {d}, {a, b}, {a, c}, {a, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}}.

Thus, τ<r> ( τI<r>.
5. τ<l> = {U, φ, {a}, {c}, {d}, {a, b}, {a, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}} andτI

<l> = {U, φ, {a}, {c}, {d}, {a, b}, {a, c}, {a, d},
{c, d}, {a, b, c}, {a, b, d}, {a, c, d}}. Thus, τ<l> ( τI<l>.

6. τ<u> = {U, φ, {c}, {d}, {a, b}, {c, d}, {a, b, c}} and τI<u> = {U, φ, {a}, {d}, {a, b}, {a, d},
{a, b, d}, {a, c, d}}. Thus, τ<u> ( τI<u>.

7. τ<i> = {U, φ, {a}, {c}, {d}, {a, b}, {a, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}} andτI<i> = {U, φ, {a}, {c}, {d}, {a, b}, {a, c}, {a, d},
{c, d}, {a, b, c}, {a, b, d}, {a, c, d}}. Thus, τ<i> ( τI<i>.

Similarly, we can add example to show that τi ( τIi .

Proposition 3.1. Let (U,R, ξ j) be a j-NS and I be an ideal on U. Then

1. τIu ⊆ τIr and τIu ⊆ τIl .

2. τIr ⊆ τ
I

i and τIl ⊆ τ
I

i .

3. τI<u> ⊆ τ
I
<r> and τI<u> ⊆ τ

I

<l>.

4. τI<r> ⊆ τ
I

<i> and τI
<l> ⊆ τ

I

<i>.

Proof.
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(1) Let A ∈ τIu . Then, Nu(p) ∩ A′

∈ I ∀p ∈ A. Thus, (Nr(p) ∪ Nl(p)) ∩ A′

∈ I ∀p ∈ A. Hence, Nr(p) ∩ A′

∈

I ∀p ∈ A and Nl(p) ∩ A′

∈ I ∀p ∈ A. Therefore, A ∈ τIr and A ∈ τIl . Hence, τIu ⊆ τIr and τIu ⊆ τ
I

l .

Similarly, I can prove 3.

(2) Let A ∈ τIr . Then, Nr(p) ∩ A′

∈ I ∀p ∈ A. Thus, (Nr(p) ∩ Nl(p)) ∩ A′

∈ I ∀p ∈ A. Hence, Ni(p) ∩ A′

∈

I ∀p ∈ A. Therefore, A ∈ τIi . Hence, τIr ⊆ τ
I

i . Similarly, I can prove 4.

Corollary 3.1. Let (U,R, ξ j) be a j-NS and I be an ideal on U. Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.

1. τIu ⊆ τIr ⊆ τ
I

i .

2. τIu ⊆ τ
I

l ⊆ τ
I

i .

3. τI<u> ⊆ τ
I
<r> ⊆ τ

I

<i>.

4. τI<u> ⊆ τ
I

<l> ⊆ τ
I

<i>.

Remark 3.2. Example 3.1 shows that the inclusion in Proposition 3.1 and Corollary 3.1 can not be replaced by
equality relation, as

1. τIr * τIu and τIi * τ
I
r .

2. τIl * τ
I
u and τIi * τ

I

l .

3. τI<r> * τ
I
<u> and τI<i> * τ

I
<r>.

4. τI
<l> * τ

I
<u> and τI<i> * τ

I

<l>.

Remark 3.3. Let (U,R, ξ j) be a j-NS and I be an ideal on U. Then, it should be noted that

1. τIr is not the dual of τIl (see Example 3.1). Although, τr is the dual of τl as it is proved in [1].
2. τIr and τI<r> are not necessarily to be comparable (see Example 3.1).
3. τIl and τI

<l> are not necessarily to be comparable (see Example 3.1).
4. τIi and τI<i> are not necessarily to be comparable.

4. I - j-approximation spaces

In this section, new approximations namelyI- j-approximations are proposed to generalize j-approximations
2.5 [1]. The current approximations are based on the generated topologies which are introduced in the pre-
vious section. The properties of the new approximations are studied and compared to Abd El-Monsef et
al.’s approximations 2.5 [1].

Definition 4.1. Let (U,R, ξ j) be a j-NS and I be an ideal on U. A subset A ⊆ U is called I j-open set if A ∈ τIj and

the complement of I j-open set is called I j-closed set. The family ΓIj of all I j-closed sets of a j-neighborhood space is

defined by ΓIj = {F ⊆ U : F′ ∈ τIj }.

Definition 4.2. Let (U,R, ξ j) be a j-NS, A ⊆ U,I be an ideal on U and ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.
The I j-lower, I j-upper approximations, I j-boundary regions and I j-accuracy of the approximations of A are defined
respectively by:
RIj (A) = ∪{G ∈ τIj : G ⊆ A} = intIj (A), where intIj (A) represents I- j-interior of A.

R
I

j (A) = ∩{H ∈ ΓIj : A ⊆ H} = clIj (A), where clIj (A) represents I- j-closure of A.

BIj (A) = R
I

j (A) − RIj (A).

σIj (A) =
|RIj (A)|

|R
I

j (A)|
, where |R

I

j (A)| , 0.

The main properties of the current I- j-lower and I- j-upper approximations are studied in the following
proposition.
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Proposition 4.1. Let (U,R, ξ j) be a j-NS, I be an ideal on U and A,B ⊆ U. Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >
,< u >},

1. RIj (A) ⊆ A ⊆ R
I

j (A) equality hold if A = φ or U.

2. A ⊆ B⇒ R
I

j (A) ⊆ R
I

j (B).

3. A ⊆ B⇒ RIj (A) ⊆ RIj (B).

4. R
I

j (A ∩ B) ⊆ R
I

j (A) ∩ R
I

j (B).

5. RIj (A ∪ B) ⊇ RIj (A) ∪ RIj (B).

6. R
I

j (A ∪ B) ⊇ R
I

j (A) ∪ R
I

j (B).

7. RIj (A ∩ B) ⊆ RIj (A) ∩ RIj (B).

8. RIj (A) = (R
I

j (A′

))
′ , R

I

j (A) = (RIj (A′

))
′ .

9. R
I

j (R
I

j (A)) = R
I

j (A).

10. RIj (RIj (A)) = RIj (A).

11. RIj (RIj (A)) ⊆ R
I

j (RIj (A)).

12. RIj (R
I

j (A)) ⊆ R
I

j (R
I

j (A)).

The proof of this proposition is simple using the properties of I- j-interior and I- j-closure, so I omit it.

Remark 4.1. Example 3.1 shows that

1. the inclusion in Proposition 4.1 parts 1, 4, 5, 6, 7, 11 and 12 can not be replaced by equality relation:

(i) for part 1, if A = {c},RIr (A) = φ, then A * RIr (A). If A = {d},R
I

r (A) = {b, d}, then R
I

r (A) * A

(ii) for part 4, if A = {b},B = {d},A∩B = φ,R
I

r (A) = {b},R
I

r (B) = {b, d},R
I

r (A∩B) = φ, then R
I

r (A)∩R
I

r (B) =

{b, d} * φ = R
I

r (A ∩ B).

(iii) for part 5, if A = {c},B = {d},A ∪ B = {c, d},RIr (A) = φ,RIr (B) = {d},RIr (A ∪ B) = {3, 4}, then
RIr (A ∪ B) = {c, d} * {4} = RIr (A) ∪ RIr (B).

(iv) for part 11, if A = {d},RIr (RIr (A)) = A,R
I

r (RIr (A)) = {b, d}, then R
I

r (RIr (A)) * RIr (RIr (A)).

(v) for part 12, if A = {c},R
I

r (R
I

r (A)) = A,RIr (R
I

r (A)) = φ, then R
I

r (R
I

r (A)) * RIr (R
I

r (A)).

2. the converse of parts 2 and 3 is not necessarily true:

(i) for part 2, if A = {b},B = {b, d}, then R
I

r (A) = {b},R
I

r (B) = {b, d}. Therefore, R
I

r (A) ⊆ R
I

r (B), but A * B.

(ii) for part 3, if A = {c},B = {b}, then RIr (A) = φ,RIr (B) = {b}. Therefore, RIr (A) ⊆ RIr (B), but A * B.

Definition 4.3. Let (U,R, ξ j) be a j-NS, I be an ideal on U,A ⊆ U,∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}. A

subset A is called I- j-definable (I- j-exact) set if R
I

j (A) = RIj (A). Otherwise, A is called I- j-rough set.

In Example 3.1 A = {b} is I-r-exact, while B = {c} is I-r-rough.

Remark 4.2. Let (U,R, ξ j) be a j-NS, I be an ideal on U and A ⊆ U. Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >},
the intersection of two I- j-rough sets need not to be I- j-rough set as in Example 3.1 {a, c} and {a, d}, are I-r-rough
sets, {a, c} ∩ {a, d} = {a} is not I-r-rough set.

The following theorem and corollary present the relationships between the current approximations in
Definition 4.2 and the previous one in Definition 2.5 [1].
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Theorem 4.1. Let (U,R, ξ j) be a j-NS,I be an ideal on U and A ⊆ U.Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.

1. R j(A) ⊆ RIj (A).

2. R
I

j (A) ⊆ R j(A).

Proof.

(1) R j(A) = ∪{G ∈ τ j : G ⊆ A} ⊆ ∪{G ∈ τIj : G ⊆ A} = RIj (A). (by Theorem 3.2)

(2) Similar to (1).

Corollary 4.1. Let (U,R, ξ j) be a j-NS,I be an ideal on U and A ⊆ U.Then,∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.

1. BIj (A) ⊆ B j(A).

2. σ j(A) 6 σIj (A).

Corollary 4.2. Let (U,R, ξ j) be a j-NS,I be an ideal on U and A ⊆ U.Then,∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.

1. Every j-exact subset in U is I- j-exact.
2. Every I- j-rough subset in U is j-rough.

Remark 4.3. Example 3.1 shows that the converse of parts of Corollary 4.2 is not necessarily true.

1. if A = {b}, then it is I- j-exact, but it is not j-exact.
2. if A = {a}, then it is r-rough, but it is not I-r-rough.

Table 1 shows that the converse of parts of Theorem 4.1 and Corollary 4.1 is not necessarily true. This
table is calculated by using Example 3.1.

Table 1: Comparison between the boundary and accuracy by using the current approximations in Definition 4.2 and the previous one
in Definition 2.5 [1] at j = r.

2*A The previous one in Definition 2.5 [1] The current method in Definition 4.2

Rr(A) Rr(A) Br(A) σr(A) RIr (A) R
I

r (A) BIr (A) σIr (A)
{a} φ {a} {a} 0 {a} {a} φ 1
{b} φ {a, b} {a, b} 0 {b} {b} φ 1
{c} φ {a, b, c} {a, b, c} 0 φ {c} {c} 0
{d} {d} U {a, b, c} 1

4 {d} {b, d} {b} 1
2

{a, b} φ {a, b} {a, b} 0 {a, b} {a, b} φ 0
{a, c} φ {a, b, c} {a, b, c} 0 {a} {a, c} {c} 1

2
{a, d} φ U U 0 {a, d} {a, c, d} {c} 1

3
{b, c} φ {a, b, c} {a, b, c} 0 {b} {b, c} {c} 1

2
{b, d} {d} U U 0 {b, d} {b, c, d} {c} 2

3
{c, d} {c, d} U U 0 {c, d} {c, d} φ 1
{a, b, c} φ {a, b, c} {a, b, c} 0 {a, b} {a, b, c} {c} 2

3
{a, b, d} {d} U {a, b, c} 1

4 {a, b, d} U {c} 3
4

{a, c, d} {c, d} U {a, b} 1
2 {a, c, d} {a, c, d} φ 1

{b, c, d} {b, c, d} U U 3
4 {b, c, d} {b, c, d} φ 1

U U U φ 1 U U φ 1

For example, take A = {b}, then the boundary and accuracy by the present method in Definition 4.2 are φ
and 1 respectively. Whereas, the boundary and accuracy by using Abd El-Monsef et al.’s method 2.5 [1] are
{a, b} and 0 respectively.

The following propositions and corollaries are introduced the relationships among the I- j-lower, I- j-
upper approximations, I- j-boundary regions and I- j-accuracy.
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Proposition 4.2. Let (U,R, ξ j) be a j-NS, I be an ideal on U and A ⊆ U. Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,<
u >}. Then, the following statements are true in general.

1. RIu (A) ⊆ RIr (A) ⊆ RIi (A).
2. RIu (A) ⊆ RIl (A) ⊆ RIi (A).
3. RI<u>(A) ⊆ RI<r>(A) ⊆ RI<i>(A).
4. RI<u>(A) ⊆ RI<l>(A) ⊆ RI<i>(A).

Proof. By using Proposition 3.1, the proof is obvious.

Proposition 4.3. Let (U,R, ξ j) be a j-NS, I be an ideal on U and A ⊆ U. Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,<
u >}. Then, the following statements are true in general.

1. R
I

i (A) ⊆ R
I

r (A) ⊆ R
I

u (A).

2. R
I

i (A) ⊆ R
I

l (A) ⊆ R
I

u (A).

3. R
I

<i>(A) ⊆ R
I

<r>(A) ⊆ R
I

<u>(A).

4. R
I

<i>(A) ⊆ R
I

<l>(A) ⊆ R
I

<u>(A).

Proof. By using Proposition 3.1, the proof is obvious.

Corollary 4.3. Let (U,R, ξ j) be a j-NS,I be an ideal on U and A ⊆ U.Then,∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.

1. BIi (A) ⊆ BIr (A) ⊆ BIu (A).
2. BIi (A) ⊆ BIl (A) ⊆ BIu (A).
3. BI<i>(A) ⊆ BI<r>(A) ⊆ BI<u>(A).
4. BI<i>(A) ⊆ BI

<l>(A) ⊆ BI<u>(A).

Corollary 4.4. Let (U,R, ξ j) be a j-NS,I be an ideal on U and A ⊆ U.Then,∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.

1. σIu (A) 6 σIr (A) 6 σIi (A).
2. σIu (A) 6 σIl (A) 6 σIi (A).
3. σI<u>(A) 6 σI<r>(A) 6 σI<i>(A).
4. σI<u>(A) 6 σI

<l>(A) 6 σI<i>(A).

Remark 4.4. Let (U,R, ξ j) be a j-NS and I be an ideal on U. Then, it should be noted that

1. σIr (A) and σI<r>(A) are not necessarily to be comparable.
2. σIl (A) and σI

<l>(A) are not necessarily to be comparable.
3. σIi (A) and σI<i>(A) are not necessarily to be comparable.
4. σIu (A) and σI<u>(A) are not necessarily to be comparable.

Remark 4.5. Table 2 shows that

1. the comparison among the I- j-lower, I- j-upper approximations, I- j-boundary regions and I- j-accuracy in
Definition 4.2 by using Example 3.1, for j ∈ {r, l, i,u}.

2. there are different methods to approximate the sets by using τIi in constructing the approximations of sets,
τIr , τ

I

l and τIu . The best of these methods is there are given by using τIi in constructing the approximations of
sets, since the boundary regions in this case are decreased (or canceled) by increasing the lower approximation
and decreasing the upper approximation. Moreover, theI-i-accuracy is more accurate than the other types since
σIu (A) 6 σIr (A) 6 σIi (A) and σIu (A) 6 σIl (A) 6 σIi (A).
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5. Generalized I - j-approximation spaces

The current method is presented to redefine j-approximation spaces via ideals. The properties of
suggested method are studied. The relationships between the current approximations in this section,
Sections 4 and the previous one in [1] are introduced.

Definition 5.1. Let (U,R, ξ j) be a j-NS, A ⊆ U,I be an ideal on U and ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.
The generalized I j-lower, I j-upper approximations, I j-boundary regions and I j-accuracy of the approximations of
A are defined respectively by:
RI

j
(A) = RI

j
(A) ∩ A, where RI

j
(A) = ∪{G ∈ τIj : G ∩ A

′

∈ I}.

R
I

j (A) = R
I

j (A) ∪ A, where R
I

j (A) = ∩{H ∈ ΓIj : A ∩H
′

∈ I}.

B∗∗Ij (A) = R
I

j (A) − RI
j

(A).

σ∗∗Ij (A) =
|RI

j
(A)|

|R
I

j (A)|

, where |R
I

j (A)| , 0.

Before studying the main properties of RI
j
(A) and R

I

j (A). I must study the properties of RI
j
(A) and R

I

j (A)

as it is presented in the following propositions.

Proposition 5.1. Let (U,R, ξ j) be a j-NS, I,I be two ideals on U and A,B ⊆ U. Then, ∀ j ∈ {r, l, < r >,< l >, i,u, <
i >,< u >},

1. RI
j
(U) = U.

2. A ⊆ B⇒ RI
j
(A) ⊆ RI

j
(B).

3. RI
j
(A ∪ B) ⊇ RI

j
(A) ∪ RI

j
(B).

4. RI
j
(A ∩ B) = RI

j
(A) ∩ RI

j
(B).

5. if A′

∈ I ⇒ RI
j
(A) = U.

6. I ⊂ J ⇒ RI
j
(A) ⊆ RJ

j
(A).

Proof.

1. RI
j
(U) = ∪{G ∈ τIj : G ∩ φ = φ ∈ I} = U.

2. Let G ∈ RI
j
(A). Then, G ∩ A′

= φ ∈ I. Thus, G ∩ B′ = φ ∈ I (as A ⊆ B and from the properties of I).

Hence, G ∈ RI
j
(B).

3. Immediately by (2).
4. By (2), RI

j
(A∩B) ⊆ RI

j
(A)∩RI

j
(B). To prove, RI

j
(A)∩RI

j
(B) ⊆ RI

j
(A∩B). Let G ∈ (RI

j
(A)∩RI

j
(B)). Then,

G ∈ (RI
j
(A) and G ∈ RI

j
(B)). Thus, G ∩ A′

∈ I and G ∩ B′ ∈ I. Hence, (G ∩ A′

) ∪ (G ∩ B′ ) ∈ I (from the

properties of I). So, (G ∩ (A′

∪ B′ ) ∈ I. Therefore, G ∈ RI
j
(A ∩ B).

5. and 6 are Straightforward.

Remark 5.1. Example 3.1 shows that

1. the inclusion in Proposition 5.1 part 2 can not be replaced by equality relation. If A = {a, b},B = {a, c},A∪B =

{a, b, c},RI
r

(A) = {a, b},RI
r

(B) = {a, b},RI
r

(A ∪ B) = {a, b, d}, then RI
r

(A ∪ B) = {a, b, d} * {a, b} = RI
r

(A) ∪

RI
r

(B).
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2. the converse of parts 2,5 and 6 is not necessarily true:

(i) for part 2, if A = {b},B = {a}, then RI
r

(A) = {b},RI
r

(B) = {a, b}. Therefore, RI
r

(A) ⊆ RI
r

(B), but A * B.

(ii) for part 6, if A = {b},I = {φ, {d}},J = {φ, {b}, {c}, {b, c}}, then RI
l

(A) = φ,RJ
l

(A) = {d}, Therefore,

RJ
l

(A) = φ ⊆ {4} = RI
l

(A), but I * J .

(iii) for part 5. Similarly, I can add example to prove RI
j
(A) = U 6=⇒ A′

∈ I.

Proposition 5.2. Let (U,R, ξ j) be a j-NS, I,I be two ideals on U and A,B ⊆ U. Then, ∀ j ∈ {r, l, < r >,< l >, i,u, <
i >,< u >},

1. R
I

j (φ) = φ.

2. A ⊆ B⇒ R
I

j (B) ⊆ R
I

j (A).

3. R
I

j (A ∩ B) ⊇ R
I

j (A) ∩ R
I

j (B).

4. R
I

j (A ∪ B) ⊆ R
I

j (A) ∪ R
I

j (B).

5. if A ∈ I ⇒ R
I

j (A) = φ.

6. I ⊂ J ⇒ R
I

j (A) ⊆ R
J

j (A).

Proof. Similar to Proposition 5.1.

Remark 5.2. Example 3.1 shows that

1. the inclusion in Proposition 5.2 parts 3 and 4 can not be replaced by equality relation:

(i) for part 3, if A = {d},B = {a, b},A ∩ B = φ,R
I

r (A) = {c, d},R
I

r (B) = {a, b, c},R
I

r (A ∩ B) = φ, then

R
I

r (A ∩ B) = φ + {c} = R
I

r (A) ∩ R
I

r (B).

(ii) for part 4, if A = {d},B = {a, b},A ∪ B = {a, b, d},R
I

l (A) = {d},R
I

l (B) = {a, b, c},R
I

l (A ∪ B) = φ, then

R
I

l (A) ∪ R
I

l (B) = U * φ = R
I

l (A ∪ B).

2. the converse of parts 2,5 and 6 is not necessarily true:

(i) for part 2, if A = {a},B = {b}, then R
I

r (A) = {a},R
I

r (B) = {b}. Therefore, R
I

r (B) ⊆ R
I

r (A), but A * B.

(ii) for part 5, if A = {a, d}, then R
I

l (A) = φ, but {a, d} < I.

(iii) for part 6, if A = {b},I = {φ, {b}, {c}, {b, c}},J = {φ, {d}}, then R
I

l (A) = φ,R
J

l (A) = A. Therefore,

R
I

l (A) = φ ⊆ {b} = R
J

l (A), but I * J .

The deviations between the current approximations RI
j
(A) and R

I

j (A) and the previous one [1] are

presented in the following remark.

Remark 5.3. Let (U,R, ξ j) be a j-NS, I,I be two ideals on U and A,B ⊆ U. Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >
,< u >}, Example 3.1 shows that in general:

1. RI
j
(A) * A * R

I

j (A). As if j = r,A = {a}, then RI
r

(A) = {a, b} * {a} = A, and if A = {b}, then R
I

r (A) = φ, then

A = {b} * φ = R
I

r (A).
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2. RI
j
(φ) , φ,R

I

j (U) , U. As if j = r, then RI
r

(φ) = {b} , φ,R
I

r (U) = {a, c, d} , U.

3. RI
j
(RI

j
(A)) , RI

j
(A). If j = r,A = {a, b, c}, then RI

r
(A) = {a, b, d},RI

r
(RI

r
(A)) = U. Therefore, RI

r
(A) =

{a, b, d} , U = RI
r

(RI
r

(A)). Similarly, I can add example to show that, R
I

j (R
I

j (A)) , R
I

j (A).

4. RI
j
(A) , (R

I

j (A′

))
′

. As if j = l,A = {b, c}, then RI
l

(A) = φ , U = (R
I

l (A′

))
′

. Similarly, I can add example to

show that, R
I

j (A) , (RI
j
(A′

))
′ .

5. A ⊆ B ; R
I

j (A) ⊆ R
I

j (B). If j = l,A = {b, d},B = {a, b, d}, then R
I

l (A) = {d},R
I

l (B) = φ. Therefore, A ⊆ B,

but R
I

l (A) * R
I

l (B).

6. R
I

j (A ∩ B) * R
I

j (A) ∩ R
I

j (B). If j = l,A = {b, d},B = {a, b, d},A ∩ B = {b, d}, then R
I

l (A) = {d},R
I

l (B) =

φ,R
I

l (A ∩ B) = {d}. Therefore, R
I

l (A ∩ B) = {d} * φ = R
I

l (A) ∩ R
I

l (B).

7. R
I

j (A ∪ B) , R
I

j (A) ∪ R
I

j (B). As if j = l,A = {d},B = {a, b},A ∪ B = {a, b, d},R
I

l (A) = {d},R
I

l (B) =

{a, b, c},R
I

l (A ∪ B) = φ, then R
I

l (A ∪ B) = φ , U = R
I

l (A) ∪ R
I

l (B).

Theorem 5.1. Let (U,R, ξ j) be a j-NS, I,J be two ideal on U and A ⊆ U. Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >
,< u >}.

1. R
I∩J

j (A) = R
I

j (A) ∩ R
J

j (A).

2. R
I∪J

j (A) = R
I

j (A) ∪ R
J

j (A).

Proof.

(1)

R
I∩J

j (A) = ∩{H ∈ ΓIj : A ∩H
′

∈ I ∩ J}

= ∩{H ∈ ΓIj : A ∩H
′

∈ I and A ∩H
′

∈ J}

= (∩{H ∈ ΓIj : A ∩H
′

∈ I}) and (∩{H ∈ ΓIj : A ∩H
′

∈ I})

= R
I

j (A) and R
J

j (A)

= R
I

j (A) ∩ R
J

j (A).

(1)

(2) Similar to (1).

The following theorem and corollary present the relationships between the approximations RI
j
(A) and

R
I

j (A), the current approximations in Definition 4.2, and the previous one in Definition 2.5 [1].

Theorem 5.2. Let (U,R, ξ j) be a j-NS,I be an ideal on U and A ⊆ U.Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.

1. R j(A) ⊆ RIj (A) ⊆ RI
j
(A).

2. R
I

j (A) ⊆ R
I

j (A) ⊆ R j(A).

Proof.
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(1) R j(A) ⊆ RIj (A). (by Theorem 4.1) Let φ , G ∈ RIj (A). Then, G ⊆ A. Thus, G ∩ A′

= φ. Hence, G ∩ A′

∈ I.

Therefore, RIj (A) ⊆ RI
j
(A).

(2) Similar to (1).

Corollary 5.1. Let (U,R, ξ j) be a j-NS, I be an ideal on U,A ⊆ U and ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.

Then B∗Ij (A) ⊆ BIj (A) ⊆ B j(A),B∗Ij (A) = R
I

j (A) − RI
j
(A).

Remark 5.4. Example 3.1 shows that the converse of parts of Theorem 5.2 and Corollary 5.1 is not necessarily true
as

1. if A = {a}, then RI
r

(A) = {a, b} * RIr (A) = {b} * φ = Rr(A).

2. if A = {b}, then Rr(A) = {a, b} * {b} = R
I

r (A) * φ = R
I

r (A).

Proposition 5.3. Let (U,R, ξ j) be a j-NS, I be an ideal on U and A ⊆ U. Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,<
u >}. Then, the following statements are true in general.

1. RI
u

(A) ⊆ RI
r

(A) ⊆ RI
i

(A).

2. RI
u

(A) ⊆ RI
l

(A) ⊆ RI
i

(A).

3. RI
<u>

(A) ⊆ RI
<r>

(A) ⊆ RI
<i>

(A).

4. RI
<u>

(A) ⊆ RI
<l>

(A) ⊆ RI
<i>

(A).

Proof. By using Proposition 3.1, the proof is obvious.

Proposition 5.4. Let (U,R, ξ j) be a j-NS, I be an ideal on U and A ⊆ U. Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,<
u >}. Then, the following statements are true in general.

1. R
I

i (A) ⊆ R
I

r (A) ⊆ R
I

u (A).

2. R
I

i (A) ⊆ R
I

l (A) ⊆ R
I

u (A).

3. R
I

<i>(A) ⊆ R
I

<r>(A) ⊆ R
I

<u>(A).

4. R
I

<i>(A) ⊆ R
I

<l>(A) ⊆ R
I

<u>(A).

Proof. By using Proposition 3.1, the proof is obvious.

Corollary 5.2. Let (U,R, ξ j) be a j-NS,I be an ideal on U and A ⊆ U.Then,∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.

1. B∗Ii (A) ⊆ B∗Ir (A) ⊆ B∗Iu (A), where B∗Ij (A) = R
I

j (A) − RI
j
(A).

2. B∗Ii (A) ⊆ B∗Il (A) ⊆ B∗Iu (A).
3. B∗I<i>(A) ⊆ B∗I<r>(A) ⊆ B∗I<u>(A).
4. B∗I<i>(A) ⊆ B∗I<l>(A) ⊆ B∗I<u>(A).

Corollary 5.3. Let (U,R, ξ j) be a j-NS,I be an ideal on U and A ⊆ U.Then,∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.

1. σ∗Iu (A) 6 σ∗Ir (A) 6 σ∗Ii (A), where σ∗Ij (A) =
|RI

j
(A)|

|R
I

j (A)|
, |R
I

j (A)| , 0.

2. σ∗Iu (A) 6 σ∗Il (A) 6 σ∗Ii (A).
3. σ∗I<u>(A) 6 σ∗I<r>(A) 6 σ∗I<i>(A).
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4. σ∗I<u>(A) 6 σ∗I<l>(A) 6 σ∗I<i>(A).

Remark 5.5. Example 3.1 shows that the the inclusion in Propositions 5.3, 5.4 and Corollary 5.2, 5.3 can not be
replaced by equality relation as

1. if A = {a}, then RI
u

(A) = {a} , {a, b} = RI
r

(A) , {a, b, c} = RI
i

(A).

2. if A = {a}, then RI
u

(A) = {a} , {a, b, c} = RI
l

(A) and if A = {d}, then RI
l

(A) = {d} , {b, c, d} = RI
i

(A).

3. if A = {b}, then B∗Ii (A) = {a, d} , φ = B∗Ir (A) and if A = {d}, then B∗Ir (A) = φ , {c} = B∗Iu (A).
4. if A = {b}, then B∗Ii (A) = {a, d} , φ = BIl (A) and if A = {b}, then B∗Il (A) = φ , {b, c} = B∗Iu (A).

Similarly, I can add examples for the other parts.

Remark 5.6. It should be noted that the the current approximations in Definition 5.1 has the same properties of the

current approximations RI
j
(A) and R

I

j (A), which are stated in Propositions 5.1, 5.2 and Theorem 5.1. Additionally,

it satisfies the following properties:

1. RI
j
(A) ⊆ A ⊆ R

I

j (A).

2. RI
j
(φ) = φ,R

I

j (U) = U.

The following theorem and corollary present the relationships between the current approximations in
Definition 4.2, 5.1 and the previous one in Definition 2.5 [1].

Theorem 5.3. Let (U,R, ξ j) be a j-NS,I be an ideal on U and A ⊆ U.Then, ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.

1. R j(A) ⊆ RIj (A) ⊆ RI
j
(A) ⊆ RI

j
(A).

2. R
I

j (A) ⊆ R
I

j (A) ⊆ R
I

j (A) ⊆ R j(A).

Proof.

1. R j(A) ⊆ RIj (A) from Theorem 4.1. To prove RIj (A) ⊆ RI
j
(A). Let x ∈ RIj (A). Then, x ∈ A by Proposition

4.1 and x ∈ RI
j
(A) by Theorem 5.2. Hence, x ∈ RI

j
(A). Thus, RIj (A) ⊆ RI

j
(A) and RI

j
(A) ⊆ RI

j
(A) is

straightforward. This complete the proof.
2. Similar to 1.

Corollary 5.4. Let (U,R, ξ j) be a j-NS, I be an ideal on U,A ⊆ U and ∀ j ∈ {r, l, < r >,< l >, i,u, < i >,< u >}.
Then

1. B∗Ij (A) ⊆ B∗∗Ij (A) ⊆ BIj (A) ⊆ B j(A).

2. σ j(A) 6 σIj (A) 6 σ∗∗Ij (A) 6 σ∗Ij (A).

Remark 5.7. Example 3.1 shows that the converse of parts of Theorem 5.3 and Corollary 5.4 is not necessarily true
as if A = {a, b, d}, then

1. R j(A) = {a, b} , {a, b, d} = RIj (A),RI
j
(A) = {a, b, d} , U = RI

j
(A).

2. R
I

j (A) = φ , {a, b, d} = R
I

j (A) = {a, b, d} , U = R
I

j (A).
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6. Conclusions

The recent generalization of rough set theory has led to the introduction of topological rough set
approaches. Ideal is a fundamental concept in topological spaces and plays an important role in the
study of topological problems. This motivated us to use it in rough sets. The present paper depended
on generating different topologies by using ideals. These topologies were used to generalize the basic
concepts of rough set. The main aim of rough set is to reduce the boundary region by increasing the lower
approximation and decreasing the upper approximation. So, in this paper different methods were proposed
to achieve this aim. The properties of suggested methods were studied. It was showed that these methods
are more accurate of the other methods.
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