Filomat 34:1 (2020), 35–50 https://doi.org/10.2298/FIL2001035B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Constraction of a Core Regular Double MS-Algebra

Abd El-Mohsen Badawy^a

^aDepartment of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Abstract. In this paper, we introduce and characterize a core regular double *MS*-algebra. A construction of a core regular double *MS*-algebra $M^{[2]}$ via a de Morgan algebra *M* is given. A one to one correspondence between the class of de Morgan algebras and the class of core regular double *MS*-algebras is obtained. According to such construction we investigate many properties of a core regular double *MS*-algebra deal with subalgebras, homomorphisms, atoms and dual atoms. A description of an atomic core regular double *MS*-algebra.

1. Introduction

De Morgan Stone algebra (briefly *MS*-algebra) is introduced by T.S. Blyth and J.C. Varlet [8] as a common properties of a de Morgan algebra and a Stone algebra. T.S. Blyth and J.C. Varlet [9] described the lattice of all subclasses of the class **MS** of all *MS*-algebras which contains twenty subclasses, for examples, the class **S** of all Stone algebras and the class **M** of all de Morgan algebras. Also, T.S. Blyth and J.C. Varlet [10] presented the class **DMS** of all double *MS*-algebras which containing the class **DS** of all double Stone algebras. J.C. Varlet [18] studied a regular variety of type (2,2,1,1,0,0). T. Katriňāk [16] presented a construction of a regular double Stone algebra from a suitable Boolean algebra *B* and a filter *F* of *B*. S.D. Comer [14] proved the existence and uniqueness of perfect extensions of a regular double stone algebra using Katriňāk's construction [16]. Recently, A. Badawy [2] introduced and characterized the class of double *MS*-algebras satisfying the generalized complement property (briefly *DMS^{gc}*-algebras) which includes the class of double *MS*-algebras satisfying the complement property presented by L. Congwen [13]. Also, A. Badawy [2] gave a construction of *DMS^{gc}*-algebras generalizing the construction due to T. Katriňāk [11] for regular double Stone algebras. Many important properties of *MS*-algebras and double *MS*-algebras deal with homomorphisms, subalgebras, filters and congruences are studied in [3-7].

In this paper, we introduce and characterize a subclass of the class of double *MS*^{gc}-algebras which is called core regular double *MS*-algebras. In fact the class **CRDMS** of all core regular double *MS*-algebras includes the class **CRDS** of all core regular double Stone algebras due to R. Kumar et al. [17]. A construction of a core regular double *MS*-algebra from a suitable de Morgan algebra is obtained. Also, we construct

Communicated by Biljana Popović

²⁰¹⁰ Mathematics Subject Classification. 06D30, 06B10, 06D15

Keywords. De Morgan algebra; *MS*-algebra; Double *MS*-algebra; Regular double *MS*-algebras, Core regular double *MS*-algebras; Atomic lattices; Complete lattices.

Received: 30 December 2018; Revised: 09 May 2019; Accepted: 29 May 2019

This research was presented in the 2nd International Conference on Mathematics, Statistics & Information Technology 18-20 Dec., 2018 held in Tanta University, Egypt.

Email address: abdel-mohsen.mohamed@science.tanta.edu.eg (Abd El-Mohsen Badawy)

a core regular double Stone algebra from a suitable Boolean algebra. We observe that there is a one to one correspondence between the class **M** of all de Morgan algebras and the class **CRDMS**. We give many applications of such construction. Characterizations of homomorphisms and subalgebras of core regular double *MS*-algebras are obtained. We describe atoms and dual atoms of a core regular double *MS*-algebra by using this construction. A description of atomic core regular double *MS*-algebras is given. We observe that the completeness of a core regular double *MS*-algebra *L* depends on only the completeness of its skeleton $L^{\circ\circ}$, in particular the last two applications of our construction are to discuss complete homomorphisms and complete subalgebras of core regular double *MS*-algebras.

2. Preliminaries

In this section, we recall certain definitions and important results. We refer the reader to the references [5], [7], [8], [9], [10], [11], [12] and [15] as a guide references.

Definition 2.1. [15] An algebra $(L; \land, \lor)$ of type (2,2) is said to be a lattice if for every $a, b, c \in L$, it satisfies the following properties:

(1) $a \wedge a = a, a \vee a = a$ (*Idempotency*),

(2) $a \wedge b = b \wedge a, a \vee b = b \vee a$ (Commutativity),

(3) $(a \land b) \land c = a \land (b \land c), (a \lor b) \lor c = a \lor (b \lor c)$ (Associativity),

(4) $(a \land b) \lor a = a, (a \lor b) \land a = a$ (Absorption).

If a lattice *L* has a greatest element (denoted by 1) and a smallest element (denoted by 0), then *L* is said to be a bounded lattice.

Definition 2.2. [15] A lattice *L* is called distributive if it satisfies either of the following equivalent distributive laws: (1) $a \land (b \lor c) = (a \land b) \lor (a \land c)$, (2) $a \lor (b \land c) = (a \lor b) \land (a \lor c)$, for all $a, b, c \in L$.

Definition 2.3. [11] *A* de Morgan algebra is an algebra $(L; \lor, \land, \bar{}, 0, 1)$ of type (2,2,1,0,0) where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and $\bar{}$ the unary operation of involution satisfies:

$$\overline{\overline{x}} = x, \overline{(x \lor y)} = \overline{x} \land \overline{y}, \overline{(x \land y)} = \overline{x} \lor \overline{y}.$$

Definition 2.4. [12] A Stone algebra is a universal algebra $(L; \lor, \land, *, 0, 1)$ of type (2, 2, 1, 0, 0), where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation * of pseudocomplementation has the properties that $x \land a = 0 \Leftrightarrow x \le a^*$ and $x^{**} \lor x^* = 1$.

Definition 2.5. [16] A dual Stone algebra is a universal algebra $(L; \lor, \land, ^+, 0, 1)$ of type (2, 2, 1, 0, 0), where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation $^+$ of dual pseudocomplementation has the properties that $x \lor a = 1 \Leftrightarrow x \ge a^+$ and $x^{++} \land x^+ = 0$.

Definition 2.6. [16] A double Stone algebra is an algebra $(L;^*,^+)$ such that $(L;^*)$ is a Stone algebra, $(L;^+)$ is a dual Stone algebra and for every $x \in L, x^{*+} = x^{**}, x^{+*} = x^{++}$.

Definition 2.7. [8] An MS-algebra is an algebra $(L; \lor, \land, \circ, 0, 1)$ of type (2,2,1,0,0) where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation \circ satisfies:

$$x \le x^{\circ\circ}, (x \land y)^{\circ} = x^{\circ} \lor y^{\circ}, 1^{\circ} = 0.$$

Definition 2.8. [10] A dual MS-algebra is an algebra $(L; \lor, \land, ^+, 0, 1)$ of type (2,2,1,0,0) where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and the unary operation $^+$ satisfies:

A. Badawy / Filomat 34:1 (2020), 35-50

$$x \ge x^{++}, (x \land y)^{+} = x^{+} \lor y^{+}, 0^{+} = 1.$$

Definition 2.9. [10] A double MS-algebra is an algebra $(L;^{\circ},^{+})$ such that $(L;^{\circ})$ is an MS-algebra, $(L;^{+})$ is a dual MS-algebra, and the unary operations $^{\circ},^{+}$ are linked by the identities $x^{+\circ} = x^{++}$ and $x^{\circ+} = x^{\circ\circ}$, for all $x \in L$.

The class **DS** of all double Stone algebras is a subclass of the class **DMS** of all double *MS*-algebras and is characterized by the identities $x \land x^\circ = 0$ and $x \lor x^+ = 1$.

Throughout this paper, we adopt the following rules of computation in a double *MS*-algebra (L; \lor , \land , $^{\circ}$, $^{+}$, 0, 1) (see [8] and [10]).

Theorem 2.10. For any two elements a, b of a double MS-algebra L, we have

Theorem 2.11. [9] Let $(L; \lor, \land, \circ, +, 0, 1)$ be a double MS-algebra. Then (1) $L^{\circ\circ} = \{x \in L : x = x^{\circ\circ}\} = \{x \in L : x = x^{++}\} = \{x \in L : x^{\circ} = x^{+}\}$ is a de Morgan subalgebra of L, (2) $L^{\lor} = \{x \lor x^{\circ} : x \in L\} = \{x \in L : x \ge x^{\circ}\}$ is an increasing subset (dual order ideal) of L, (3) $L^{\circ\circ\lor} = \{a \lor a^{\circ} : a \in L^{\circ\circ}\} = L^{\circ\circ} \cap L^{\lor}$.

Definition 2.12. [15] Let $L = (L; \lor, \land, 0, 1)$ and $L_1 = (L_1; \lor, \land, 0, 1)$ be bounded lattices. A mapping $f : L \to L_1$ is called a $\{0, 1\}$ -lattice homomorphism if f(0) = 0, f(1) = 1, $f(x \lor y) = f(x) \lor f(y)$ and $f(x \land y) = f(x) \land f(y)$ for all $x, y \in L$. A $\{0, 1\}$ -lattice homomorphism is called an isomorphism if f is a bijective mapping, in this case, we call L and L_1 are isomorphic lattices and write $L \cong L_1$.

3. Core regular double MS-algebras

In this section, we introduce the concept of core regular double *MS*-algebras that includes the class of core regular double Stone algebras.

Definition 3.1. [2] A double MS-algebra (L;[°], ⁺) is said to be a regular double MS-algebra (or simply RDMS-algebra) if for any $x, y \in L$, $x^\circ = y^\circ$ and $x^+ = y^+$ imply x = y.

A relation Φ_{\circ}^+ defined by $(x, y) \in \Phi_{\circ}^+ \Leftrightarrow x^\circ = y^\circ$ and $x^+ = y^+$ is a congruence relation on a double *MS*-algebra *L*.

A characterization of regular double *MS*-algebra in terms of the congruence Φ_{\circ}^{+} is given in the following.

Theorem 3.2. Let *L* be a double MS-algebra. Then *L* is regular if and only if $\Phi_{\circ}^{+} = \omega$, where $\omega = \{(x, x) : x \in L\}$.

Proof. Let *L* be a regular double *MS*-algebra. Let $(x, y) \in \Phi_{\circ}^+$. Then $x^{\circ} = y^{\circ}$ and $x^+ = y^+$ and hence by regularity of *L*, we get x = y. Therefore $\Phi_{\circ}^+ = \omega$. Conversely, let $\Phi_{\circ}^+ = \omega$. Let $x^{\circ} = y^{\circ}$ and $x^+ = y^+$. Then $(x, y) \in \omega$. So, x = y and *L* is regular. \Box

Definition 3.3. [1] Let *L* be an MS-algebra. An element $d \in L$ is called a dense element of *L* if $d^\circ = 0$, the set of all dense elements of *L* is denoted by D(L).

37

Definition 3.4. *Let L be a dual MS-algebra. An element* $d \in L$ *is called a dual dense element of L if* $d^+ = 1$ *, the set of all dual dense elements of L is denoted by* $\overline{D(L)}$ *.*

Lemma 3.5. Let *L* be a double MS-algebra. Then D(L) is a filter of *L* and $\overline{D(L)}$ is an ideal of *L*.

Proof. It is observed that D(L) is a filter of L (see [1]). Let $x, y \in \overline{D(L)}$. Then $x^+ = y^+ = 1$. So by Theorem 2.10(5_{*d*}), $(x \lor y)^+ = x^+ \land y^+ = 1$. Hence $x \lor y \in \overline{D(L)}$. Now, let $z \le x \in \overline{D(L)}$ and $z \in L$. Then by Theorem 2.10(2_{*d*}), $z^+ \ge x^+ = 1$. This means that $z \in \overline{D(L)}$. Therefore $\overline{D(L)}$ is an ideal of L. \Box

Definition 3.6. Let *L* be a double MS-algebra. The set $K(L) = D(L) \cap \overline{D(L)}$ is called the core of *L*.

Definition 3.7. *A core regular double* MS-algebra (briefly CRDMS-algebras) is a regular double MS-algebra with non empty core, that is, $K(L) \neq \phi$.

Lemma 3.8. Let *L* be a CRDMS-algebra. Then |K(L)| = 1.

Proof. Let $k_1, k_2 \in K(L)$. Then $k_1^\circ = k_2^\circ = 0$ and $k_1^+ = k_2^+ = 1$. Hence by regularity of $L, k_1 = k_2$. Therefore K(L) has a unique element and hence |K(L)| = 1. \Box

We will denote the core element by *k*. The core element *k* will play an important role throughout the rest of this paper.

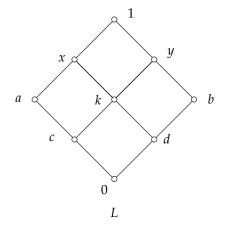


Figure 1: *L* is a bounded distributive lattice.

Example 3.9.

(1) Every core regular double Stone algebra is a core regular double MS-algebra.

(2) Consider the bounded distributive lattice L in Figure 1. Define unary operations °,⁺ on L by

$$k^{\circ} = x^{\circ} = y^{\circ} = 1^{\circ} = 0, d^{\circ} = b^{\circ} = b, c^{\circ} = a^{\circ} = a, 1^{\circ} = 0$$

and

$$k^+ = c^+ = d^+ = 0^+ = 1, y^+ = b^+ = b, x^+ = a^+ = a, 1^+ = 0.$$

It is observed that $(L;^{\circ},^{+})$ is a regular double MS-algebra. We have $D(L) = \{k, x, y, 1\}, \overline{D(L)} = \{0, c, d, k\}$ and $K(L) = \{k\}$. Then L represents a CRDMS-algebra. Since $c^{\circ} \wedge c \neq 0$ and $c^{+} \vee c \neq 1$ then L is not a double Stone algebra. This example deduce that **CRDS** \subseteq **CRDMS**.

(3) Consider the bounded distributive lattice L in Figure 1. Define unary operations °,⁺ on L by

A. Badawy / Filomat 34:1 (2020), 35-50

$$x^{\circ} = 1^{\circ} = 0, k^{\circ} = y^{\circ} = c, d^{\circ} = b^{\circ} = a, a^{\circ} = b, c^{\circ} = y, 1^{\circ} = 0$$

and

$$d^+ = 0^+ = 1, k^+ = c^+ = y, x^+ = a^+ = b, b^+ = a, y^+ = c, 1^+ = 0.$$

Clearly (*L*;°, ⁺) *is a regular double MS-algebra. We have* $D(L) = \{x, 1\}, \overline{D(L)} = \{0, d\}$ *and* $K(L) = \phi$ *. Then L is not a core regular double MS-algebra.*

Definition 3.10. [2] A double MS-algebra L is called a double MS-algebra satisfying the generalized complement property (or briefly DMS^{gc}-algebra) if

(1) *L* is a regular double MS-algebra,

(2) Given $a, b \in L^{\circ\circ}$ and a filter F of $L^{\circ\circ}$ containing $L^{\circ\circ\vee}$ such that $a \leq b$ and $a \vee b^{\circ} \in F$, then there exists an element $x \in L$ such that $x^{++} = a$ and $x^{\circ\circ} = b$.

Lemma 3.11. Every CRDMS-algebra with core element k is a DMS^{gc}-algebra.

Proof. We can choose $F = L^{\circ\circ}$. Let $a, b \in L^{\circ\circ}$ be such that $a \le b$. Clearly $a \lor b^{\circ} \in F$ as $F = L^{\circ\circ}$. Set $x = (a \lor k) \land b$. Then $x^{++} = a$ and $x^{\circ\circ} = b$. Then condition (ii) of Definition 3.9 holds. Then L is a DMS^{gc} -algebra. \Box

Now we illustrate an example to show that the converse of the above Lemma is not true, that is, the class **CRDMS** of all core regular double *MS*-algebras is a proper subclass of the class of **DMS**^{gc} of all DMS^{gc}-algebras.

Example 3.12. Consider $L = \{0 < c < a < d < 1\}$ be a five element chain and $a = a^{\circ} = c^{\circ} = a^{+} = d^{+}, d^{\circ} = 1^{\circ} = 0, 0^{+} = c^{+} = 1$. It is clear that $(L;^{\circ},^{+})$ is a regular double MS-algebra, $L^{\circ\circ} = \{0, a, 1\}$ and $L^{\circ\circ\vee} = \{a, 1\}$. A filter $F = \{a, 1\}$ of $L^{\circ\circ}$ contains $L^{\circ\circ\vee}$. It is observed that $(L,^{\circ},^{+})$ is a DMS^{gc}-algebra. Since $D(L) = \{1, d\}$ and $\overline{D(L)} = \{0, c\}$ then $K(L) = D(L) \cap \overline{D(L)} = \phi$. Then L is not a CRDMS-algebra.

4. The construction

The construction of a core regular double *MS*-algebra from a suitable de Morgan algebra is given in the following.

Theorem 4.1. (Construction Theorem)

Let $(M; \lor, \land, \bar{}, 0, 1)$ *be a de Morgan algebra. Then*

$$M^{[2]} = \{(a, b) \in M \times M : a \le b\}$$

is a core regular double CRDMS-algebra with core element (0,1), whenever

$$\begin{array}{rcl} (a,b) \lor (c,d) &=& (a \lor c,b \lor d), \\ (a,b) \land (c,d) &=& (a \land c,b \land d), \\ && (a,b)^+ &=& (\bar{a},\bar{a}), \\ && (a,b)^\circ &=& (\bar{b},\bar{b}) \\ && 0_{M^{[2]}} &=& (0,0) \\ && 1_{M^{[2]}} &=& (1,1). \end{array}$$

Moreover, M is isomorphic to $D(M^{[2]})$ as well as $\overline{D(M^{[2]})}$ as lattices.

Proof. T.S. Blyth and J.c. Varlet [10] observed that $M^{[2]} = (M^{[2]}; \lor, \land, \circ, +, (0,0), (1,1))$ is a double *MS*-algebra. Let $(a, b)^{\circ} = (c, d)^{\circ}$ and $(a, b)^{+} = (c, d)^{+}$. Then $(\bar{b}, \bar{b}) = (\bar{d}, \bar{d})$ and $(\bar{a}, \bar{a}) = (\bar{c}, \bar{c})$ imply a = c and b = d. Thus (a, b) = (c, d). Therefore $M^{[2]}$ is a regular double *MS*-algebra. By Theorem 3.5, $D(M^{[2]})$ is a filter of $M^{[2]}$ and $\overline{D(M^{[2]})}$ is an ideal of $M^{[2]}$. We observe that

$$D(M^{[2]}) = \{(x, y) \in M^{[2]} : (x, y)^{\circ} = (0, 0)\} \\ = \{(x, y) \in M^{[2]} : (\bar{y}, \bar{y}) = (0, 0)\} \\ = \{(x, y) \in M^{[2]} : \bar{y} = 0\} \\ = \{(x, y) \in M^{[2]} : y = 1\} \\ = \{(x, 1) \in M^{[2]} : x \in M\},$$

and

$$\overline{D(M^{[2]})} = \{(x, y) \in M^{[2]} : (x, y)^+ = (1, 1)\} \\ = \{(x, y) \in M^{[2]} : (\bar{x}, \bar{x}) = (1, 1)\} \\ = \{(x, y) \in M^{[2]} : \bar{x} = 1\} \\ = \{(x, y) \in M^{[2]} : x = 0\} \\ = \{(0, y) \in M^{[2]} : y \in M\}.$$

Now, we prove that the element (0, 1) is the core element of $M^{[2]}$. Since $(0, 1)^{\circ} = (0, 0)$, then $(0, 1) \in D(L)$. We claim that D(L) is a principal filter of $M^{[2]}$ generated by (0, 1). Let (x, 1) be any element of D(L). Then $x \ge 0$ implies $(x, 1) \ge (0, 1)$. Therefore (0, 1) is the smallest element of D(L) and D(L) = [(0, 1)). Similarly, we can prove that $\overline{D(L)}$ is a principal ideal of $M^{[2]}$ generated by (0, 1). Thus $\overline{D(L)} = ((0, 1)]$. Consequently, the core of $M^{[2]}$ is $K(M^{[2]}) = D(M^{[2]}) \cap \overline{D(M^{[2]})} = [(0, 1)) \cap ((0, 1)] = \{(0, 1)\}$. To prove that the lattices M and $D(M^{[2]})$ are isomorphic, define a map $f : M \to D(M^{[2]})$ by f(a) = (a, 1). Clearly f(0) = (0, 1) and f(1) = (1, 1). For every $a, b \in M$, we have

$$f(a \land b) = (a \land b, 1) = (a, 1) \land (b, 1) = f(a) \land f(b).$$

Also, $f(a \lor b) = f(a) \lor f(b)$. Therefore f is a {0,1}-lattice homomorphism. Obviously f is a bijective map. Therefore f is an isomorphism and $M \cong D(M^{[2]})$. Similarly, we can deduce that $M \cong \overline{D(M^{[2]})}$ under the lattice isomorphism $a \mapsto (0, a)$. Therefore $D(M^{[2]})$ and $\overline{D(M^{[2]})}$ are also isomorphic lattices. \Box

We illustrate the above construction on the following example.

Example 4.2. Let *M* be the four-element de Morgan algebra (see Fig. 2).

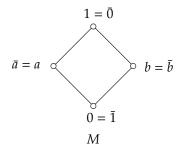


Figure 2: *M* is a de Morgan algebra.

Using the construction Theorem (theorem 4.1), we obtain a core regular double *MS*-algebra $M^{[2]}$ in figure 3. Where ° and ⁺ are given as follows:

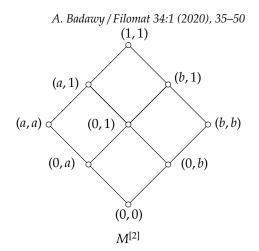


Figure 3: $M^{[2]}$ is a *CRDMS*-algebra with core (0, 1).

 $(0,b)^{\circ} = (b,b)^{\circ} = (b,b), (0,1)^{\circ} = (b,1)^{\circ} = (a,1)^{\circ} = (1,1)^{\circ} = (0,0), (0,a)^{\circ} = (a,a)^{\circ} = (a,a), (0,0)^{\circ} = (1,1) \text{ and } (0,k)^{+} = (0,a)^{+} = (0,b)^{+} = (0,0)^{+} = (1,1), (a,a)^{+} = (a,1)^{+} = (a,a), (b,b)^{+} = (b,1)^{+} = (a,a), (1,1)^{+} = (0,0).$ Clearly, $(M^{[2]})^{\circ\circ} = \{(0,0), (a,a), (b,b), (1,1)\}$ is isomorphic to M under a map $(a,a) \mapsto a$ and $D(M^{[2]}) = \{(0,1), (a,1), (b,1), (1,1)\}$ is isomorphic to M under a map $(x,1) \mapsto x$.

Definition 4.3. A mapping $f : M \to M_1$ of a de Morgan algebra M into a de Morgan algebra M_1 is said to be a homomorphism if f is a $\{0, 1\}$ -lattice homomorphism satisfying $f(\overline{x}) = \overline{(f(x))}$. A bijective homomorphism of de Morgan algebras is called isomorphism.

Corollary 4.4. *M* is isomorphic to $(M^{[2]})^{\circ\circ}$ as de Morgan algebras.

Proof. It is known that $((M^{[2]})^{\circ\circ}, \lor, \land, \circ, (0, 0), (1, 1))$ is a de Morgan subalgebra of $M^{[2]}$ (by Theorem 2.11(1)). Let $(a, b) \in (M^{[2]})^{\circ\circ}$. Then $(a, b)^{\circ\circ} = (a, b)$ implies (b, b) = (a, b). Hence a = b. Therefore

$$(M^{[2]})^{\circ\circ} = \{(a,a) : a \in M\}$$

Then clearly a map $a \mapsto (a, a)$ is an isomorphism of M onto $(M^{[2]})^{\circ\circ}$. Consequently, $M \cong (M^{[2]})^{\circ\circ}$.

For a core regular double Stone algebra, we have.

Corollary 4.5. If $B = (B; \lor, \land, ', 0, 1)$ is a Boolean algebra, then $B^{[2]}$ is a core regular double Stone algebra and $(B^{[2]})^{\circ\circ}$ is a Boolean subalgebra of $B^{[2]}$, where ' is a unary operation of complementation on B.

Proof. For any element *x* of a Boolean algebra *B*, we have the facts $x \vee x' = 1$ and $x \wedge x' = 0$. Since each Boolean algebra is a de Morgan algebra, then according to the above Theorem 4.1, $B^{[2]} = \{(a, b) : a \le b\}$ is a core regular double *MS*-algebra with core element (0, 1). We prove that $(a, b) \wedge (a, b)^{\circ} = (0, 0)$ and $(a, b) \vee (a, b)^{+} = (1, 1)$ for all $(a, b) \in B^{[2]}$.

$$(a,b) \wedge (a,b)^{\circ} = (a,b) \vee (b',b') = (a \wedge b', b \wedge b') = (a \wedge b', 0) \in B^{[2]} \text{ as } b \wedge b' = 0 = (0,0) \text{ as } a \wedge b' \leq 0 \Rightarrow a \wedge b' = 0 (a,b) \vee (a,b)^{+} = (a,b) \vee (a',a') = (a \vee a', b \vee a') = (1,b \vee a') \in B^{[2]} \text{ as } a \vee a' = 1 = (1,1) \text{ as } 1 \leq b \vee a' \Rightarrow b \vee a' = 1.$$

41

Therefor $B^{[2]}$ is a core double Stone algebra. By Theorem 2.11(1), $(B^{[2]})^{\circ\circ}$ is a de Morgan subalgebra of $B^{[2]}$. From corollary 4.2, $(B^{[2]})^{\circ\circ} = \{(a, a) : a \in B\}$. Since $(a, a) \lor (a, a)^{\circ} = (1, 1)$ and $(a, a) \land (a, a)^{\circ} = (0, 0)$ for all $(a, a) \in (B^{[2]})^{\circ\circ}$, then $(B^{[2]})^{\circ\circ}$ is a Boolean subalgebra of $B^{[2]}$. \Box

Definition 4.6. A mapping $f : L \to L_1$ of a CRDMS-algebra L with core element k into a CRDMS-algebra L_1 with core element k_1 is called a homomorphism if

(1) *f* is a {0, 1}-lattice homomorphism,

(2) $f(k) = k_1$, $f(x^\circ) = (f(x))^\circ$ and $f(x^+) = (f(x))^+$. A bijective homomorphism of CRDMS-algebras is called isomorphism.

Theorem 4.7. A CRDMS-algebra L with core element k is isomorphic to $L^{\circ\circ[2]}$.

Proof. Since $L^{\circ\circ}$ is a de Morgan algebra, then by Theorem 4.1, $L^{\circ\circ[2]} = \{(a, b) \in L^{\circ\circ} \times L^{\circ\circ} : a \leq b\}$ is a *CRDMS*-algebra with core element (0, 1). Define $\varphi : L \to L^{\circ\circ[2]}$ by $\varphi(x) = (x^{++}, x^{\circ\circ})$. Since $x^{++} \leq x^{\circ\circ}$, then $\varphi(x) \in L^{\circ\circ[2]}$. To prove that φ is an injective map, let $\varphi(x) = \varphi(y)$. Then $(x^{++}, x^{\circ\circ}) = (y^{++}, y^{\circ\circ})$. Hence $x^{++} = x^{++}$ and $x^{\circ\circ} = x^{\circ\circ}$. Then by Theorem 2.10(3_{*d*}),(3), we have $x^{+} = x^{+++} = y^{+++} = y^{+}$ and $x^{\circ} = x^{\circ\circ\circ} = y^{\circ\circ\circ} = y^{\circ}$. By regularity of *L*, x = y. Now, we prove that φ is surjective. For all $(a, b) \in L^{\circ\circ[2]}$, we have $a \leq b$ and $a, b \in L^{\circ\circ}$. Set $d = (a \lor k) \land b$. Using (6),(6_{*d*}),(7) and (7_{*d*}) of Theorem 2.10, and $k^{+}=1, k^{\circ} = 0$, we have

$$d^{++} = ((a \lor k) \land b)^{++} = (a^{++} \lor k^{++}) \land b^{++} = (a \lor 0) \land b = a \land b = a,$$

and

$$d^{\circ\circ} = ((a \lor k) \land b)^{\circ\circ} = (a^{\circ\circ} \lor k^{\circ\circ}) \land b^{\circ\circ} = (a \lor 1) \land b = 1 \land b = b.$$

Thus $\varphi(d) = (d^{++}, d^{\circ\circ}) = (a, b)$. Therefore φ is a bijective mapping. Clearly, $\varphi(0) = (0, 0)$, $\varphi(1) = (1, 1)$ and $\varphi(k) = (0, 1)$. For all $x, y \in L$, we get

$$\begin{split} \varphi(x \wedge y) &= ((x \wedge y)^{++}, (x \wedge y)^{\circ \circ}) \\ &= (x^{++} \wedge y^{++}, x^{\circ \circ} \wedge y^{\circ \circ}) \text{ by Theorem 2.10(7),} (7_d) \\ &= (x^{++}, x^{\circ \circ}) \wedge (y^{++}, y^{\circ \circ}) \\ &= \varphi(x) \wedge \varphi(y,) \\ \varphi(x \vee y) &= ((x \vee y)^{++}, (x \vee y)^{\circ \circ}) \\ &= (x^{++} \vee x^{++}, x^{\circ \circ} \vee y^{\circ \circ}) \text{ by Theorem 2.10(6),} (6_d) \\ &= (x^{++}, x^{\circ \circ}) \vee (y^{++}, y^{\circ \circ}) \\ &= \varphi(x) \vee \varphi(y). \end{split}$$

Therefore φ is a {0, 1}-lattice homomorphism. Now, for all $x \in L$ we have

$$\varphi(x^{+}) = (x^{+++}, x^{+\circ\circ})$$

$$= (x^{+++}, x^{+++}) \text{ as } x^{+\circ} = x^{++}$$

$$= (x^{++}, x^{\circ\circ})^{+}$$

$$= (\varphi(x))^{+},$$

$$\varphi(x^{\circ}) = (x^{\circ++}, x^{\circ\circ\circ})$$

$$= (x^{\circ\circ\circ}, x^{\circ\circ\circ}) \text{ as } x^{\circ+} = x^{\circ\circ}$$

$$= (x^{++}, x^{\circ\circ})^{\circ}$$

$$= (\varphi(x))^{\circ}.$$

Then φ preserves ⁺ and °. Consequently, φ is an isomorphism of a *CRDMS*-algebra *L* onto a *CRDMS*-algebra *L*^{oo[2]}. So $L \cong L^{oo[2]}$.

From the above discussion, we immediately get the following important result.

Theorem 4.8. There is a one to one correspondence between the class of core regular double MS-algebras and the class of de Morgan algebras.

Now, we give another useful characterization of a core regular double *MS*-algebra.

Theorem 4.9. Let *L* be a RDMS-algebra. Then the following statements are equivalent.

(i) L has core element,

(ii) For $a, b \in L^{\circ\circ}$ and $a \leq b$, there exists an element $x \in L$ such that $x^{++} = a$ and $x^{\circ\circ} = b$.

Proof. (*i*) \Rightarrow (*ii*): Let *L* has core element *k*. Let $a \le b$, $a, b \in L^{\circ\circ}$. Set $x = (a \lor k) \land b$. It is clear that $x^{++} = a$ and $x^{\circ\circ} = b$. Then condition (ii) holds.

(*ii*) \Rightarrow (*i*): Let *L* be a regular double *MS*-algebra satisfying the condition (ii). Then by Theorem 4.1, $L^{\circ\circ[2]} = \{(a, b) \in L^{\circ\circ} \times L^{\circ\circ} : a \leq b\}$ is a core regular double *MS*-algebra with core element (0, 1). Define a map $\varphi : L \to L^{\circ\circ[2]}$ by $\varphi(x) = (x^{++}, x^{\circ\circ})$. In the proof of Theorem 4.7, we show that φ is an injective mapping of *L* into $L^{\circ\circ[2]}$. Now we show that φ is a surjective mapping using (ii). Let $(a, b) \in L^{\circ\circ[2]}$. Then $a \leq b$ and $a, b \in L^{\circ\circ}$. By (ii) there exists $x \in L$ such that $x^{++} = a$ and $x^{\circ\circ} = b$. Then $\varphi(x) = (x^{++}, x^{\circ\circ}) = (a, b)$. Therefore φ is a bijective mapping of *L* onto $L^{\circ\circ[2]}$. We claim that the inverse image of the core element (0, 1) of $L^{\circ\circ[2]}$ is the core element of *L*. Suppose that $d = \varphi^{-1}(0, 1)$. Then $\varphi(d) = (0, 1)$ implies $(d^{++}, d^{\circ\circ}) = (0, 1)$. Thus $d^{++} = 0$ and $d^{\circ\circ} = 1$. It follows that $d^+ = 1$ and $d^\circ = 0$. This deduce that *d* is the core element of *L*.

Now, for any de Morgan algebra $M = (M; \lor, \land, \bar{}, 0, 1)$ and any filter *F* of *M* containing M^{\lor} , the author proved in [2] that $(L; \lor, \land, \circ, +, (0, 0), (1, 1))$ forms a *DMS^{gc}*-algebra, where

$$L = (M, F) = \{(a, b) : a \le b, a \lor b \in F\}$$

and the operations \lor , \land , $^{\circ}$ and $^{+}$ are given as in Theorem 4.1.

The following result gives the necessary and sufficient condition for a DMS^{gc} -algebra L = (M, F) to become a core regular double MS-algebra.

Theorem 4.10. A DMS^{*gc*}-algebra L = (M, F) is a CRDMS-algebra iff F = M.

Proof. Let F = M. Then $L = (M, M) = M^{[2]}$. Thus by Theorem 4.1, $L = M^{[2]}$ is a core regular double *MS*-algebra with core element (0,1). Conversely, Let L = (M, F) is a core regular double *MS*-algebra with core element (*a*, *b*). Then $(a, b) \in D(L) \cap \overline{D(L)}$ and $a \lor \overline{b} \in F$. Hence $(a, b)^{\circ} = (0, 0)$ and $(a, b)^{+} = (1, 1)$. It follows that $(\overline{b}, \overline{b}) = (0, 0)$ and $(\overline{a}, \overline{a}) = (1, 1)$, respectively. Then $\overline{b} = 0$ and $\overline{a} = 1$ implies b = 1 and a = 0, respectively. Then (a, b) = (0, 1) and hence $0 = 0 \lor \overline{1} = a \lor \overline{b} \in F$. Therefore F = M. \Box

5. Applications of the construction Theorem

We start this section with subalgebras of a CRDMS-algebra.

Definition 5.1. A bounded sublattice H of a CRDMS-algebra L with core element k is said to be a subalgebra of L if (1) $x^\circ, x^+ \in H$ for all $x \in H$,

 $(2)\;k\in H.$

It is observed that {0, *k*, 1} is the smallest subalgebra of any *CRDMS*-algebra *L*.

The subalgebras of a *CRDMS*-algebra *L* in example 3.9(2) are {0, *k*, 1}, {0, *c*, *a*, *k*, *x*, 1}, {0, *d*, *b*, *k*, *y*, 1} and *L*.

Theorem 5.2. There is one to one correspondence between the set of all subalgebras of a de Morgan algebra M and the set of all subalgebras of a CRDMS-algebra $M^{[2]}$.

Proof. Let M_1 be a subalgebra of M. We prove that a set $M_1^{[2]} = \{(a, b) \in M_1 \times M_1 : a \le b\}$ is a subalgebra of $M^{[2]}$. Since $0, 1 \in M_1$, then (0, 0), (1, 1) and (0, 1) are belong to $M_1^{[2]}$. For every (a, b), $(c, d) \in M_1^{[2]}$. Then $a, b, c, d \in M_1$ and hence $a \lor c, b \lor d, a \land c, b \land d \in M_1$. Thus

$$\begin{aligned} (a,b) \lor (c,d) &= (a \lor c, b \lor d) \in M_1^{[2]} \text{ as } a \lor c \le b \lor d, \\ (a,b) \land (c,d) &= (a \land c, b \land d) \in M_1^{[2]} \text{ as } a \land c \le b \land d. \end{aligned}$$

Therefore $M_1^{[2]}$ is a bounded sublattice of $M^{[2]}$. Let $(a, b) \in M_1^{[2]}$. Then $a, b \in M_1$ and hence $\bar{a}, \bar{b} \in M_1$ (as M_1 is a subalgebra of M). Thus

$$(a,b)^+ = (\bar{a},\bar{a}) \in M_1^{[2]}, (a,b)^\circ = (\bar{b},\bar{b}) \in M_1^{[2]}.$$

The core element (0, 1) of $M^{[2]}$ belongs to $M_1^{[2]}$. Therefore $M_1^{[2]}$ is a subalgebra of $M^{[2]}$. Conversely, let L_1 be a subalgebra of $M^{[2]}$. Consider a subset M_1 of M as follows:

$$M_1 = \{ a \in M : (a, a) \in L_1 \}.$$

We claim that M_1 is a subalgebra of M. Since (0,0), $(1,1) \in L_1$, then $0, 1 \in M_1$. Let $x, y \in M_1$. Hence $(x, x), (y, y) \in L_1$. Now

$$\begin{aligned} (x,x) \wedge (y,y) &= (x \wedge y, x \wedge y) \in L_1 \Rightarrow x \wedge y \in M_1, \\ (x,x) \vee (y,y) &= (x \vee y, x \vee y) \in L_1 \Rightarrow x \vee y \in M_1, \\ (x,x)^\circ &= (\bar{x}, \bar{x}) \in L_1 \Rightarrow \bar{x} \in M_1. \end{aligned}$$

Therefore M_1 is a subalgebra of a de Morgan algebra M. \Box

A clarification of the correspondence between subalgebras of a de Morgan algebra M and a *CRDMS*-algebra $M^{[2]}$ is provided in the following example.

Example 5.3. Consider a de Morgan algebra M and a CRDMD-algebra $M^{[2]}$ in example 4.2. We observe that the subalgebras $M_1 = \{0, 1\}, M_2 = \{0, a, 1\}, M_3 = \{0, b, 1\}, M_4 = M$ of a de Morgan algebra M are corresponding to the subalgebras $M_1^{[2]} = \{(0, 0), (0, 1), (1, 1)\},$

$$\begin{split} M_2^{[2]} &= \{(0,0), (0,a), (0,1), (a,a), (a,1), (1,1)\}, \\ M_3^{[2]} &= \{(0,0), (0,b), (b,b)(0,1), (b,1), (1,1)\}, \\ M_4^{[2]} &= M^{[2]} \ of \ a \ CRDMS-algebra \ M^{[2]}, \ respectively. \end{split}$$

Definition 5.4. A subalgebra L_1 of a CRDMS-algebra L is said to be a Stone subalgebra if $x^{\circ} \lor x^{\circ \circ} = 1$ and $x^+ \land x^{++} = 0$ for all $x \in L_1$.

Corollary 5.5. There is one to one correspondence between the set of all Boolean subalgebras of a de Morgan algebra M and the set of all Stone subalgebras of the CRDMS-algebra $M^{[2]}$.

Proof. Let M_1 is a Boolean subalgebra of a de Morgan algebra M. Then $x \wedge \overline{x} = 0$ and $x \vee \overline{x} = 1$ for all $x \in M_1$. Theorem 5.2 shows that $M_1^{[2]}$ is a subalgebra of $M^{[2]}$. We need to prove that the Stone identities hold in $M_1^{[2]}$. For all $(x, y) \in M_1^{[2]}$, we get

$$(x, y)^+ \wedge (x, y)^{++} = (\bar{x}, \bar{x}) \wedge (x, x) = (\bar{x} \wedge x, \bar{x} \wedge x) = (0, 0) (x, y)^\circ \vee (x, y)^{\circ\circ} = (\bar{y}, \bar{y}) \vee (y, y) = (\bar{y} \vee y, \bar{y} \vee y) = (1, 1).$$

Conversely, let L_1 is a Stone subalgebra of $M^{[2]}$. Then by Theorem 5.2, $M_1 = \{a \in M : (a, a) \in L_1\}$ is a subalgebra of a de Morgan algebra M. To prove M_1 is a Boolean subalgebra of M, we have to show that $a \lor \overline{a} = 1$ and $a \land \overline{a} = 0$ for $a \in M_1$. Let $a \in M_1$. Then $(a, a) \in L_1$. Since L_1 is a Stone subalgebra of $M^{[2]}$ then $(1, 1) = (a, a)^{\circ} \lor (a, a)^{\circ\circ} = (\overline{a} \lor a, \overline{a} \lor a)$. Therefore $a \lor \overline{a} = 1$. Also, $(0, 0) = (a, a)^{\circ} \land (a, a)^{\circ\circ} = (\overline{a} \land a, \overline{a} \land a)$ implies that $\overline{a} \land a = 0$. \Box

It is known that the center $Z(M) = \{x \in M : x \lor \overline{x} = 1\}$ of a de Morgan algebra *M* forms a Boolean subalgebra of *M*.

Corollary 5.6. $(Z(M))^{[2]}$ is the greatest Stone subalgebra of $M^{[2]}$.

Example 5.7. Consider a de Morgan algebra M and a CRDMD-algebra $M^{[2]}$ in example 4.2. The center $Z(M) = \{0, 1\}$ of M correspond to the greatest Stone subalgebra $M_1^{[2]} = \{(0, 0), (0, 1), (1, 1)\}$ of a CRDMS-algebr $M^{[2]}$.

Let $h : L \to L_1$ be a homomorphism of a *CRDMS*-algebra *L* into a *CRDMS*-algebra L_1 . We will denote by $h_{L^{\circ\circ}}$, $h_{D(L)}$ and $h_{\overline{D(L)}}$ to the restrictions of *h* on $L^{\circ\circ}$, D(L) and $\overline{D(L)}$, respectively. It is easy to show the following.

Lemma 5.8. Let $h: L \to L_1$ be a homomorphism of a CRDMS-algebra L into a CRDMS-algebra L_1 . Then

(1) $h_{L^{\infty}}$ is a homomorphism of a de Morgan algebras L^{∞} into a de Morgan algebra L_1^{∞} ,

(2) $h_{D(L)}$ is a {0, 1}-lattice homomorphism of a lattice D(L) into a lattice $D(L_1)$,

(3) $h_{\overline{D(L)}}$ is a {0, 1}-lattice homomorphism of a lattice $\overline{D(L)}$ into a lattice $\overline{D(L_1)}$.

Theorem 5.9. Let M and M_1 be de Morgan algebras. If $f : M \to M_1$ is a homomorphism, then a map $h : M^{[2]} \to M_1^{[2]}$ defined by h(a, b) = (f(a), f(b)) is a homomorphism of a CRDMS-algebra $M^{[2]}$ into a CRDMS-algebra $M_1^{[2]}$. Conversely, if $h : M^{[2]} \to M_1^{[2]}$ is a homomorphism of CRDMS-algebras, then $f : M \to M_1$ defined by $f(a) = b \Leftrightarrow h_{(M^{[2]})^{\circ\circ}}(a, a) = (b, b)$ for all $a \in M$ is homomorphism of de Morgan algebras.

Proof. Let $f : M \to M_1$ be a homomorphism between de Morgan algebras M and M_1 . It is ready seen that a map $h : M^{[2]} \to M_1^{[2]}$ defined by h(a, b) = (f(a), f(b)) is a homomorphism of a *DMS*-algebra $M_1^{[2]}$ into a *DMS*-algebra $M_1^{[2]}$. Since h(0, 1) = (f(0), f(1)) = (0, 1), then h is a homomorphism of *CRDMS*-algebra $M_2^{[2]}$.

Conversely, let $h: M^{[2]} \to M_1^{[2]}$ be a homomorphism of $M^{[2]}$ into $M_1^{[2]}$. Define a map $f: M \to M_1$ as follows:

$$f(a) = b \Leftrightarrow h_{(M^{[2]})^{\circ\circ}}(a, a) = h(a, a) = (b, b)$$
 for all $a \in M$.

Using Lemma 5.8(1), $h(a, a) = (b, b) \in M_1^{[2]}$. Then $f(a) = b \in M_1$ for all $a \in M$. Since h(0, 0) = (0, 0) and h(1, 1) = (1, 1), then f(0) = 0 and f(1) = 1, respectively. For all $x, y \in M$, by Lemma 5.8(1), we have $h(x, x) = (x_1, x_1)$ and $h(y, y) = (y_1, y_1)$. Then $f(x) = x_1$ and $f(y) = y_1$. Now,

$$h(x \wedge y, x \wedge y) = h((x, x) \wedge (y, y))$$

= $h(x, x) \wedge h(y, y)$
= $(x_1, x_1) \wedge (y_1, y_1)$
= $(x_1 \wedge y_1, x_1 \wedge y_1).$

Then $f(x \land y) = x_1 \land y_1 = f(x) \land f(y)$. Using similar way, we get $f(x \lor y) = f(x) \lor f(y)$. Since $h((x, x)^\circ) = (h(x, x))^\circ$, then $h(\bar{x}, \bar{x}) = (x_1, x_1)^\circ = (\bar{x}_1, \bar{x}_1)$. Hence $f(\bar{x}) = \bar{x}_1 = \overline{f(x)}$. Therefore f is a homomorphism of de Morgan algebra M into a de Morgan algebra M_1 . \Box

Definition 5.10. [10] An element *a* of a lattice *L* with 0 is said to be an atom of *L* if $a \neq 0$ and for any $x \in L$, $x \leq a$, then either x = 0 or x = a. Dually, an element *d* of a lattice *L* with 1 is said to be a coatom (dual atom) of *L* if $d \neq 1$ and for any $x \in L$, $d \leq x$, then either x = 1 or x = d. Let At(L) be the set of all atoms of *L*. A lattice *L* with zero element is said to be atomic if for every nonzero element *x* of *L*, there exists an atom *a* of *L* such that $a \leq x$.

Now, we obtain many properties of atoms and coatoms of *CRDMS*-algebras that should be useful for further discussion.

Lemma 5.11. For a CRDMS-algebra M^[2], we have

(1) $x = (a, b) \in M^{[2]}$ is an atom of $M^{[2]}$ if and only if $b \in At(M)$ and a = 0, (2) $x = (a, b) \in M^{[2]}$ is a coatom of $M^{[2]}$ if and only if a is a coatom of M and b = 1.

Proof. (1). Suppose that $x = (a, b) \in M^{[2]}$ is an atom of $M^{[2]}$. If *b* is not an atom of *M*, there exists $0 < b_1 < b$ and $y = (b_1 \land a, b_1) \in M^{[2]}$. Thus y < x, which contradicts with the fact that *x* is an atom of $M^{[2]}$. Hence *b* is an atom of *M*. Now, since $a \le b$ and *b* is an atom of *M*, we have a = 0 or a = b. If a = b then (0, 0) < (0, b) < (a, b), which contradicts with that (a, b) is an atom of $M^{[2]}$. Then a = 0. Conversely, let *b* is an atom of *M* and b = 0. Then we have to show that x = (0, b) is an atom of $M^{[2]}$. Let y = (c, d) is an element of $M^{[2]}$ such that $y \le x$. Then c = 0 and $d \le b$. Since *b* is an atom of *M*, then d = 0 and y = (0, 0). Therefore x = (0, b) is an atom of $M^{[2]}$ as claimed.

(2) By duality of (1). \Box

Corollary 5.12.

(1) *b* is an atom of *M* if and only if (0, b) is an atom of $M^{[2]}$,

(2) *b* is a coatom of *M* if and only if (b, 1) is a coatom of $M^{[2]}$,

(3) there is a one to one correspondence between the set of all atoms (coatoms) of M and the st of all atoms (coatoms) of $M^{[2]}$.

Theorem 5.13. *Let* M *be a de Morgan algebra and* $a \in M$ *. Then*

(1) (0, a) is an atom of $M^{[2]}$ implies (\bar{a} , 1) is a coatom of $M^{[2]}$,

(2) (a, 1) is a coatom of $M^{[2]}$ implies $(0, \bar{a})$ is an atom of $M^{[2]}$,

(3) there is a one to one correspondence between the set of all atoms of $M^{[2]}$ and the set of all coatoms of $M^{[2]}$.

Proof. (1). Let (0, a) is an atom of $M^{[2]}$. Then by Corollary 5.12(1), a is an atom of M. Clearly $(\bar{a}, 1) \in M^{[2]}$. Let $(x, y) \ge (\bar{a}, 1)$ for some $(x, y) \in M^{[2]}$. Then $x \ge \bar{a}$ and y = 1 implies $\bar{x} \le a$ and y = 1. Since a is an atom of M, then $\bar{x} = 0$ or $\bar{x} = a$. It follows that x = 1, y = 1 or $x = \bar{a}, y = 1$. Hence (x, y) = (1, 1) or $(x, y) = (\bar{a}, 1)$. Therefore $(\bar{a}, 1)$ is a coatom of $M^{[2]}$.

The proof of (2) is similar to that of (1) and the proof of (3) follows (1) and (2). \Box

Theorem 5.14. *A de Morgan algebra M is atomic if and only if* $M^{[2]}$ *is atomic.*

Proof. Let *M* be an atomic de Morgan algebra. Let (a, b) is a nonzero element of $M^{[2]}$. Then $a \le b$. Hence a = 0 or $a \ne 0$ but $b \ne 0$. If a = 0, then there exist atom of *M* say *c* such that $c \le b$. Then by Corollary 5.10(1), (0, c) is an atom of $M^{[2]}$ and $(0, c) \le (0, b) = (a, b)$. If $a \ne 0$ then there exists an atom of *M* say *x* such that $x \le a$. Hence (0, x) is an atom of $M^{[2]}$ with $(0, x) \le (a, a) \le (a, b)$. Therefore $M^{[2]}$ is an atomic core regular double *MS*-algebra. Conversely, let $M^{[2]}$ is atomic. Let $0 \ne a \in M$. Then (a, a) is a nonzero element of $M^{[2]}$. Thus there exists an atom of $M^{[2]}$ say (0, y) with $(0, y) \le (a, a)$. Consequently *y* is an atom of *M* with $y \le a$. Therefore *M* is atomic. \Box

In the following example, we clarify the properties of atoms and coatoms of M and $M^{[2]}$.

Example 5.15. Consider a de Morgan algebra M and a CRDMD-algebra $M^{[2]}$ in example 4.2. We observe the following.

(1) $At(M) = \{a, b\}$ and $At(M^{[2]}) = \{(0, a), (0, b)\}$, where a, b are corresponding to (0, a), (0, b), respectively.

(2) $\{a, b\}$ and $\{(a, 1), (b, 1)\}$ are the sets of coatoms of M and $At(M^{[2]})$, respectively. Also, a, b are corresponding to (a, 1), (b, 1), respectively.

(3) The atoms (0, a), (0, b) of $M^{[2]}$ are corresponding to the coatoms (a, 1), (b, 1) of $M^{[2]}$, respectively.

(4) It is ready seen that M is an atomic de Morgan algebra and $M^{[2]}$ is an atomic CRDMS-algebra.

Definition 5.16. [7] A lattice L is called complete if $\inf_{L} H$ and $\sup_{L} H$ exist for each $\phi \neq H \subseteq L$.

A *CRDMS*-algebra *L* is called complete if considered as a lattice it is complete.

Let $H = \{x_i = (a_i, b_i) : i \in I\} \subseteq M^{[2]}$. We can write $\sup_L H = \bigvee_{i \in I} x_i$ and $\inf_L H = \bigwedge_{i \in I} x_i$.

Theorem 5.17. If M is a complete de Morgan algebra, then $M^{[2]}$ is complete CRDMS-algebra.

Proof. Let $\phi \neq H \subseteq M^{[2]}$. Consider $H = \{(a_i, b_i) \in M^{[2]}, i \in I\}$. Since M is complete, then $\bigvee_{i \in I} a_i$ and $\bigvee_{i \in I} a_i$ exist. Hence $a_i \leq \bigvee_{i \in I} a_i$ and $b_i \leq \bigvee_{i \in I} b_i$. So, $(a_i, b_i) \leq (\bigvee_i a_i, \bigvee_i b_i)$ and hence $(\bigvee_{i \in I} a_i, \bigvee_{i \in I} b_i)$ is an upper bound of H. Let (x, y) be an upper bound of H. Then $(a_i, b_i) \leq (x, y)$ implies $a_i \leq x$ and $b_i \leq y$. Therefore $\bigvee a_{i \in I} \leq x$ and $\bigvee b_{i \in I} \leq y$ and $(\bigvee a_{i \in I}, \bigvee b_{i \in I}) \leq (x, y)$. Then $(\bigvee a_{i \in I}, \bigvee b_{i \in I}) = \sup H$. Similarly, we can show that $(\bigwedge a_{i \in I}, \bigwedge b_{i \in I}) = \inf H$. Then $M^{[2]}$ is complete. \Box

Theorem 5.18. Let $M^{[2]}$ be a complete CRDMS-algebra. Then

- (1) $(M^{[2]})^{\circ\circ}$ is complete,
- (2) *M* is complete.

Proof. (1). Let $\phi \neq H \subseteq (M^{[2]})^{\circ\circ}$. Since $M^{[2]}$ is complete and $H \subseteq M^{[2]}$, then $\sup H$ and $\inf H$ exist in $M^{[2]}$. Assume that $(a, b) = \sup_{M^{[2]}} H$ and $(c, d) = \inf_{M^{[2]}} H$. We prove that $(b, b) = \sup_{(M^{[2]})^{\circ\circ}} H$. Since $(a, b) = \sup_{M^{[2]}} H$, then $(h, h) \leq (a, b)$ for all $h \in H$. Thus $(h, h) = (h, h)^{++} \leq (a, b)^{++} = (a, a)$ and hence (a, a) is an upper bound of H. Since $(a, b) = \sup_{M^{[2]}} H$, then $(a, b) \leq (a, a)$ implies $b \leq a$. But $a \leq b$ as $(a, b) \in M^{[2]}$. Therefore a = b and $(a, b) = (b, b) \in (M^{[2]})^{\circ\circ}$ and $(b, b) = \sup_{M^{[2]}} H$. Similarly, we can show that $\inf H \in (M^{[2]})^{\circ\circ} = (d, d)$. Therefor $(M^{[2]})^{\circ\circ}$ is complete de Morgan algebra.

(2) Let $\phi \neq C \subseteq M$. Since *M* isomorphic to $(M^{[2]})^{\circ\circ}$ (see Corollary 4.4) then $\hat{C} = \{(c, c) : c \in C\} \subseteq (M^{[2]})^{\circ\circ}$ corresponds to *C*. Since by (1), $(M^{[2]})^{\circ\circ}$ is complete and $\hat{C} \subseteq (M^{[2]})^{\circ\circ}$ then $\sup_{(M^{[2]})^{\circ\circ}} \hat{C}$ and $\sup_{(M^{[2]})^{\circ\circ}} \hat{C}$ exist. Assume $(x, x) = \sup_{(M^{[2]})^{\circ\circ}} \hat{C}$ and $(y, y) = \inf_{(M^{[2]})^{\circ\circ}} \hat{C}$. Then $(c, c) \leq (x, x)$ for all $(c, c) \in \hat{C}$ implies $c \leq x$ for all $c \in C$. Thus *x* is an upper bound of *C*. Let *y* be an upper bound of *C*. Then $c \leq y$ for all $c \in C$ implies $(c, c) \leq (y, y)$ for all $(c, c) \in \hat{C}$. Hence (y, y) is an upper bound of \hat{C} . Then $(x, x) \leq (y, y)$ as $(x, x) = \sup_{(M^{[2]})^{\circ\circ}} \hat{C}$. Therefore $x \leq y$ and $x = \sup_M C$. Using a similar way, we get $y = \inf_M C$. Then *M* is complete. \Box

Combining Theorem 5.17 and Theorem 5.18(2), we have

Theorem 5.19. A de Morgan algebra M is complete if and only if $M^{[2]}$ is a complete CRDMS-algebra.

Now, we give two examples of complete atomic *CRDMS*-algebras, the first one is finite and the second one is infinite.

Example 5.20.

(1) Consider a CRDMS-algebra L in example 3.9(2). We have $At(L) = \{c, d\}$. It is clear that L is a finite complete atomic CRDMS-algebra.

(2) Let $M = \{\overline{0}\} \oplus [0, 1] \oplus \overline{1}$ be an infinite chain, where [0, 1] is a real closed interval and \oplus stands for the ordinal sum. Then $(M; \lor, \land, \overline{0}, \overline{1})$ forms a bounded distributive lattice, where $x \lor y = \max\{x, y\}, x \land y = \min\{x, y\}, x, y \in [0, 1]$ and $\overline{0}, \overline{1}$ are the smallest and the greatest elements of M, respectively. Define a negation \sim on M by $\sim x = 1 - x$ for all $x \in [0, 1], \sim \overline{0} = \overline{1}$ and $\sim \overline{1} = \overline{0}$. Since $At(M) = \{0\}$, then M is atomic. As $\sup_M H$ and $\inf_M H$ exist, for $\phi \neq H \subseteq M$, then M is complete. Therefore M is a complete atomic de Morgan algebra. Using the construction Theorem, we obtain the core regular double MS-algebra M^[2], where

$$M^{[2]} = \{(\overline{0}, \overline{0}), (\overline{0}, 0), ..., (\overline{0}, 1/2), ..., (\overline{0}, \overline{1}), \\(0, 0), ..., (0, 1/2), ..., (0, 1), (0, \overline{1}), \\...\\(1/2, 1/2), ..., (1/2, 3/4), ..., (1/2, 1), (1/2, \overline{1}), \\..\\(1, 1), (1, \overline{1}), \\(\overline{1}, \overline{1})\}.$$

and $(x, y)^{\circ} = (\sim y, \sim y), (x, y)^{+} = (\sim x, \sim x)$ for all $(x, y) \in M^{[2]}$. Also, $K(M^{[2]}) = D(L) \cap \overline{D(L)} = \{(x, \overline{1}) : x \in M\} \cap \{(\overline{0}, y) : y \in M\} = \{(\overline{0}, \overline{1})\}$. We have $At(M^{[2]}) = \{(\overline{0}, 0)\}$. By Theorem 5.14, $M^{[2]}$ is atomic. Also, $M^{[2]}$ is complete (see Theorem 5.17). Therefore $M^{[2]}$ is an infinite complete atomic CRDMS-algebra.

Lemma 5.21. Let $M^{[2]}$ be a complete CRDMS-algebra and $x_i = (a_i, b_i) \in M^{[2]}$ for all $i \in I$. Then

 $(1) \bigvee_{i \in I} x_i = (\bigvee_{i \in I} a_i, \bigvee_{i \in I} b_i),$ $(2) \bigwedge_{i \in I} x_i = (\bigwedge_{i \in I} a_i, \bigwedge_{i \in I} b_i),$ $(3) (\bigvee_{i \in I} x_i)^\circ = \bigwedge_{i \in I} x_i^\circ,$ $(4) (\bigwedge_{i \in I} x_i)^+ = \bigvee_{i \in I} x_i^+.$

Proof. (1). Since $M^{[2]}$ is complete, then by Theorem 5.6, M is also complete. Hence $\bigvee_{i \in I} a_i$ and $\bigvee_{i \in I} b_i$ exist in M. Then $a_i \leq \bigvee_{i \in I} a_i$ and $b_i \leq \bigvee_{i \in I} b_i$ imply $(a_i, b_i) \leq (\bigvee_{i \in I} a_i, \bigvee_{i \in I} b_i)$. Hence $(\bigvee_{i \in I} a_i, \bigvee_{i \in I} b_i)$ is an upper bound of x_i for all $i \in I$. Let (a, b) be an upper bound of x_i . Therefore $a_i \leq a$ and $b_i \leq b$ for all $i \in I$. Hence a is an upper bound of a_i and b is an upper bound of b_i for all $i \in I$. So, $(\bigvee_{i \in I} a_i, \bigvee_{i \in I} b_i) \leq (a, b)$ and $(\bigvee_{i \in I} a_i, \bigvee_{i \in I} b_i)$ is the least upper bound of x_i for all $i \in I$.

(2) The proof is similar to that of (1).

(3) Since $\bigvee_{i \in I} x_i \ge x_i$, then $(\bigvee_{i \in I} X_i)^\circ \le x_i^\circ$. Hence $(\bigvee_{i \in I} X_i)^\circ$ is a lower bound of x_i° . Let y be a lower bound of x_i° . Then $y \le x_i^\circ$ implies $y^\circ \ge x_i^{\circ\circ} \ge x_i$. Then y° is an upper bound of x_i and this gives $\bigvee_{i \in I} x_i \le y^\circ$. Therefore $(\bigvee_{i \in I} x_i)^\circ \ge y^{\circ\circ} \ge y$. Then we deduce that $(\bigvee_{i \in I} x_i)^\circ$ is the greatest lower bound of x_i° and $(\bigvee_{i \in I} x_i)^\circ = \bigwedge_{i \in I} x_i^\circ$. (4) The proof is similar to that of (3). \Box

Definition 5.22. A subalgebra L_1 of a complete CRDMS-algebra L is called a complete subalgebra of L if $\inf_L H \in L_1$ and $\sup_T H \in L_1$ for every subset H of L_1 .

Theorem 5.23. Let $M_1^{[2]}$ be a subalgebra of a complete CRDMS-algebra $M^{[2]}$. Then $M_1^{[2]}$ is complete subalgebra of $M^{[2]}$ if and only if M_1 is a complete subalgebra of M.

Proof. Let $M_1^{[2]}$ is a complete subalgebra of $M^{[2]}$. Let $\phi \neq H \subseteq M_1$. Consider the subset $\hat{H} = \{x_i = (a_i, a_i) : a_i \in H, i \in I\}$ of $M_1^{[2]}$ corresponding to H. Since $M^{[2]}$ is complete, then by Lemma 5.21(1), (2), we have

$$\sup_{M} \dot{H} = \bigvee_{i \in I} x_{i} = (\bigvee_{i \in I} a_{i}, \bigvee_{i \in I} a_{i}) \in M_{1}^{[2]},$$
$$\inf_{M} \dot{H} = \bigwedge_{i \in I} x_{i} = (\bigwedge_{i \in I} a_{i}, \bigvee_{i \in I} a_{i}) \in M_{1}^{[2]}.$$

Hence $\bigvee_{i \in I} a_i \in M_1$ and $\bigwedge_{i \in I} a_i \in M_1$. Then M_1 is complete complete subalgebra of M. Conversely, let M_1 is a complete subalgebra of a complete de Morgan algebra M. Let $\phi \neq H \subseteq M_1^{[2]}$. Then

$$H = \{x_i = (a_i, b_i) \in M_1^{[2]}, i \in I\} \subseteq M_1^{[2]}$$

Since M_1 is complete subalgebra of M, then we have

$$\bigvee_{i \in I} a_i \in M_1 \text{ and } \bigvee_{i \in I} b_i \in M_1.$$

Also, $\bigwedge_{i \in I} a_i \in M_1$ and $\bigwedge_{i \in I} b_i \in M_1$. Then by Lemma 5.21,(1),(2), respectively, we get

$$\begin{split} \bigvee_{M^{[2]}} H &= \bigvee_{i \in I} x_i = (\bigvee_{i \in I} a_i, \bigvee_{i \in I} b_i) \in M_1^{[2]}, \\ \bigwedge_{M^{[2]}} H &= \bigwedge_{i \in I} x_i = (\bigwedge_{i \in I} a_i, \bigwedge_{i \in I} b_i) \in M_1^{[2]}. \end{split}$$

Then $M_1^{[2]}$ is a complete subalgebra of a *CRDMS*-algebra $M^{[2]}$.

Definition 5.24. [6] A lattice homomorphism $h : L \to L_1$ of a complete lattice L into a complete lattice L_1 is called complete if

$$h(\inf_{L} H) = \inf_{L_{1}} h(H)$$
 and $h(\sup_{L} H) = \sup_{L_{1}} h(H)$ for each $\phi \neq H \subseteq L$.

A homomorphism $h : L \to L_1$ of a complete *CRDMS*-algebra *L* into a complete *CRDMS*-algebra L_1 is called complete if it is complete as a lattice homomorphism.

Theorem 5.25. Let M and M_1 are complete de Morgan algebras. If $f : M \to M_1$ is a complete homomorphism, then $h : M^{[2]} \to M_1^{[2]}$ defined by h(a, b) = (f(a), f(b)) is a complete homomorphism of $M^{[2]}$ into $M_1^{[2]}$. Conversely, if $g : M^{[2]} \to M_1^{[2]}$ is a complete homomorphism, then $f : M \to M_1$ defined by $f(a) = b \Leftrightarrow g(a, a) = (b, b)$ is a complete homomorphism of de Morgan algebras.

Proof. Let $f : M \to M_1$ is a complete homomorphism. Then by Theorem 5.9, $h : M^{[2]} \to M_1^{[2]}$ defined by h(a, b) = (f(a), f(b)) is a homomorphism of *CRDMS*-algebras $M^{[2]}$ and $M_1^{[2]}$. We prove that $\sup_{M_1^{[2]}} h(H) = h(\sup_{M^{[2]}} H)$ for $\phi \neq H \subseteq M^{[2]}$. Consider $H = \{x_i = (a_i, b_i) \in M^{[2]} : i \in I\}$ for $\phi \neq H \subseteq M^{[2]}$. Using Lemma 5.21(1), we get $\sup_{M^{[2]}} H = \bigvee_{i \in I} x_i = \bigvee_{i \in I} (a_i, b_i) = (\bigvee_{i \in I} a_i, \bigvee_{i \in I} b_i)$. Thus

$$h(\sup_{M^{[2]}} H) = h(\bigvee_{i \in I} a_i, \bigvee_{i \in I} b_i)$$

$$= (f(\bigvee_{i \in I} a_i), f(\bigvee_{i \in I} b_i))$$

$$= (\bigvee_{i \in I} f(a_i), \bigvee_{i \in I} f(b_i))$$

$$= \bigvee_{i \in I} (f(a_i), f(b_i))$$

$$= \bigvee_{i \in I} h(a_i, b_i)$$

$$= \sup_{M^{[2]}} h(H),$$

Using Lemma 5.21(2), we can get $\inf_{M_1}^{[2]} = h(\inf_{M^{[2]}} H)$. Therefore *h* is complete. Conversely, let $g : M^{[2]} \to M_1^{[2]}$ is a complete homomorphism of a *CRDMS*-algebra $M^{[2]}$ into $M_1^{[2]}$. Then by Theorem 5.9, a mapping $f : M \to M_1$ defined by $f(a) = b \Leftrightarrow g(a, a) = (b, b)$ is a homomorphism of *M* into M_1 . We have to show

that *f* is complete. Let $\phi \neq H = \{a_i : i \in I\} \subseteq M$, we prove that $f(\inf_M H) = \inf_{M_1} f(H)$. Consider a subset $\dot{H} = \{x_i = (a_i, a_i) : a_i \in H, i \in I\}$ of $M^{[2]}$ corresponding to *H*. Since *M* and $M^{[2]}$ are complete, then by Lemma 5.21(2), we get

$$\inf_{M^{[2]}} H = \bigwedge_{i \in I} x_i = (\bigwedge_M a_i, \bigwedge_{i \in I} a_i)$$

Let $g(a_i, a_i) = (b_i, b_i)$. Then by definition of f, we have $f(a_i) = b_i$. Since g is complete, then $g(\inf_{M^{[2]}} \dot{H}) = \inf_{M^{[2]}} g(\dot{H})$. Now

$$g(\inf_{M^{[2]}} \acute{H}) = g(\bigwedge_{i \in I} (a_i, a_i)) = g(\bigwedge_{i \in I} a_i, \bigwedge_{i \in I} a_i),$$

$$\inf_{M^{[2]}_1} g(\acute{H}) = \bigwedge_{i \in I} g(a_i, a_i)) = \bigwedge_{i \in I} (b_i, b_i)) = (\bigwedge_{i \in I} b_i, \bigwedge_{i \in I} b_i).$$

Then $g(\bigwedge_{i \in I} a_i, \bigwedge_{i \in I} a_i) = (\bigwedge_{i \in I} b_i, \bigwedge_{i \in I} b_i)$ implies $f(\inf_M H) = f(\bigwedge_{i \in I} a_i) = \bigwedge_{i \in I} b_i = \inf_{M_1} f(H)$. Similarly, we can show that $f(\sup_M H) = \sup_{M_1} (f(H))$. Then f is complete. \Box

Acknowledgement. We thank the editor and referees for valuable comments and suggestions for improving the paper.

References

- A. Badawy, D. Guffova and M. Haviar, Triple construction of decomposable MS-algebras, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 51, 2(2012), 53-65.
- [2] A. Badawy Regular double MS-algebras, Appl. Math. Inf. Sci., 11, No. 2(2017), 115–122.
- [3] A. Badawy, Balanced factor congruences of double MS-algebras, Journal of the Egyptian Mathematical Society 27: 6 (2019), 1–15.
- [4] A. Badawy, *d_L*-Filters of principal *MS*-algebras, Journal of the Egyptian Mathematical Society **23** (2015), 463–469.
- [5] A. Badawy and R. El-Fawal, *Homomorphism and Subalgebras of decomposable MS-algebras*, Journal of Egyptian Mathematical Society, 25 (2017), 119–124.
- [6] A. Badawy, Congruences and de Morgan filters of decomposable *MS*-algebras, Southeast Asian Bulletin of Mathematics **43** (2019), 13–25.
- [7] A. Badawy, Extensions of the Glivenko-type congruences on a Stone lattice, Math. Meth. in the Appl Sci., 41 (2018), 5719–5732.
- [8] T.S. Blyth and J.C. Varlet, On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburgh 94 A (1983), 301–308.
- [9] T.S. Blyth and J.C. Varlet, Subvarieties of the class of MS-algebras, Proc. Roy. Soc. Edinburgh 95 A(1983), 157-167.
- [10] T.S. Blyth and J.C. Varlet, Double MS-algebras, Proc. Roy. Soc. Edinburgh 94(1984), 157-169.
- [11] T.S. Blyth and J.C. Varlet, Ockham Algebras, London, Oxford University, Press, (1994).
- [12] T.S. Blyth, Lattices and ordered Algebric Structures, springer Verlag, London Limited (2005).
- [13] L. Congwen, *The class of double MS-algebras satisfying the complement property*, Bulletin de la Société des Sciences de Liège, Vol. **70**, 1, 2001, pp. 51-59.
- [14] S.D. Comer, *Perfect extensions of regular double Stone algebras*, Algebra Universalis **34** (1995), 96–109.
- [15] G. Grätzer, Lattice theory, first concepts and distributive lattices, Lecture Notes, Freeman, San Francisco, California, 1971.
- [16] T. Katriňák, Construction of regular double p-algebras, Bull. Soc. Roy. Sci. Liège, 43, (1974), 283–290.
- [17] R. Kumar, M.P.K. Kishore and A.R.J. Srikanth, Core Regular double Stone algebra, Journal of calcutta Mathematical Society, 11 (2015), 1–10.
- [18] J.C. Varlet, A regular variety of type (2,2,1,1,0,0), Algebra Universalis 2 (1972), 218–223.