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The Outer Inverse f (2)
T,S of

a Homomorphism of Right R−Modules
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Abstract. In this paper, we introduce the definition of the generalized inverse f (2)
T,S, which is an outer inverse

of the homomorphism f of right R−modules with prescribed image T and kernel S. Some basic properties
of the generalized inverse f (2)

T,S are presented. It is shown that the Drazin inverse, the group inverse and the

Moore-Penrose inverse, if they exist, are all the generalized inverse f (2)
T,S. In addition, we give necessary and

sufficient conditions for the existence of the generalized inverse f (1,2)
T,S .

1. Introduction

Let A be a matrix over the field of complex number. It is well known [3,12] that the group inverse, the
Drazin inverse and the Moore-Penrose inverse of A are all the generalized inverse A(2)

T,S, where T, S are the
range and null space of the outer inverse of A, respectively. In 1998, Wei presents an explicit expression for
the generalized inverse A(2)

T,S, and establishes the characterization and representation theorem (see [15]).

In 2005, Yu and Wang [13] introduce the definition of the generalized inverse A(2)
T,S of a matrix A over

a commutative ring R. They also give an explicit expression for A(2)
T,S over integral domain. In addition, it

is shown that over integral domain, the Drazin inverse, the group inverse and the Moore-Penrose inverse
are all A(2)

T,S. Furthermore, they extend the notion of the generalized inverse A(2)
T,S to the matrix A over

an associative ring [14]. It is obtained that the Drazin inverse, the group inverse and the Moore-Penrose
inverse, if they exist, are all the generalized inverse A(2)

T,S. They also give necessary and sufficient conditions

for the existence of the generalized inverse A(1,2)
T,S and some explicit expressions for A(1,2)

T,S .

From the view of homomorphisms, a matrix over the field of complex number can be regarded as
a homomorphism (or a linear transformation) of finite dimensional vector spaces, and a matrix over a
commutative (noncommutative) ring is corresponding exactly to a homomorphism of finitely generated
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free modules. Hence, one naturally wants to know whether the free modules could be generalized to
arbitrary modules over an associative ring.

Throughout this paper, R denotes an associative ring with unity, and M, N denote right R−modules.
If S is an R-submodule of M then we write S ≤ M. We denote an R−homomorphism from M to N by
f ∈ HomR(M, N). Im( f ) and Ker( f ) stand for the image and the kernel of f , respectively. Standard facts in
ring and module theory used without mention in the text can be found in [1].

An R−homomorphism f ∈ HomR(M, N) is said to be von Neumman regular if there exists 1 ∈ HomR(N, M)
such that f = f1 f . In this case, 1 is called a {1}-inverse (or inner inverse) of f and denoted by f (1). Moreover,
we recall that 1 is a {2}-inverse (or outer inverse) of f if 1 = 1 f1, and denoted by f (2). It is well known that
{1}-invertible property implies {2}-invertible property, i.e., {1}-invertible property={1, 2}-invertible property.

An endomorphism f ∈ EndR(M) is said to be Drazin invertible if for some positive integer k there exists
an endomorphism 1 such that

(i) 1 = 1 f1, (ii) f k = f k+11 and (iii) f1 = 1 f .

If 1 exists then it is unique and is called the Drazin inverse of f and denoted by f D. If k is the smallest
positive integer such that 1 and f satisfy (i), (ii) and (iii), then it is called the Drazin index and denoted by
Ind( f ). If k = 1 then 1 is called the group inverse of f and denoted by f ].

Let ∗ be an involution on the R−homomorphisms. Recall that f ∈ HomR(M, N) is said to be Moore-Penrose
invertible if there is a homomorphism 1 ∈ HomR(N, M) such that

f = f1 f , 1 = 1 f1, ( f1)∗ = f1 and (1 f )∗ = 1 f .

Here 1 is called the Moore-Penrose inverse of f and denoted by f †.

More generally, an R−homomorphism of modules is regarded as a morphism in the category of modules,
which is an additive category. The Moore-Penrose inverses and other generalized inverses of a morphism
in an additive category are studied by many authors (see [4,6,9-11]).

Our goal in this paper is to extend the generalized inverse A(2)
T,S of a matrix A to f (2)

T,S of an R-homomorphism
f ∈ HomR(M, N), which is {2}-inverse of f with prescribed image T and kernel S. In Section 2, we establish
the definition of the generalized inverse f (2)

T,S, and give some explicit expressions for f (2)
T,S by a projection or

group inverses. In addition, we also show that the Drazin inverse f D, the group inverse f ] and the Moore-
Penrose inverse f †, if they exist, are all the generalized inverse f (2)

T,S. In Section 3 we investigate necessary and

sufficient conditions for the existence of the generalized inverse f (1,2)
T,S . For any h ∈ HomR(N, M), we obtain

some equivalent conditions for the existence of f (1,2)

Im(h),Ker(h)
. This paper is motivated by the interesting

results of Yu and Wang [13,14], and some different methods are used in the proof of our main results.

2. The generalized inverse f (2)
T,S

of a homomorphism of right R−modules

We begin this section from the following result.

Lemma 2.1. Let f ∈ HomR(M, N) and let T 6M, S 6 N. Then the following are equivalent.
(1) There exists 1 ∈ HomR(N, M) such that 1 f1 = 1, Im(1) = T and Ker(1) = S.
(2) f (T) ⊕ S = N and Ker( f ) ∩ T = {0}.
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Proof. (1) ⇒ (2). Let s ∈ f (T) ∩ S. Then there exists n ∈ N such that s = f1(n) ∈ S. From S = Ker(1), it
follows that 1(n) = 1 f1(n) = 1(s) = 0. Then s = f1(n) = 0. This shows that f (T) ∩ S = {0}. Take n ∈ N. Then
1(n) ∈ T, and (1 − f1)(n) ∈ S since 1 = 1 f1 and Ker(1) = S. Thus, we get

n = f1(n) + (1 − f1)(n) ∈ f (T) + S.

This shows that f (T) ⊕ S = N. Let t ∈ Ker( f ) ∩ T. Then there exists n ∈ N such that t = 1(n) and f (t) = 0. So
we get t = 1(n) = 1 f1(n) = 1 f (t) = 0, as required.

(2)⇒ (1). Define
1 : N→M, n = f (t) + s 7→ t, where t ∈ T, s ∈ S.

We show first that 1 is well defined. In fact, assume that f (t)+s = 0. Since N = f (T)⊕S, we have s = f (t) = 0.
This implies that t ∈ Ker( f ) ∩ T = {0}, i.e., t = 0. Next, it is sufficient to prove

Im(1) = T, Ker(1) = S and 1 f1 = 1.

By the definition of 1, we get Im(1) ⊆ T. Let t ∈ T. Then 1 f (t) = t. This shows that t ∈ Im(1), and so
Im(1) = T. Let n ∈ Ker(1). From (2), we have n = f (t) + s for some t ∈ T, s ∈ S. Then t = 1(n) = 0. Thus,
n = s ∈ S, i.e., Ker(1) ⊆ S. Let s ∈ S. Then 1(s) = 1( f (0) + s) = 0, and so s ∈ Ker(1). This implies Ker(1) = S.
For any n ∈ N, we may calculate directly

1 f1(n) = 1 f1( f (t) + s) = 1 f (t) = t = 1( f (t) + s) = 1(n).

Hence, 1 f1 = 1.

The following result should be well known, but we can not find it somewhere.

Lemma 2.2. Let f ∈ HomR(M, N). Then the following hold.
(1) PH f = f if and only if Im( f ) 6 H, where N = H ⊕ K, PH : N→ N, h + k 7→ h.
(2) f PH′ = f if and only if K′ 6 Ker( f ), where M = H′ ⊕ K′, PH′ : M→M, h′ + k′ 7→ h′.

Proof. (1). The implication follows from Im( f ) = Im(PH f ) ⊆ H. For any m ∈ M, we have f (m) = h + k for
some h ∈ H, k ∈ K. Note that Im( f ) 6 H. Then k = f (m)− h ∈ H∩K = {0} since N = H ⊕K. This implies that
f (m) = h, and so

PH f (m) = PH(h) = h = f (m).

Thus, PH f = f .
(2). Let k′ ∈ K′. Then f (k′) = f PH′ (k′) = f (0) = 0, as required. Conversely, for any m ∈ M, it follows that

m = h′ + k′ for some h′ ∈ H′, k′ ∈ K′ from M = H′ ⊕ K′. Then

f PH′ (m) = f (h′) = f (h′ + k′) = f (m),

which shows f PH′ = f .

Let M = H ⊕ K. Define PH : M→ M; h + k 7→ h. Then P2
H = PH. Conversely, suppose p2 = p ∈ EndR(M).

Then M = Im(p) ⊕ Im(1 − p) := H ⊕ K, which implies p = PH.

Proposition 2.3. If the conditions of Lemma 2.1 are satisfied, then 1 is unique.

Proof. Assume that 11 and 12 satisfy the conditions of Lemma 2.1. Then we have Im(11) = T = Im(12) =
Im(12 f12) ⊆ Im(12 f ). Set H = Im(12 f ). Since 12 f12 = 12, we get Im(11) 6 H and M = H ⊕ Im(1 − 12 f ).
Note that (12 f )2 = 12 f . Then PH = 12 f , and so we obtain that 11 = PH11 = (12 f )11 by Lemma 2.2(1). Since
11 = 11 f11, we have Im(1 − f11) ⊆ Ker(11) = S = Ker(12). Take H′ = Im( f11) and K′ = Im(1 − f11). Then
K′ 6 Ker(12) and M = H′ ⊕ K′ with PH′ = f11. This implies 12 = 12( f11) by Lemma 2.2(2). Thus, we get
11 = 12.
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A homomorphism 1 ∈ HomR(N, M) is called the generalized inverse, which is an outer inverse of
the homomorphism f ∈ HomR(M, N) with prescribed image T and kernel S if it satisfies the equivalent
conditions in Lemma 2.1, and is denoted by f (2)

T,S.

Proposition 2.4. Let f ∈ HomR(M, N) have the generalized inverse f (2)
T,S (say 1). Set N = f (T) ⊕ S, T = Im(1) and

S = Ker(1). Define f |T : T→ f (T). Then f |T is an isomorphism, and

1 = ( f |T)−1P f (T),

where P f (T) : N→ N, f (t) + s 7→ f (t).

Proof. It is clear that f |T is epimorphic. We show only that f |T is monomorphic. Let f (t) = 0 for t ∈ T. Then
there exists n ∈ N such that t = 1(n). Set n = f (t′) + s, where t′ ∈ T, s ∈ S. Then t′ = 1(n′) for some n′ ∈ N
since T = Im(1). Thus, we have

0 = f (t) = f (1(n)) = f1 f (t′) = f1(n′) = f (t′).

This implies that t = 1(n) = 1( f (t′)+s) = 1(s) = 0, as required. Next, it is sufficient to prove f (2)
T,S = ( f |T)−1P f (T).

( f |T)−1P f (T) f ( f |T)−1P f (T) = ( f |T)−1P2
f (T) = ( f |T)−1P f (T),

Im(( f |T)−1P f (T)) = ( f |T)−1 f (T) = T,

Ker(( f |T)−1P f (T)) = Ker(P f (T)) = S.

So the proof is completed.

Corollary 2.5. Let f ∈ HomR(M, N). If the generalized inverse f (2)
T,S exists, then

(1) f (2)
T,S f h = h if and only if Im(h) 6 T, where h : X→M.

(2) h f f (2)
T,S = h if and only if S 6 Ker(h), where h : N→ Y.

Proof. (1). Set 1 = f (2)
T,S. Then the implication follows from

Im(h) = Im(1 f h) ⊆ Im(1) = T.

For any x ∈ X, say t = h(x). Note that Im(h) 6 T. Then there exists n ∈ N such that t = 1(n). By 1 = 1 f1, we
check easily that

1 f h(x) = 1 f (t) = 1 f1(n) = 1(n) = h(x).

So we get 1 f h = h.
(2). Let s ∈ S = Ker(1). Then f h(s) = h f1(s) = 0, i.e., s ∈ Ker(h), as required. Conversely, for any n ∈ N,

say n = f (t) + s for some t ∈ T, s ∈ S. From Im(1) = T, there exists n′ ∈ N such that t = 1(n′). Thus, we have

h f1(n) = h f1 f (t) = h f1 f1(n′) = h f1(n′) = h f (t).

On the other hand, S 6 Ker(h) implies h f (t) = h( f (t) + s) = h(n), so one obtains h f1(n) = h(n). The proof is
completed.

The following result is well known (also see [1, 3.6]).

Lemma 2.6. (The Factor Theorem) Let 1, h : N → T be two R−homomorphisms. If h is an epimorphism with
Ker(h) 6 Ker(1), then there exists unique homomorphism ω : T→ T such that 1 = ωh.
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Theorem 2.7. Let f ∈ HomR(M, N) and f (2)
T,S exists (say g). If h : N → M satisfies Im(h) = T, Ker(h) = S, then

there exists an isomorphism ω : M→M such that 1 = ωh.

Proof. Note that Im(1) = T = Im(h). Then 1, h reduce two epimorphisms 1̃, h̃ from N to T. Moreover,
Ker(1) = S = Ker(h) implies Ker(1̃) = Ker(̃h). By Lemma 2.6, there exist ω̃, υ̃ ∈ EndR(T) such that 1̃ = ω̃h̃ and
h̃ = υ̃1̃. Thus, we have 1̃ = ω̃υ̃1̃ and h̃ = υ̃ω̃h̃. Since both 1̃ and h̃ are epimorphic, we get ω̃υ̃ = 1T, υ̃ω̃ = 1T,
i.e., ω̃ is an isomorphism. Note that T = Im(1) is a direct summand of M since 1 f1 = 1, say M = T ⊕ X.
Define ω : M → M; m = t + x 7→ ω̃(t) + x. It is easy to check that ω is an isomorphism and 1 = ωh, as
desired.

Corollary 2.8. Let f ∈ HomR(M, N) and f (2)
T,S exists. If h : N→M satisfies Im(h) = T, Ker(h) = S, then there exists

an isomorphism ω : M→M such that
ωh f h = h and h fωh = h.

Proof. Set 1 = f (2)
T,S. By Corollary 2.5, we have 1 f h = h and h f1 = h. From Theorem 2.7, there exists an

isomorphism ω ∈ EndR(M) such that 1 = ωh. Thus, we get

ωh f h = 1 f h = h and h fωh = h fωh = h.

The proof is completed.

The following lemma is duo to Armendariz, Fisher and Snider [2, Proposition 2.3] (also see [7]).

Lemma 2.9. Let α be an endomorphism of right R−module M. Then the following are equivalent.
(1) The endomorphism α is strongly regular.
(2) There exists a direct decomposition M = Im(α) ⊕ Ker(α).
(2) The endomorphism α is group invertible.

Theorem 2.10. Let f ∈ HomR(M, N), T 6 M, S 6 N. Suppose that f (2)
T,S exists. If there is h ∈ HomR(N, M) such

that Im(h) = T and Ker(h) = S, then both f h and h f are group invertible. Furthermore,

f (2)
T,S = h( f h)] = (h f )]h.

Proof. We prove firstly that f h is group invertible. By Lemma 2.9, it is sufficient to show that

N = Im( f h) ⊕ Ker( f h).

Note that Im( f h) = f Im(h) = f (T) and S = Ker(h) ⊆ Ker( f h). For any n ∈ Ker( f h), by Lemma 2.1(2), we have

h(n) ∈ Ker( f ) ∩ Im(h) = Ker( f ) ∩ T = {0}.

This shows that n ∈ Ker(h), and so
Ker( f h) = Ker(h) = S.

Thus, by Lemma 2.1(1), we have

N = f (T) ⊕ S = Im( f h) ⊕ Ker( f h).

Next, for any m ∈ Im(h), there exists n ∈ N such that m = h(n). Then

f (m) = f h(n) = ( f h)( f h)]( f h)(n) ∈ Im(( f h)( f h)]),
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i.e., f (m) = ( f h)( f h)](n′) for some n′ ∈ N. Thus, we get

m − h( f h)](n′) ∈ Ker( f ) ∩ T = {0},

and so
m = h( f h)](n′) ∈ Im(h( f h)]).

This shows that
Im(h( f h)]) = Im(h) = T.

Note that Ker( f h) = Ker(h) = S. Then it is necessary to check that

Ker(h( f h)]) = Ker( f h).

Let f h(n) = 0. Then
f h( f h)](n) = ( f h)] f h(n) = 0.

This implies that
h( f h)](n) ∈ Ker( f ) ∩ T = {0},

and so n ∈ Ker(h( f h)]). Thus, we have Ker( f h) ⊆ Ker(h( f h)]). Note that

f h = ( f h)2( f h)] = ( f h f )(h( f h)]).

Then
Ker(h( f h)]) ⊆ Ker( f h).

This shows that Ker(h( f h)]) = Ker( f h), and so Ker(h( f h)]) = S. Note that

(h( f h)]) f (h( f h)]) = h( f h)]( f h)( f h)] = h( f h)].

Thus, this shows that f (2)
T,S = h( f h)].

Set 1 = f (2)
T,S. By Theorem 2.7, we have 1 = ωh for some automorphism of M. It follows that

Im(h f ) ⊆ Im(h) = Im(h f1) ⊆ Im(h f )

from Corollary 2.5(2). This implies that

Im(h f ) = Im(h) = T = Im(1) = Im(1 f )

since 1 f1 = 1. Note that
Ker(h f ) = Ker(ωh f ) = Ker(1 f ) = Im(1 − 1 f ),

and so we have
M = Im(1 f ) ⊕ Im(1 − 1 f ) = Im(h f ) ⊕ Ker(h f ).

It follows that h f is group invertible from Lemma 2.9. Moreover, we can check that f (2)
T,S = (h f )]h.

In the next result, we will show that for an arbitrary homomorphism f of right R-modules, Drazin
inverse f D, group inverse f ] and Moore-Penrose inverse f †, if they exist, are all the generalized inverse f (2)

T,S.

Theorem 2.11. Let M, N be right R−modules.
(1) Let f ∈ EndR(M). If f D exists with Ind( f ) = k, then f D = f (2)

Im( f k),Ker( f k)
.

(2) Let f ∈ EndR(M). If f ] exists, then f ] = f (2)

Im( f ),Ker( f )
.

(3) Let f ∈ HomR(M, N). If f † exists with an involution ∗ on homomorphisms of modules, then f † = f (2)

Im( f ∗),Ker( f )∗
.



Z. Wang / Filomat 33:19 (2019), 6459–6468 6465

Proof. (1). Since f D f f D = f D, by Lemma 2.1(1), it is sufficient to show that

Im( f D) = Im( f k) and Ker( f D) = Ker( f k).

Note that f f D = f D f and f k = f D f k+1. Then

Im( f D) = Im( f D f f D) = Im(( f D f )k f D) = Im( f k( f D)k+1) ⊆ Im( f k),

and
Im( f k) = Im( f D f k+1) ⊆ Im( f D).

It follows that Im( f D) = Im( f k). Since f k = f k+1 f D and f D = f D f f D = f D( f f D)k = ( f D)k+1 f k, this implies that
Ker( f D) = Ker( f k). Thus, we have f D = f (2)

Im( f k),Ker( f k)
.

(2). Take k = 1 in (1).
(3). Note that f † f f † = f †. By Lemma 2.1(1), it is only necessary to check that

Im( f †) = Im( f ∗) and Ker( f †) = Ker( f ∗).

Since f ∈ f {1,2} and f ∗ ∈ ( f ∗){1,2}, we can get easily that

Im( f †) = Im( f † f ) = Im(( f † f )∗) = Im( f ∗( f †)∗) = Im( f ∗),

and
Ker( f †) = Ker( f f †) = Ker(( f f †)∗) = Ker(( f †)∗ f ∗) = Ker( f ∗).

The proof is completed.

3. The generalized inverse f (1,2)
T,S

of a homomorphism of right R−modules

If the generalized inverse f (2)
T,S satisfies f f (2)

T,S f = f , then it is called the generalized inverse which is a
{1, 2}-inverse of a homomorphism f of modules with prescribed image T and kernel S, and is denoted by
f (1,2)
T,S .

Theorem 3.1. Let f ∈ HomR(M, N) and let T 6M, S 6 N. Then the following are equivalent.
(1) f (T) ⊕ S = N, Im( f ) ∩ S = 0 and Ker( f ) ∩ T = {0}.
(2) There exists some 1 ∈ HomR(N, M) such that

f1 f = f , 1 f1 = 1, Im(1) = T and Ker(1) = S.

(3) Im( f ) ⊕ S = N and Ker( f ) ⊕ T = M.

Proof. (1) ⇒ (2). From f (T) ⊕ S = N and Ker( f ) ∩ T = 0, we get that 1 = f (2)
T,S exists and that Im(1) =

T, Ker(1) = S by Lemma 2.1. We only need to show that f1 f = f . Note that 1 f1 = 1. Then we have
1 f1 f = 1 f , which implies

Im( f1 f − f ) ⊆ Im( f ) ∩ Ker(1) = Im( f ) ∩ S = {0}.

So f1 f = f , as required.
(2) ⇒ (3). From Im(1) = T, we have f (T) = Im( f1). Note that f1 f = f implying Im( f1) = Im( f ). Then

f (T) = Im( f ). By (2), we know 1 = f (2)
T,S. Hence, N = f (T) ⊕ S = Im( f ) ⊕ S. Next, f = f1 f implies that

Ker( f ) = Im(IM − 1 f ). From Im(1) = T, we have

M = Im(IM − 1 f ) + Im(1) = Ker( f ) + T.
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Hence, it follows from Ker( f ) ∩ T = {0}.
(3) ⇒ (1). It is clear that Im( f ) ∩ S = {0} and Ker( f ) ∩ T = {0}. To obtain f (T) ⊕ S = N, it is sufficient to

show f (T) = Im( f ). For any n ∈ Im( f ), we have n = f (m) for some m ∈M. Since Ker( f )⊕T = M, we can say
m = m1 + m2 where m1 ∈ Ker( f ), m2 ∈ T. Thus, we get

n = f (m) = f (m1) + f (m2) = f (m2) ∈ f (T),

and so Im( f ) ⊆ f (T). Clearly, f (T) ⊆ Im( f ). Hence, f (T) = Im( f ).

Theorem 3.2. Let f ∈ HomR(M, N) and let T 6M, S 6 N.
(1) If Ker( f ) + T = M, then f (T) = Im( f ).
(2) If f (T) ⊕ S = N, then

f (T) = Im( f ) if and only if Im( f ) ∩ S = {0}.

Proof. (1) follows easily from the observation that

f (M) = f (Ker( f ) + T) ⊆ f (Ker( f )) + f (T) = f (T).

(2). Suppose that Im( f ) ∩ S = {0}. Obviously, we have f (T) ⊆ Im( f ). For any x ∈ Im( f ), x =
x1 + x2, where x1 ∈ f (T), x2 ∈ S. From f (T) ⊆ Im( f ), x1 ∈ Im( f ). Thus, x2 = x − x1 ∈ Im( f ) ∩ S = {0}.
Therefore, we get x2 = 0 and then x = x1 ∈ f (T). Hence Im( f ) ⊆ f (T). Conversely, assume that f (T) = Im( f ).
From f (T) ⊕ S = N, we have Im( f ) ∩ S = f (T) ∩ S = {0}.

Lemma 3.3. (Jacobson Lemma) Let a, b ∈ R. Then 1 − ab is invertible if and only if 1 − ba is invertible.

Let S = End(RN) and T = End(RM). The following lemma is duo to Puystjens and Hartwig [8, Corollary
1.]. We will give a proof for the sake of completeness.

Lemma 3.4. Suppose f ∈ HomR(M, N) is regular, and let f = f f (1) f . Then the following are equivalent for any
h ∈ HomR(N, M).
(1) u = f h f f (1) + IN − f f (1) is invertible in S.
(2) v = f (1) f h f + IM − f (1) f is invertible in T.
(3) S f h f = S f and f h f T = f T.

Proof. (1) ⇔ (2). Note that u = IN − ( f − f h f ) f (1) and v = IM − f (1)( f − f h f ). Then, by Lemma 3.3, u is
invertible in S if and only if v is invertible in T.

(1) (and (2))⇒ (3). It follows that u f = f h f = f v from (1) and (2). Note that u and v are both invertible.
Then it implies that S f h f = S f and f h f T = f T.

(3) ⇒ (1). Suppose that x f h f = f = f h f y for some x ∈ S, y ∈ T. Take α = f y f (1) + IN − f f (1) and
β = x f f (1) + IN − f f (1). Then we can directly calculate that uα = βu = IN, as required.

Theorem 3.5. Let f ∈ HomR(M, N), h ∈ HomR(N, M). Then the following are equivalent.
(1) f is regular, u = f h f f (1) + IN − f f (1) is invertible in S and Ker( f ) ∩ Im(h) = {0}.
(2) f is regular, v = f (1) f h f + IM − f (1) f is invertible in T and Ker( f ) ∩ Im(h) = {0}.
(3) f (1,2)

Im(h),Ker(h) exists.

Proof. (1)⇔ (2) is clear from Lemma 3.4.
(1) (and (2)) ⇒ (3). From (1) and (2), we can check easily that u f = f h f = f v and f v−1 = u−1 f . Set

ϕ = f v−2h. Then we have

ϕ( f h) = f v−2h f h = u−2 f h f h = u−1 f h = f v−1h = f h f v−2h = ( f h)ϕ,

ϕ( f h)ϕ = u−1 f h f v−2h = f v−2h = ϕ,
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and
( f h)ϕ( f h) = f h f v−1h = f h.

This shows that f h is group invertible and ϕ = ( f h)]. Set 1 = h( f h)]. It is easy to check that

1 f1 = h( f h)] f h( f h)] = h( f h)] = 1,

and
f1 f = f h f v−2h f = u−1 f h f = f .

Next, it is sufficient to show that Im(1) = Im(h) and Ker(1) = Ker(h). Since f h = ( f h)2( f h)] = f h f1, we get
f (h − h f1) = 0. This implies that

Im(h − h f1) ⊆ Ker( f ) ∩ Im(h) = {0},

and so
h = h f1 = h f h( f h)] = h( f h)] f h = 1 f h.

Note that
1 = h( f h)] = h(( f h)])2 f h.

Then we can obtain that Im(1) = Im(h) and Ker(1) = Ker(h). Thus, it follows that f (1,2)
Im(h),Ker(h) exists and

1 = f (1,2)
Im(h),Ker(h).

(3) ⇒ (1). Suppose f (1,2)
Im(h),Ker(h) exists and say 1 = f (1,2)

Im(h),Ker(h). By Theorem 2.10, we have 1 = h( f h)]. Take
S = End(RN) and T = End(RM). Note that

S f h f ⊆ S f = S f1 f = S f h( f h)] f = S( f h)] f h f ⊆ S f h f .

Then S f h f = S f . It is easy to see

f h f T ⊆ f T ⊆ f1 f1 f T = f h( f h)] f h( f h)] f T = ( f h f )h(( f h)])2 f T ⊆ f h f T,

so we get f h f T = f T. By Lemma 3.4, u is invertible in S.

Theorem 3.6. Let M, N be right R−modules.
(1) If f ∈ EndR(M), then f (1,2)

Im( f ),Ker( f ) exists if and only if f ] exists. Moreover, f ] = f (1,2)
Im( f ),Ker( f ).

(2) If f ∈ HomR(M, N) and ∗ is an involution on the homomorphisms of modules, then f (1,2)
Im( f ∗),Ker( f ∗) exists if and only

if f † exists. Moreover, f † = f (1,2)
Im( f ∗),Ker( f ∗)

Proof. (1). By Theorem 2.11, it is sufficient to show that the existence of f (1,2)
Im( f ),Ker( f ) implies existence of f ].

Then, by Theorem 2.10, f (1,2)
Im( f ),Ker( f ) = f ( f 2)] = ( f 2)] f , and so f f (1,2)

Im( f ),Ker( f ) = f (1,2)
Im( f ),Ker( f ) f . Hence, f (1,2)

Im( f ),Ker( f ) is
the group inverse of f .

(2). To show that existence of f (1,2)
Im( f ∗),Ker( f ∗) implies existence of f †, take h = f ∗ as in Theorem 2.10. Then

f (1,2)
Im( f ∗),Ker( f ∗) = f ∗( f f ∗)] = ( f f ∗)] f ∗. This implies that

( f f (1,2)
Im( f ∗),Ker( f ∗))

∗ = f f (1,2)
Im( f ∗),Ker( f ∗) and ( f (1,2)

Im( f ∗),Ker( f ∗) f )∗ = f (1,2)
Im( f ∗),Ker( f ∗) f .

Hence f (1,2)
Im( f ∗),Ker( f ∗) is the Moore-Penrose inverse of f . Conversely, it follows from Theorem 2.11.

Acknowledgments. The authors are grateful to the referees and Shen Guan for their very useful and
detailed comments and suggestions which greatly improve the presentation.



Z. Wang / Filomat 33:19 (2019), 6459–6468 6468

References

[1] F. W. Anderson, K. R. Fuller, Rings and categories of modules (2nd edition), Springer-Verlag, Berlin, New York, Heidelberg, 2004.
[2] E. P. Armendariz, J. W. Fisher, R. L. Snider, On injective and surjective endomorphisms of finitely generated modules, Comm.

Algebra 6 (1978) 659-672.
[3] A. Ben-Israel, T. N. E. Greville, Generalized inverses: Theory and applications (2nd edition), Springer-Verlag, New York Heidel-

berg Berlin, 2003.
[4] D. L. Davis, D. W. Robinson, Generalized inverses of morphisms, Linear Algebra Appl. 5 (1972) 319-328.
[5] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506-514.
[6] J. M. Miao, D. W. Robinson, Group and Moore-Penrose inverses of regular morphisms with kernel and cokernel, Linear Algebra

Appl. 110 (1988) 263-270.
[7] W. K. Nicholson, Strongly clean rings and Fitting’s lemma, Comm. Algebra 27 (1999) 3583-3592.
[8] R. Puystjen, R. E. Hartwig, The group inverse of a companion matrix, Linear Multilinear Algebra 43 (1997) 137-150.
[9] R. Puystjens, D.W. Robinson, The Moore-Penrose inverse of a morphism in additive category, Comm. Algebra 12(3) (1984)

287-299.
[10] D. W. Robinson, R. Puystjens, Generalized inverses of morphisms with kernels, Linear Algebra Appl. 96 (1987) 65-85.
[11] H. You, J. L. Chen, Generalized inverses of a sum of morphisms, Linear Algebra Appl. 338 (2001) 261-273.
[12] G. R. Wang, Y. M. Wei, S. Qiao, Generalized inverses: Theory and computations, Science Press, Beijing/New York, 2004.
[13] Y. M. Yu, G. R. Wang, The generalized inverse A(2)

T,S over commutative rings, Linear Multilinear Algebra 53 (2005) 293-302.

[14] Y. M. Yu, G. R. Wang, The generalized inverse A(2)
T,S of a matrix over an associative ring, J. Aust. Math. Soc. 83 (2007) 423-437.

[15] Y. M. Wei, A characterization and representation of the generalized inverse A(2)
T,S amd its applications, Linear Algebra Appl. 280

(1998) 97-96.


