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Abstract. In 1999, Kočinac defined and characterized the almost Menger property. Following this concept,
we define and investigate nearly Menger and nearly star-Menger spaces. Every Menger space is nearly
Menger, and every nearly Menger space is almost Menger. It is demonstrated that a nearly Menger space
may not necessarily be a Menger space. In the similar way, we consider nearly γ−sets.

1. Introduction

The theory of Selection Principles (SPs) is an area of Mathematics that possesses a rich history dating back
to papers published in 1920-1930’s by Borel, Hurewicz, Menger, Rothberger, Sierpiński. After Scheeper’s
paper [27], research in this particular field expanded immensely and attracted many researchers. The the-
ory of SPs has extraordinary connections with numerous subareas of mathematics, for example, Set theory
and General topology, Game theory, Ramsey theory, Function spaces, Hyperspaces, Cardinal invariants,
Dimension theory, Uniform structures, Topological groups and relatives, Karamata theory, and Ditopolog-
ical texture spaces. Various survey papers exist in the field of selection principles theory (see, for example,
[15, 16, 26] and the paper [29] for open problems).

In mathematics, there are three classical SPs [12, 13, 25] that can provide a base for the theory. Menger’s
property is a special type of the Lindelöf property and is defined as follows:

LetA and B be families of subsets of an infinite set X. The selection hypothesis denoted by S f in(A,B)
states that:

for every sequence (An : n ∈ N) of elements of A, there is a sequence (Bn : n ∈ N) such that for each n
in N, Bn is a finite subset ofAn and

⋃
n∈NBn is a member of B. For more information, see the paper [26].

If a space X satisfies the selection hypothesis S f in(O,O), where O is the collection of all open covers of
X, then it is said to possess the Menger property and is expressed as X |= PS f in .

In [11, 24] the authors studied topological properties by using the method of stars. Kočinac in [14]
initiated the study of star selection principles by using the operator St which is defined as follows: For a
subset A of X and a collection P of subsets of X, we denote the set ∪{P ∈ P : A ∩ P , ∅} by St(A,P).

Kočinac in [14] stated that S∗f in(A,B) (resp. SS∗f in(A,B)) represents the selection hypothesis that for each
sequence (An : n ∈ N) of elements of A there exists a sequence (Bn : n ∈ N) (resp. (Fn : n ∈ N)) such that
for each n in N, Bn is a finite subset of An, (resp. Fn is a finite subset of X) and

⋃
n∈N{St(B,An) : B ∈ Bn}
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(resp. {St(Fn,An) : n ∈ N}) is an element of B. The space X possesses the star-Menger property (resp. strongly
star-Menger property) if it satisfies the selection hypothesis S∗f in(O,O) (resp. SS∗f in(O,O)).

For simplicity, we will use the following notations:
X |= P

(
X |= PS f in , X |= PS∗f in

and X |= PSS∗f in

)
; X satisfies the property P (resp. the Menger property PS f in ,

the star-Menger property PS∗f in
, the strongly star-Menger property PSS∗f in

).
Recall that in a space X:
1) a γ-cover is an open coverA of X that is infinite and for every x ∈ X, the collection {A ∈ A: x < A} is

finite.
2) an ω-coverA is an open cover of X such that X < A and for every finite subset F of X, F ⊂ A for some

A ∈ A.
The Menger property is a familiar topological idea presented by Karl Menger in 1924 and deliberately

examined by Scheepers [27]. Di Maio and Kočinac defined the almost Menger property in hyperspaces in
[8]. In this paper, we define and study nearly Menger spaces, nearly star Menger spaces, and nearly γ-sets.
For this, we utilized the semi closure of an open set, and the idea is not totally new. Let us mention that
nearly Menger spaces have been defined in a different, but equivalent way, in [17]; see also [18].

Normann Levine [23] in 1963, gave the definition of semi open set in a space X. From that point
forward, a number of mathematicians generalized several concepts and investigated their properties in the
new setting. A set S ⊂ X is semi open in X if and only if there is an open set O such that O ⊂ S ⊂ cl(O),
where cl(O) is the closure of the open set O. The complement of a semi open set is known as a semi closed
set [5]. An open set is always semi open but a semi open set may not be an open set. SO(X) denotes the
collection of all semi open subsets of X. According to Crossley [5], the semi interior and semi closure were
defined analogously to the interior and closure. A set S is semi open if and only if sInt(S) = S, where sInt(S)
is the semi interior in a space X and is the largest semi open set contained in S. A set T is semi closed if
and only if scl(T) = T, where scl(T) is the semi closure of T in a space X and is the smallest semi closed set
containing T. A point x belongs to X is semi limit point of subset A of a space X if U ∩ A , ∅ for each semi
open set U containing x. For any subset S of X, Int(S) ⊆ sInt(S) ⊆ S ⊆ scl(S) ⊆ cl(S). For more explanation
on semi open sets and semi closed sets, see [5–7, 10, 21].

In Section 2 of this paper, we define nearly Menger spaces and give certain results. We also give
counterexamples in this section. Further, in Sections 3 and 4, we define and study nearly γ-sets and nearly
star-Menger spaces.

2. Nearly Menger Spaces

In 1924, Menger presented the Menger basis property [25]. In 1925, Hurewicz [12] gave the proof of the
statement that a metric space X has the Menger basis property, if and only if, X |= PS f in . In 1999, Kočinac
[14] characterized and considered almost Menger spaces. A space X has the almost Menger property if for
every sequence (An : n ∈ N) of open covers of a space X there is a sequence (Bn : n ∈ N) such that for every
n in N, Bn is a finite subset of An and

⋃
{B
′
n : n ∈ N} is a cover of X, where B′n = {cl(B) : B ∈ Bn}. In this

contrast, here we define a new class of Menger-type spaces by utilizing the semi closure of an open set. It is
demonstrated that newly defined Menger-type property is different from the almost Menger property and
the Menger property. Kočinac [17] defined nearly Menger spaces by utilizing the interior of the closure of
an open set. We notice that both notions of nearly Menger spaces coincide in the presence of open covers.

Lemma 2.1. ([9]) For an open set O in a space X, int (cl(O)) = scl(O).

It is worth mentioning that for an open set O, the set scl(O) is open as well as semi closed.

Lemma 2.2. ([1]) For any subset A of a space X, A ∪ int (cl(A)) = scl(A).

Definition 2.3. A space X is nearly Menger if for every sequence (An : n ∈ N) of open covers of X there
exists a sequence (Bn : n ∈ N) such that for every n in N, Bn is a finite subset ofAn and

⋃
{B

′

n : n ∈ N} is a
cover of X, where B

′

n = {scl(B) = int(cl(B)) : B ∈ Bn}.
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We immediately note that:

Menger space ⇒ nearly Menger space ⇒ almost Menger space.

A space X satisfying the nearly Menger (resp. almost Menger) property is denoted by X |= PnS f in(
resp. X |= PaS f in

)
.

However, the nearly Menger property does not imply the Menger property in general as the following
example shows.

Example 2.4. Let X be an Euclidean plane and define the deleted diameter topology on it. X does not
satisfy PS f in , because the space X with the deleted diameter topology TD is not Lindelöf [28]. To prove
X |= PnS f in , we will use the fact that points on the diameter of an open disc are always its semi limit
points, therefore the semi closure of an open set in the deleted diameter topology is the same set which
we obtain by taking semi closure of an open set in the Euclidean topology. Euclidean plane with the
usual Euclidean topology TE satisfies PS f in , because it is σ−compact, so also satisfies PnS f in and this implies
∪{scl(O) : O ∈ TD} = X = ∪{scl(O) : O ∈ TE}. This shows that the Euclidean plane with the deleted diameter
topology satisfies PnS f in but not PS f in .

Example 2.5. (Uncountable particular point topology) Let X be an uncountable set and p ∈ X. Then
Tp = {O ⊆ X; p ∈ O or O = ∅} is the uncountable particular point topology on X. The uncountable particular
point topology is not Lindelöf [28] so it does not satisfy PS f in . To show that X |= PnS f in , we will show that
∪{scl(O) : O ∈ Tp} = X. As for A ⊆ X and A ∈ Tp, implies p ∈ A. No closed set other than X contains p. Thus,
the closure of any open set other than ∅ is X. This implies cl(A) = X. And in the particular point topology
Tp ⊇ SO(X), because if A ∈ SO(X), then p ∈ A so A ∈ Tp whereas Tp ⊆ SO(X) is always true. Therefore, the
collection of semi closures of open sets is {∅ , X}which obviously covers X.

Following is an example of an almost Menger space which is not nearly Menger.

Example 2.6. Let Ω be the smallest uncountable ordinal number and A = [0,Ω). The set A has the property
that for each α ∈ A the set [0, α) is countable, while A is not. Let X = {ai j, bi j, ci, a, b} where i ∈ A and j ∈ N.
We define in X a topology such that the points {ai j} and {bi j} are isolated and the fundamental system of
neighborhoods of the points {ci}, {a} and {b} are Bn

ci
= {ci, ai j, bi j} j≥n, Bαa = {a, ai j}i≥α, j∈N and Bα

b = {b, bi j}i≥α, j∈N
respectively. X is not nearly Lindelöf [4, Example 3.5], so it can not be nearly Menger. As the collection
of fundamental neighbourhoods is uncountable, therefore bases is uncountable and is the intersection of
finite number of elements of subbases. Hence this space is a P-space, and an almost Lindelöf P-space is
almost Menger ([20, Proposition 2.4]).

Theorem 2.7. If a regular space X |= PnS f in , then X |= PS f in .

Proof. Let (An : n ∈ N) be a sequence of open covers of a regular space X. Then for every n in N, there
exists an open cover Bn of X such that B′n = {scl(B) : B ∈ Bn} forms an open refinement of An. Now using
the fact that X |= PnS f in , there exists a sequence (Gn : n ∈ N) such that for every n in N, Gn is a finite subset
of B′n and ∪(Gn : n ∈ N) covers X. For every n in N and every G in Gn, we have AG ∈ An such that G ⊂ AG.
LetA′n = {AG : G ∈ Gn}. We will prove that ∪(A′n : n ∈ N) covers X. Let x ∈ X. There is an n in N and G in
Gn such that x ∈ G. By regularity of X, there will be AG ∈ A

′
n such that G ⊂ AG. Therefore, x ∈ AG.

Definition 2.8. A subset A of a space X is s-regular open (s-regular closed) if A = int(scl(A))(A = cl(sInt(A))).

We note that an s-regular open set is regular open, open as well as semi closed, and if A is open, then
cl(A) is an s-regular closed set.

Lemma 2.9. For every subset A of a space X, int (scl(A)) is s-regular open.

Theorem 2.10. X |= PnS f in if and only if for every sequence (An : n ∈ N) of covers of X by s-regular open sets, there
is a sequence (Bn : n ∈ N) such that for every n in N, Bn is a finite subset ofAn and ∪(Bn : n ∈ N) is a cover of X.
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Proof. The direct part is trivial. Conversely, let a sequence of open covers of X be denoted by (An : n ∈ N).
Also, consider a sequence (A′n : n ∈ N) such thatA′n = {int(scl(A)) : A ∈ An}. Then for every n ∈ N,A′n is a
cover of X by s-regular open sets.

By hypothesis, there exists a sequence (Bn : n ∈ N) such that for every n in N, Bn is a finite subset of
A
′
n and ∪(Bn : n ∈ N) covers X. By construction, for every n in N and B in Bn there is an AB ∈ An such

that B = int(scl(AB)). int(scl(AB)) ⊆ scl(AB). Therefore,
⋃

n∈N{scl(AB) : B ∈ Bn} covers X. This implies that
X |= PnS f in .

Corollary 2.11. X |= PaS f in if and only if for every sequence (An : n ∈ N) of covers of X by regular open sets, there
exists a sequence (Bn : n ∈ N) such that for every n in N, Bn is a finite subset ofAn and ∪(Bn : n ∈ N) is a cover of
X.

Theorem 2.12. If X |= PnS f in and int(cl(A)) is finite for any A ⊂ X, then X |= PS f in .

Proof. Let the sequence of open covers of X be denoted by (An : n ∈ N). Hence, there is a sequence
(Bn : n ∈ N) such that for each n in N, Bn is a finite subset of An and ∪(B′n : n ∈ N) covers X, where
B
′
n= {scl(B): B ∈ Bn}. By Lemma 2.2, for any A ⊂ X, scl(A) = A ∪ int(cl(A)) and scl(A) = int(cl(A)) if A is

open. Thus, X = ∪n∈N ∪ {int(cl(B)) : B ∈ Bn}. For every n, let Gn be a set of a finite number of members of
An whose union is int(cl(A)). Then the sequence (Gn : n ∈ N) covers X. This proves that X |= PS f in .

Theorem 2.13. If X |= PnS f in and C is clopen subset of X, then C |= PnS f in .

Proof. Let (An : n ∈ N) be a sequence of open covers of C. Then, for each n ∈ N, Bn = {An} ∪ {X\C} is an
open cover of X. Since X |= PnS f in , there exists a finite subsetB′n ofBn for every n in N such that ∪n∈N{sclX(B):
B ∈ B′n} = X. But X\C is clopen, so scl(X \ C)=X \ C, and ∪n∈N{sclX(B) : B ∈ B′n, B , X \ C} covers C.

Remark 2.14. If X |= PnS f in , then X2 may not satisfy PnS f in .

Example 2.15. Let S be the Sorgenfrey line, the set of real numbers be denoted by R and i : S −→ R be the
identity mapping. If A is a subset of R, then denote i−1(A) = AS. Lelek proved in [22] that for every Lusin
set L in R, LS satisfies PS f in so LS |= PnS f in , but he stated that if (L × L) ∩ {(a, b) : a + b = 0} is an uncountable
set, then LS × LS does not satisfy PS f in . Now since S × S is a regular space and LS × LS is a subspace of S × S
is regular but not satisfying PS f in , therefore by Theorem 2.7, L2

S does not satisfy PnS f in .

Theorem 2.16. If X1 |= PnS f in and X2 is nearly compact, then X1 × X2 |= PnS f in .

Proof. Let the sequence of open covers of X1 × X2 be (An : n ∈ N). Then for every n in N there are open
coversBn andCn of X1 and X2 respectively such thatAn = Bn×Cn. As X1 |= PnS f in and X2 is nearly compact,
there are sequences (B′n : n ∈ N) of finite subsets of Bn for every n in N and (C′n : n ∈ N) of finite subsets of
Cn such that ∪n∈N{sclX1 (B) : B ∈ B′n} = X1 and ∪{sclX2 (C) : C ∈ C′n} = X2 for all n in N. Let Rn = B′n ×C

′
n. Then

for every n in N, Rn is a finite subset ofAn, and we show that ∪n∈N{sclX1×X2 (R) : R ∈ Rn} covers X1 × X2.
Let (x, y) ∈ X1 ×X2. Then there exists n in N and B in B′n such that x ∈ sclX1 (B). There is also C ∈ C′n such

that y ∈ sclX2 (C). This shows that (x, y) ∈ sclX1 (B) × sclX2 (C) = sclX1×X2 (B × C). This completes the proof.

Theorem 2.17. If Xn
|= PnS f in for every n in N, then X satisfies the following selection hypothesis:

For every sequence (An : n ∈ N) of ω−covers of X, there is a sequence (Bn : n ∈ N) such that for each n in N, Bn
is a finite subset ofAn and for each finite subset F of X there is an n in N and B in Bn such that F ⊂ scl(B).

Proof. Let a sequence of ω−covers of X be denoted by (An : n ∈ N) and consider a partition of N into
countably many pair wise disjoint infinite subsets such that N = N1 ∪ N2 ∪ ... ∪ Nn ∪ .... For all i in N and
each j ∈ Ni, considerV j = {Ai : A ∈ A j}. Then {V j : j ∈ Ni} is a sequence of open covers of Xi. As Xi

|= PnS f in ,
for each i in N, we have a sequence (C j : j ∈ Ni) such that for every j, C j = {Ai

j1,A
i
j2, ...,A

i
jk( j)} is a finite subset
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ofV j and ∪ j∈Ni {scl(C) : C ∈ C j} is an open cover of Xi. Now, we show that {scl(C jp) : 1 ≤ p ≤ k( j), j ∈ N} is an
ω−cover of X. Let F = {x1, x2, ...xt} be a finite subset of X. Then (x1, x2, ...xt) ∈ Xt, so there is an l ∈ Nt such
that (x1, x2, ...xt) ∈ Cl. Thus, we can find 1 ≤ r ≤ k(l) such that (x1, x2, ...xt) ∈ scl(At

lr
) = (sclAlr )

t. It is clear that
F ⊂ scl(Alr ) = scl(B).

Definition 2.18. A mapping f : Y −→ Z is nearly continuous if for every s-regular open set A ⊂ Z, f−1(A) is
an open set in Y.

Every continuous mapping is almost continuous and every almost continuous mapping is nearly con-
tinuous.

Lemma 2.19. If f : Y −→ Z is nearly continuous and open mapping, then for every s-regular open set A,
scl( f−1(A)) ⊆ f−1(scl(A)).

Theorem 2.20. Let Y |= PnS f in and f : Y −→ Z be a nearly continuous and open surjection. Then Z |= PnS f in .

Proof. Let (An : n ∈ N) be a sequence of covers of Z by s-regular open sets andA′n = { f−1(A) : A ∈ An}, n ∈ N.
Then (A′n : n ∈ N) is a sequence of open covers of Y. As f is a nearly continuous surjection and Y |= PnS f in ,
there exists a sequence (Bn : n ∈ N) such that for each n in N, Bn is a finite subset ofA′n and ∪(B

′

n : n ∈ N)
covers Y, where B

′

n = {scl(B) : B∈ Bn}. For every n in N and B in Bn we can choose a member AB inAn such
that B = f−1(AB). Let Cn = {AB : B ∈ Bn}. Now we show that ∪(Cn : n ∈ N) covers Z. If z = f (y) ∈ Z, then
there is an n in N and B in Bn such that y ∈ scl(B). As B = f−1(AB), y ∈ scl( f−1(AB)) ⊂ f−1(scl(AB)) = f−1(AB).
Hence, z = f (y) ∈ AB ∈ Cn.

Corollary 2.21. A continuous open surjective image Z of a space Y |= PnS f in satisfies PnS f in .

Corollary 2.22. An almost continuous open surjective image Z of a space Y |= PnS f in satisfies PaS f in .

Definition 2.23. A mapping f : Y −→ Z is nearly open if the image of every open set is s-regular open.

Lemma 2.24. If a mapping f : Y −→ Z is nearly open and f−1 is open, then f−1(scl(A)) ⊆ scl( f−1(A)) for every
open subset A of Z.

Theorem 2.25. If f : Y→ Z is nearly open and perfect continuous mapping and Z |= PnS f in , then Y |= PnS f in .

Proof. Let a sequence of open covers of Z be denoted by (An : n ∈ N). Then due to perfect continuity, there
is a finite subcollectionAnz ofAn such that f−1(z) ⊂ ∪Anz , for all z in Z and every n in N. Let Anz = ∪Anz .
Then Bnz = Z− f (Y \Anz ) is an open neighborhood of z, since f is closed. For all n in N, letBn = {Bnz : z ∈ Z}.
Then (Bn : n ∈ N) is a sequence of open covers of Z. Since Z |= PnS f in , there is a sequence (B′n: n ∈ N)
such that for every n ∈ N, B′n is a finite subset of Bn and ∪{scl(B) : B ∈ B′n} covers Z. We may assume
B
′
n = {Bnzi

: i ≤ n′} for all n in N. For every n in N, let A′n =
⋃

i≤n′Anzi
. Then A′n is a finite subset of An.

Since f is nearly open,

Y = f−1(∪n∈N ∪ {scl(Bnzi
) : i ≤ n′}) = ∪n∈N ∪ { f−1(scl(Bnzi

)) : i ≤ n′}

⊂ ∪n∈N ∪ {scl( f−1(Bnzi
)) : i ≤ n′} ⊂ ∪n∈N ∪ {scl(Anzi

) : i ≤ n′}
= ∪n∈N ∪ {scl(∪Anzi

) : i ≤ n′} = ∪n∈N ∪ {scl(A) : A ∈ A′n}.

Hence, Y |= PnS f in .

Definition 2.26. A mapping f : Y → Z is n-continuous if the inverse image of each open set is s-regular
open.

Theorem 2.27. An n-continuous surjective image of a space satisfying PnS f in satisfies PS f in .
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Proof. Let f : Y → Z be an n-continuous surjective mapping and sequence of open covers of Z be denoted
by (An : n ∈ N). As f is n-continuous, for all n in N and every A in An, f−1(A) is s-regular open and
Án = { f−1(A) : A ∈ An} is a cover of Y by s-regular open sets. Since Y |= PnS f in , there is a sequence
(Bn : n ∈ N) such that for every n, Bn is a finite subset of Án and ∪n∈N{B : B ∈ Bn} is a cover of Y. Then
Cn = { f (B) : B ∈ Bn} is a finite subset ofAn for every n in N and ∪n∈NCn is an open cover of Z. This shows
that Z |= PS f in .

3. Nearly γ-Sets

A cover A of X is a nearly γ−cover (resp. almost γ−cover [19]) if it is an infinite cover and for all x ∈ X,
{A ∈ A: x < scl(A)} (resp. {A ∈ A: x < cl(A)}) is a finite collection. An almost γ−cover is a nearly γ−cover
and a nearly γ−cover is a γ−cover.

Definition 3.1. A space X is a nearly γ−set if for every sequence (An : n ∈ N) of ω−covers of X, there is a
sequence (Bn : n ∈ N) such that for every n in N, Bn inAn, {Bn : n ∈ N} is a nearly γ−cover of X.

If a space X satisfies the property of nearly γ−set (resp. almost γ−set), then we denote it by X |= Pnγ
(resp. X |= Paγ).

Remark 3.2. If X |= Pγ, then X |= Pnγ but the converse is not true generally.

Example 3.3. Let X be an uncountable set with the uncountable particular point topology. Then X |= Pnγ
but it fails to satisfy Pγ.

Remark 3.4. If a space X |= Pnγ then X |= Paγ but if X |= Paγ, then it may not satisfy Pnγ.

Problem 3.5. Can we find a space X with X |= Paγ that does not satisfy Pnγ?

Theorem 3.6. X |= Pnγ if and only if for every sequence (An : n ∈ N) of ω−covers of X by s-regular open sets, there
is a sequence (Bn : n ∈ N) such that for every n in N, Bn inAn, {Bn : n ∈ N} is a nearly γ−cover of X.

Proof. The direct part is obvious from the definition of Pnγ set.
Converse: We have to show that X |= Pnγ. Let the sequence ofω− covers of X be denoted by (An : n ∈ N)

and (A′n : n ∈ N) be a sequence where A′n = {int(scl(A)): A ∈ An}. Then every A′n is an ω− cover of X by
s−regular open sets. By assumption, there exists a sequence {Bn : n ∈ N} such that for every n in N, Bn in
A
′
n, {Bn : n ∈ N} is a nearly γ−cover of X. By our construction, for every n in N and B in Bn there is AB

in An such that B = int(scl(AB)). Since, int(scl(AB)) ⊆ scl(AB), x ∈ B = int(scl(AB)) ⊆ scl (AB) for n > n0 and⋃
n∈N{scl(AB) : B ∈ Bn} covers X. This implies that X |= Pnγ.

Theorem 3.7. Let Y |= Pnγ and Z be a space. If f : Y −→ Z is a nearly continuous open surjection, then Z |= Pnγ.

Proof. Consider a sequence (An : n ∈ N) of ω−covers of Z by s-regular open sets. Let A′n = { f−1(A) :
A ∈ An}. If F is a finite set in Y, then f (F) is a finite set in Z. There exists an A ∈ An such that f (F) ⊂ A. Then
f−1(A) is an open set containing F. Thus,A′n is really an ω−cover of Y.

As Y |= Pnγ, there exists a sequence {B′n : n ∈ N} such that for every n in N there exists An ∈ An such that
B′n = f−1(An) and {B′n : n ∈ N} is a nearly γ−cover of Y. For each n in N, let Bn = An so that f−1(An) = B′n.
If z = f (y) ∈ Y, then there is n◦ in N such that for every n > n◦, y ∈ scl(B′n). As y ∈ scl(B′n) = scl f−1(Bn) ⊆
f−1(scl(Bn)) = f−1(Bn), we have that for every n > n◦, z ∈ Bn. Hence, Z |= Pnγ.
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4. Nearly Star-Menger Spaces

Definition 4.1. If for every sequence {An : n ∈ N} of open covers of a space X there is a sequence {Bn : n ∈ N}
such that for every n in N, Bn is a finite subset ofAn and {scl (St(∪Bn, An)) : n ∈ N} is a cover of X, then X
is said to be a nearly star-Menger space.

If a space X satisfies the nearly star-Menger property, then we will write it as X |= PnS∗f in
.

Theorem 4.2. X |= PnS∗f in
if and only if for every sequence (An : n ∈ N) of covers of X by s-regular open sets, there

is a sequence (Bn : n ∈ N) such that for every n in N, Bn is a finite subset ofAn and {scl (St(∪Bn,An)) : n ∈ N} is a
cover of X.

Proof. An s-regular open set is always open therefore the direct part is obvious.
Converse: We prove that X |= PnS∗f in

. Let (An : n ∈ N) be a sequence of open covers of X and (A′n : n ∈ N)
be a sequence such that for every n in N, A′n = {int(scl(A)) : A ∈ An}. ThenA′n is a cover of X by s-regular
open sets. By hypothesis, there exists a sequence (Bn : n ∈ N) such that for every n in N, Bn is a finite
subset ofA′n and {scl(St(∪Bn,A′n)) : n ∈ N} is a cover of X.

Claim: St(A,An) = St(int(scl(A)),An), for each A inAn.
Since A is open, A ⊂ int(scl(A)) and St(A,An) ⊂ St(int(scl(A)),An). Now let x ∈ St(int(scl(A)),An). Then

by definition there exists B inAn such that x is in B and B ∩ int(scl(A)) , ∅. This implies that B ∩ A , ∅ and
therefore x ∈ St(A,An). Hence, St(int(scl(A)),An) ⊂ St(A,An).

Now for each B in Bn, we can choose AB inAn such that B = int(scl(AB)) by our construction. Consider
Gn = {AB : B ∈ Bn}. We show that {St(∪Gn,An) : n ∈ N} is a cover of X.

Let x ∈ X. Then there is an n in N such that x ∈ scl(St(∪Bn,A′n)). For each semi neighbourhood B of X, we
have B∩ St(∪Bn,A′n) , ∅. Then there will be A ∈ An such that (B∩ int(scl(A)) , ∅) and (∪Bn∩ int(scl(A)) , ∅)
this shows (B ∩ A , ∅) and (∪Bn ∩ A , ∅). By claim, we have ∪Gn ∩ A , ∅, thus x ∈ scl(St(∪Gn,An)).

Lemma 4.3. If f : Y −→ Z is nearly continuous and open mapping, then f (scl(A)) ⊆ scl( f (A)), where A is an open
set in Z.

Theorem 4.4. A nearly continuous, open and surjective image Z of a space Y |= PnS∗f in
satisfies PnS∗f in

.

Proof. Let f : Y −→ Z be a nearly continuous, open surjection and (An : n ∈ N) be a sequence of covers of
Z by s-regular open sets. ConsiderA′n = { f−1(A) : A ∈ An} for every n in N. Then due to nearly continuity
of f , (A′n : n ∈ N) is a sequence of open covers of Y. Since Y |= PnS∗f in

, there exists a sequence (B′n : n ∈ N)
such that for every n in N, B′n is a finite subset of A′n and {scl(St(∪B′n,A′n)) : n ∈ N} is a cover of the
space Y. Let Bn = {A : f−1(A) ∈ B′n} and y ∈ Y. This implies that f−1(∪Bn) = ∪B′n and there is an n in N
such that y ∈ scl(St( f−1(∪Bn),A′n)). If z = f (y) ∈ Z, then z ∈ f (scl(St( f−1(∪Bn), A′n)) ⊆ scl( f (St( f−1(∪Bn)),
A
′
n)) ⊆ scl(St(∪Bn, An)) = St(∪Bn, An). To prove the last inclusion, let f−1(∪Bn) ∩ f−1(A) , ∅. Then

f ( f−1(∪Bn)) ∩ f ( f−1(A)) , ∅, therefore ∪Bn ∩ A , ∅.
Hence, the sequence (Bn : n ∈ N) guarantees that Z |= PnS∗f in

.

Theorem 4.5. If all finite powers of a space X satisfy PnS∗f in
, then X |= PnS∗f in

.

Proof. Let the sequence of open covers of X be denoted by (An : n ∈ N). Consider a partitioning of N
into infinitely many pairwise disjoint sets such as N = N1 ∪ N2 ∪ .... For each k in N and each j in Nk, let
C j = {A1 × A2 × ... × Ak : A1,A2, ...,Ak ∈ A j} = Ak

j . Then (C j : j ∈ Nk) is a sequence of covers of Xk by open

sets. As Xk
|= PnS∗f in

, we have a sequence (G j : j ∈ Nk) such that for every j, G j is a finite subset of C j and⋃
j∈Nk
{scl

(
St(G,C j)

)
: H ∈ G j} is a cover of Xk. For each j in Nk and each G in G j, we have Ai(G) ∈ A j such

that G = A1(G) × A2(G) × ... × Ak(G), for each i ≤ k. Now letV j = {Ai(G) : i ≤ k, G ∈ G j}. Then for every j in
Nk,V j is a finite subset ofA j.
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We claim that {scl (St(∪Bn,An)) : n ∈ N} is an ω− cover of X. Let F = {x1, ..., xt} be a finite subset of
X. Then y = (x1, ..., xt) ∈ Xt such that there exists an n in Np such that y ∈ scl (St(G,An)), G ∈ Gn. But
G = A1(G) × A2(G) × ... × At(G), where A1(G),A2(G), ...,At(G) ∈ Bn. The point y belongs to some C in Cn of
the form V1×V2× ...×Vt,Vi ∈ An for every i ≤ t, which is of the form A1(G)×A2(G)× ...×At(G). Therefore,
for every i ≤ t, we have xi ∈ scl (St(Ai(G),An)) ⊂ scl (St(∪Bn,An)), that is, F ⊂ scl (St(∪Bn,An)). Therefore,
X |= PnS∗f in

.

Definition 4.6. If for every sequence (An : n ∈ N) of open covers of X there is a sequence (Fn : n ∈ N) of
finite subsets of X such that {scl (St(Fn,Un)) : n ∈ N} is a cover of X, then X is said to have the nearly strongly
star-Menger property and is denoted by X |= PnSS∗f in

.

Remark 4.7. A space that satisfies PnSS∗f in
may not satisfy PS f in .

Example 4.8. Consider the particular point topology τp on the real line R and consider the open cover
A = {{p, x} : x ∈ R} of R that does not have a countable subcover. Then (R, τp) is not Lindelöf and does not
satisfy the PS f in . But ifA is any open cover and F = {p} a finite subset of X, St(F,A) covers R that is (R, τp)
is strongly star compact so X |= PSS∗f in

and hence, X |= PnSS∗f in
.

Definition 4.9. ([3]) A space X is metacompact if each open coverA of X has a point-finite open refinement
V.

Theorem 4.10. If X |= PnSS∗f in
and is metacompact space then X |= PS f in .

Proof. Let X |= PnSS∗f in
and a metacompact space and (An : n ∈ N) be a sequence of covers of X by open sets.

For every n in N, let Bn be a point-finite open refinement of An. As X |= PnSS∗f in
, there exists a sequence

(Fn : n ∈ N) of finite subsets of X such that
⋃

n∈N scl (St(Fn,Bn)) covers X.
As Bn is point-finite open refinement and Fn is finite for each n, elements of every Fn belongs to

finitely many members of Bn say Bn1,Bn2,Bn3, ...Bnk. Consider B′n = {Bn1,Bn2,Bn3, ...Bnk}. Therefore,
scl (St(Fn,Bn))=∪B′n for every n in N, so we have

⋃
n∈N(∪B′n) covers X. For each B ∈ B′n, choose AB in

An such that B ⊂ AB. Then for each n, Gn = {AB : B ∈ B′n} is a finite subcollection of An and
⋃

n∈N(∪Gn)
covers X. Hence, X |= PS f in .

Definition 4.11. ([2]) A space X is said to be meta-Lindelöf if every open coverA of X has a point-countable
open refinementV.

Theorem 4.12. If X |= PnSS∗f in
and is meta-Lindelöf space, then X is a Lindelöf space.

Proof. Let X |= PnSS∗f in
and a meta-Lindelöf space. Let A be an open cover of X and B a point-countable

open refinement ofA. So by our hypothesis, there is (Fn : n ∈ N) a sequence of finite subsets of X such that⋃
n∈N scl (St(Fn,Bn)) covers X.

For every n in N, denote by Gn, the collection of all members of V which intersect Fn. As B is point-
countable and Fn is finite, Gn is countable. Hence, the collection G =

⋃
n∈NGn is a countable subfamily of B

and covers X. For every G ∈ G, pick a member AG ∈ A such that G ∈ AG. Then {AG : G ∈ G} is a countable
subcover ofA. Therefore X is a Lindelöf space.
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