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Abstract. A ring extension R C § is said to be FIP if it has only finitely many intermediate rings between
R and S. The main purpose of this paper is to characterize the FIP property for a ring extension, where
R is not (necessarily) an integral domain and S may not be an integral domain. Precisely, we establish a
generalization of the classical Primitive Element Theorem for an arbitrary ring extension. Also, various
sufficient and necessary conditions are given for a ring extension to have or not to have FIP, where S = R[«]
with a a nilpotent element of S.

1. Introduction

All rings considered below are commutative and unital; all inclusions of rings are unital. For a ring
R, we frequently use Spec(R) (respectively, Max(R)) to denote the set of all prime (respectively, maximal)
ideals of R. If R C S is an extension of rings, we will denote by [R, 5] the set of all R-subalebras of S (that is,
the set of rings T such that RC T € S), by (R : S) = {x € R : xS C R} the conductor of R in S. In particular, if
[R,S] = {R, S}, we say that R C S is a minimal extension [6,9]. Recall from [1] that a ring extension R C S is
said to have (or to satisfy) FIP (for the “finitely many intermediate algebras property”) if [R, S] is finite. The
initial work on the FIP property in [1] was motivated in part by a desire to generalize the Primitive Element
Theorem, a classical result in field theory: If K C L is a finite-dimensional field extension, L = K[«] for some
element a € L if and only if [K, L] is finite. One example of a FIP extension would be any minimal ring
extension , and whenever that condition holds, then S = R[x] for each x € S\ R. The key connection between
the above ideas is that if a ring extension R C S has FIP, then any maximal chainR=RycR; C...C R, =S5
is finite and results from juxtaposing # minimal extensions R; C R;+1, 0 < i < n — 1. The FIP property was
introduced and studied in [1] and, along with various related properties, has been treated in many other
papers [2-5, 8-11]. In particular, Section 3 of [1] was devoted to the study of ring extension R C S satisfying
FIP when R is a field. That work culminated in [1, Theorem 3.8] which gave a generalization of the Primitive
Element Theorem. Later, Dobbs et al. in [2] completed this study in the case where R is replaced by an
arbitrary Artinian reduced ring (cf. [2, Theorem II1.2] and [2, Theorem IIL.5]). The present paper heavily
relies on [1] and [2]; we will freely use the characterizations of the FIP extensions that were given there.
The plan of this article is as follows: Section 2 was central to the work in [1, Section 3] and that led to the
above-mentioned generalizations of the classical Primitive Element. The main result is the following: Let
R be an infinite ring all of whose residue class fields are infinite and let R C S be an extension such that S/C
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is a reduced ring, where C = (R : S). Then R C S has FIP if and only if R/C is an Artinian ring and S = R[a]
for some a € S where «a is algebraic over R. (Recall that a ring is said to be reduced if it has no nonzero
nilpotent elements). As a consequence, we recover the result obtained by Anderson et al. in [1, Lemma 3.5].
Section 3 studies when FIP holds for ring extensions R C S such that S = R[a], where « is a nilpotent
element. We establish some necessary and sufficient conditions for which a ring extension of this form has
FIP. The first of these appears in Theorem 3.4 which states: Let R be a reduced ring and assume that S = R[«]
where « is a nilpotent element of S. Suppose that R/(R : S) is an infinite ring. Then R C S is a minimal
extension if and only if (R : S) € Max(R) and a? € (R : S). Also, we obtain a characterization of [R, S] which
satisfies FIP, in term of finite maximal chains. We present the following result in Theorem 3.5: If S = R[«]
where a € S satisfies a> = 0, then R C S has FIP if and only if there exists a finite maximal chain from R to
S. As consequence of this result, we establish that if S = R[a] where a® = 0 and (R : S) is a maximal ideal
of R or R has only finitely many ideals, then R C S has FIP. Another context for which we find a complete
answer is given in Theorem 3.9: If R is a infinite domain and S = R[a, f], where a® = 8> = 0. Then R C S has
FIP if and only if there exists a finite maximal chain from R to S and either S = R[a] or S = R[f].
Finally, any unexplained terminology is standard as in [12] and [13].

2. A generalized Primitive Element Theorem

Consider a ring extension R C S that has FIP. Recall from [1, Proposition 2.2 (a), (b)] that S must be
a finite-type R-algebra and algebraic over R. Moreover, in case R contains an infinite field, we have that
S = R[a] for some a € S that is algebraic over R (cf. [1, Corollary 3.2] and [1, Lemma 3.5]). Our primary
interest in this section is to complete this study, we generalize the last cited results.

Proposition 2.1. Let R C S be an extension of rings such that:
(i) R/C is a finite ring, where C = (R : S);
(ii) S = Rla] for some o € S.

Then R C S has FIP if and only if « is integral over R.

Proof. For the ”“only if” part, since R/C is a finite ring, we have dim(R/C) = 0 (the Krull dimension of R/C).
Moreover, as R C S has FIP, then so is R/C € S/C [2, Proposition IL.4]. It follows from [1,Proposition 3.4 (b)]
that S/C is integral over R/C. Whence, S is integral over R, in particular «a is integral over R. Conversely, we
assume that « is integral over R, then S/C = (R/C)[a] where & = a + C € §/C is integral over R/C. Thus, S/C
is a finitely generated R/C-module and since R/C is a finite ring, hence S/C is also finite. Then, R/C c §/C
has FIP. This prove that R C S has FIP.

[

Corollary 2.2. If S = Z[a] where a € S is integral over Z., then Z. C S has FIP if and only if (Z : S) # 0.

Proof. Suppose that Z C S has FIP and assume, by way of contradiction, that (Z : S) = 0. Since S is a finitely
generated Z-module and each non unit of Z is a non-zero-divisor of Z, then [3, Theorem 2.1] ensures that
there exists a infinite chain of intermediate rings between Z and S. This contradicts the fact that Z c S has
FIP. Conversely, it suffice to notice that since (Z : S) # 0, then Z/(Z : S) is finite. Hence, the result follows
from Proposition 2.1. [J

To prove our main result, Theorem 2.4, we need the following lemma.

Lemma 2.3. Let R C S be an extension of rings. Denote C = (R : S). If R C S has FIP, then R/C is a reduced ring if
and only if C is the intersection of finitely many maximal ideals of R.
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Proof. 1t is clear that if C is the intersection of finitely many maximal ideals of R, then R/C is a finite direct
sum of fields. Thus R/C is a reduced ring. Conversely, because R C S has FIP, hence R C S has FCP (in
the sense of [4]). It follows from [4, Theorem 4.2] that R/C is a Artinian ring. Since R/C is a reduced
Artinian ring, Wedderburn-Artin Theory (cf. [13, Theorem 3, page 209]) expresses R/C uniquely as the
internal direct product of finitely many fields K;, thatis, R/C = Kj X...x K. Let Max(R/C) = {N1,...,N,} =
{M,/C,...,M,/C}, where M; € Max(R) and C € M; for eachi = 1,...,n. As NyNn...N N, = 0, then
M /On...0M,/C)=(MNn...N"M,;)/C=0.ThusC=M;N...NM,. O

Theorem 2.4 below provides a generalization of the Primitive Element Theorem.

Theorem 2.4. Let R be an infinite ring all of whose residue class fields are infinite. Let R C S be an extension such
that 5/C is a reduced ring, where C = (R : S). Then R C S has FIP if and only if R/C is an Artinian ring and
S = Rla] for some o € S where a is algebraic over R.

Proof. Notice by [2, Proposition 11.4] that R C S has FIP if and only if R/C c S/C has FIP. For the “only
if” part, since S/C is a reduced ring, then R/C is also a reduced ring. It follows from Lemma 2.3 that
C = N, M;, where M; € Max(R) for each i. By the Chinese Remainder Theorem, R/C = K; X ... X K, such
that K; is a infinite field for each i, and hence R/C is an Artinian ring. It remains to prove that S = R[«a]
for some a € S. By virtue of [4, Proposition 3.7 (d)], we can identify S/C with S; X ... X S, such that
K; € S; and R/C c S/C satisfies FIP if and only if K; C S; satisfies FIP for each i. Notice that since S/C
is a reduced ring, then so is S;. Then, we conclude form [1, Lemma 3.5] that R/C c S/C satisfies FIP if
and only if S; = Ki[f;] where §; € S; for each i. Denote f = (B1,2,...,Bx), then it is easy to verify that
Kilpil X ... X KBl = (Ky X ... X Kp)[(B1, - - -, pn)] = R/C[B]. Therefore, R/C C S/C satisfies FIP if and only if
5/C = R/C[B], where B is algebraic over R/C. This implies that R C S satisfies FIP if and only if S = R[«] for
some « € S which is algebraic over R and satistiesa = o + C = f5.

For the “if” part, assume that S = R[a] for some a € S where « is algebraic over R and R/C is an Artinian
ring. Since, in addition, R/C is reduced, hence Wedderburn-Artin Theory (cf. [13, Theorem 3, page 209])
expresses R/C uniquely as the internal direct product of finitely many fields K;, thatis, R/C = Ky X ... X K.
Again [4, Proposition 3.7 (d)], the ring S/C can be uniquely expressed as a product of rings S X ... S, where
K; € S; for each i € {1,...,n}. Moreover, since S/C = R/C[a] where a@ = a + C, hence reasoning as in the
proof of the “only if” part, we deduce that S; = K;[;] where @ = (B1,...,B,) and B; is algebraic over K;.
Hence, if K; is a finite field, then S; is a finite K;-vector space. Then, S; is finite and so K; C S; has FIP. Now, if
K; is infinite field, then [1, Lemma 3.5] ensures that K; C S; has FIP. By globalization, we deduce that K; C S;
has FIP for each i € {1,...,n}. Then, R/C C S/C has FIP [4, Proposition 3.7 (d)]. Finally, according to [2,
Proposition I1.4], we conclude that R C S has FIP, which completes the proof. [

In view of Theorem 2.4, the “if” implication is valid, for if R/C is an Artinian ring. The following example
will show that the hypothesis “R/C is an Artinian ring” cannot be omitted in the above theorem .

Example 2.5. Let R be an infinite-dimensional valuation domain with a height 1 prime ideal P. Pick o € P where
a # 0and set S = qf(R) the quotient field of R. It is clear that C = (R : S) = 0, and hence R/C = R is not Artinian.
Also S/C = S is a reduced ring. On the other hand, [12, Theorem 19] ensures that S = R[a"']. But R C S does not
have FIP since {R,, p € Spec(R)} is an infinite set of intermediate rings between R and qf(R).

Corollary 2.6. ([1, Lemma 3.5]) Let R be an infinite field, and let R C S be an extension such that S is a reduced
ring. Then R C S has FIP if and only if S = R[a] for some o € S such that « is algebraic over R.

Proof. Since R is quasi-local with maximal ideal 0, then R/0 = R is infinite. Moreover, as (R : S) = 0, hence
S/(R: S) = S is areduced ring. Therefore, the conclusion follows readily from Theorem 2.4. O
3. When the generator is a nilpotent element

Consider a ring extension R C S. In view of the central role that nilpotent elements have played in
the study of the FIP property for a ring extension (cf. [1, Theorem 3.8] and Section IV of [2]), we devote
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this section to completing this study and to investigating when R C S has FIP where S = R[a] with a is a
nilpotent element of S. We begin with two results giving useful sufficient conditions for FIP to fail.

Proposition 3.1. Let R C S be a ring extension such that S = R[a] where a is a nilpotent element of S. If
(R : S) € Spec(R) \ Max(R), then R C S does not have FIP.

Proof. Since (R : S) € Spec(R) \ Max(R), then R/(R : S) is a integral domain (not a field), and we have
S/R:S)=R/(R:S)[a] wherea = a+ (R : S). We prove that (0: o) = {r € R/(R : S)lr.@ = 0} = 0. Let
r € R/(R : S) such that 7.a@ = 0, hence ra = 0. It follows that ra € (R : 5). As (R : S) is a prime ideal of R
and @ ¢ (R : 5), we conclude that r € (R : S). This implies that 7 = 0, and so (0 : @) = 0. According to [2,
Proposition IV.1], we have that R/(R : S) € S/(R : S) does not have FIP,and soisR C S. O

The following result is a generalization of [2, Proposition IV.1].

Corollary 3.2. Let R be an integral domain that is not a field, and R C S such that S = R[a] where a is a nilpotent
element of S. If (R : S) = 0, then R C S does not have FIP.

Proposition 3.3. Let R C S be an extension such that S = Rla] where « is a nilpotent element of S. Denote
C=(R:S). If C € Max(R), then R C S has FIP if and only if R/C is finite or R/C is an infinite field and o® € C.

Proof. Notice by [2, Proposition I1.4] that R € S has FIP if and only if R/C c S/C has FIP. We have
5/C = R/C[a] where & = a + C. If R/C is finite, then S/C is also finite since S/C is a R/C-vector space. Thus
R/C c S/C has FIP, and so is R ¢ S. Now, if R/C is a infinite field, then [1, Lemma 3.6 (b)] ensures that
R/C c $/C has FIP if and only if @° = 0, that is, R C S has FIP if and only if a® € C. [J

The following result is a characterization of minimal extensions where S is the form R[a] for some nilpotent
element a € S.

Theorem 3.4. Let R be a reduced ring and let S = R[a] where a is a nilpotent element of S. Suppose that R/(R : S)
is a infinite ring. Then R C S is a minimal extension if and only if (R : S) € Max(R) and a? € (R : S).

Proof. If R C S is a minimal (integral) extension, then C = (R : S) € Max(R) and from Proposition 3.3 we
have a® € C. It follows that R/C is a infinite field and S/C = R/C[a] where @ = o + C, and so @ =0.
Hence, the proof of [1, Lemma 3.6 (b)] shows that [R/C,S/C] = {R/C,R/C[az], S/C = R/C[a]}. Moreover,
R/C c §/Cis aminimal extension since R C S is a minimal extension, we conclude that either R/C = R/C [52]
or R/C[@*] = R/C[a]. Then, either R = R[a?] or R[¢?] = R[a]. Suppose that R[a?] = R[a] and let n(> 2)
be the index of nilpotency for a. Hence, a = rg + r1a? + raa* + ... + r,.122"™Y, for some o, 71 ...,7,-1 € R.
Thus, ro = a — (rna? + ra* + ... + r,.1a2" ) is a nilpotent element, and so ry = 0 since R is reduced.
This implies that @ = a(ria + rna® + ... + r,_1a%"%), hence (ra + r2a® + ... + r,a®"%) = 1, a contradiction
since (r1a + ra® + ... + 1,0°"%) is a nilpotent element. Therefore, R = R[a?], and hence a? € R. Now, we
prove that a2 e C. Letx €S, then x = ap + a1 + 402 + ... + a,_1a" ! for some ag, a4, . ..,a,1 € R. Hence,
a%x = aga? +a10° +aza® +. . . +a,-1a"*. Notice that any power of a is a product of a power of a* and a power
of . As a?,a® € R, it follows that a*x € R, and hence a? € C. Conversely, since a® € C, then S/C = R/C[a]
where @ = 0. As, in addition, R/C is a infinite field since C is a maximal ideal of R, then the end of the
proof of [1, Lemma 3.6 (b)] ensures that R/C c S/C is a minimal extension, this implies that R € S is also a
minimal extension [9, Corollary 1.4]. [

We are now in position to give a characterization of [R, S] which satisfies FIP, in term of finite maximal
chains.

Theorem 3.5. If R C S is an extension of rings such that S = R[a] where a® = 0, then the following conditions are
equivalent:

(i) R C S has FIP;

(ii) There exists a finite maximal chain from R to S.
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Proof. (i) = (ii) The result is clear since the condition "R C S has FIP”, implies that any maximal chain from
R to S is finite.

(if) = (i) Since S = R + Ra, therefore [7, Proposition 4.12] gives a bijection between [R, S] and the set
of ideals of R containing C = (R : S). On the other hand, by assumption, there is a finite maximal chain
R=RycRyc...cR,=S5in[R,S]. Foreachi=0,...,n—1,denote C; = (R; : R;4+1) and m; = C; N R. Since
R; C Ry;1 is both minimal and integral, hence C; € Max(R;) and so m; € Max(R) [6, Thorme 2.2]. Moreover,
it is clear that C C C; for each i, thus C C (- 01 m;. By iteration, we get

n-1 n-2
(H m;)R, (H mj)R,-1 ... SmoRy; CR.
i=0 i=0

Then, [T/ m; C C c ﬂ “ m;. Hence, the m; are precisely the uniquely ideals of R containing C. Therefore,
I[R,S]| = {m;|i= ,n — 1}|, this prove that R ¢ S has FIP. [

The proof of Theorem 3.5 established the following result.

Proposition 3.6. Let R C S be a ring extension such that S = R[a] where o® = 0. If (R : S) is a maximal ideal
of R or R has only finitely many ideals, then R C S has FIP. Moreover, R C S is a minimal extension if and only if
(R : S) € Max(R).

Remark 3.7. If S = Rla] where « is a nilpotent element of S of index n # 2, then Theorem 3.5 does not follow
in general. For instance, let R be any infinite field K of characteristic 2 and take S = K[X]/(X*) = K[x] where
x =X+ (XY and x* = 0. Then, {1,x,x%, x%} is a K-vector space basis of S. As dimg(S) < oo, then any maximal chain
of intermediate rings between K and S is finite, while the failure to satisfy FIP can be seen by applying [1, Lemma
3.6(a)].

We next give the following lemma which be used often later. Lemma 3.8 provides a generalization of [1,
Lemma 2.6 (¢)].

Lemma 3.8. Let R C S be an extension. If R is infinite domain and R C S has FIP, then S does not contain two
nilpotent elements of index 2 which are algebraically independent over R.

Proof. If the assertion fails, S contains two nilpotent elements « and g of index 2 which are algebraically
independent over R. We consider two cases:

Case.l. af = 0, then {1,a,p} is a basis of R[a, ] as a finitely generated R-module. For each r € R,
consider T, = {a + ba + rbf : a,b € R}. Itis clear that R € T, C S for each r. Moreover, since a and f§ are
nilpotent elements of index 2, on easy verifies that each T, is a ring. Also, T, # T, for each r # ’. Indeed,
if T, = Ty then a + 1 = ag + boa + r'bop for some ag, by € R. Since {1, @, f} is a basis of R[a, f], it follows that
ap =0, bp = 1and r = bor’. This yields that r = 7. Since R is infinite, {T,,r € R} is an infinite collection of
intermediate rings between R and S, contradicting that R C S has FIP.

Case.2. aff # 0. First, suppose that af is algebraically independent with @ and g over R, then {1, , 5, af}
is a basis of R[a, f] as a finitely generated R-module. For each r € R, consider T, = {a + ba + rbaf : a,b € R}.
Reasoning as in the first case, we show that {T,, » € R} describes an infinite family of rings, contradicting that
R c S has FIP. In the remaining case, aff = roa + r1f where r9, 71 € R. Let v € R, consider T, = {a + rba + rcf :
a,b,c € Rsuch that b # c}. Then, T, is intermediate ring between R and S. Moreover, T, # T\ for each r # r’.
Indeed, if ra + rf = ag + r'bpa + ' co for some ag, by, ¢y € R where by # co. Since {1, «, B} is a basis of R, f]
as a finitely generated R-module, then ap = 0 and r = #'by = r’co. Because R is integral domain, it follows
that by = ¢o, the desired contradiction. Therefore, {T;,r € R} is an infinite collection of intermediate rings
between R and S, contradicting that R ¢ S has FIP. O

Again, by combining Lemma 3.8 and Theorem 3. 5 we obtain directly another characterization of [R, S]
which satisfies FIP where S = R[a, f] and a? = g% =
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Theorem 3.9. Let R C S be an extension such that R is infinite domain and S = R[a, B], where o = > = 0. Then
R C S has FIP if and only if there exists a finite maximal chain from R to S and either S = R[a] or S = R[B].

We close this section by the following proposition.

Proposition 3.10. Let R = Ry X ... X R, be a finite product of rings and let R C S be a ring extension. Using [2,
Lemma I11.3], identify S with Sy X ... X S,. For each i € {1...,n)}, consider the following three conditions (which
depend on 1):

1. R;is finite and S; is a finitely generated Ri-module;

2. R;is infinite ring all of whose residue class fields are infinite, S;/C; is a reduced ring where C; = (R; : S;), Ri/C;
is Artinian and S; = R[] for some a; € S; which is algebraic over R;.

3. R;isinfinite, (R; : S;) € Max(R;) and S; = Ry[a;] for some a; € S; which satisfies oc? € (R;:S).

If foreachi € {1,...,n}, at least one of the conditions (1), (2), (3) holds, then R C S has FIP.

Proof. Combine [2, Proposition II1.4 (a)] with [4, Proposition 5.1], Theorem 2.4 and Proposition 3.3. [
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