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Abstract. In this paper, we study some special polynomials which are related to sheffer sequence. In
addition, we give some new identities for these numbers and polynomials.

1. Introduction

The Sheffer polynomials S,(x), (n > 0) are defined by the generating function to be (see [13])
X . tn
fOFT =Y Sux) (1)
n=0

where f(t) = YLy ait', (ap # 0) and g(t) = L2g ait’, (a1 # 0).
It is well known that the most famous Sheffer polynomials are the Bernoulli polynomials and the Euler
polynomials: the Bernoulli polynomials are defined by the generating function to be (see [1-6])

R . £
et = ;Bn(x)a. @)
When x = 0, B, = B,,(0) are called the Bernoulli numbers. The Euler polynomials are given by the generating
function to be (see [7, 8, 11, 13, 14])
2 .o £
=% Eu(v)—.
e nZ:O () n! &)

When x =0, E,, = E,;(0) are called the Euler numbers.
For A € R\{0}, the degenerate Bernoulli and Euler polynomials are defined by Carlitz which are given
by the generating functions to be (see [3, 9, 10, 12])

t

v "
A+ AD = 2 () —
ST IR S @
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and
2 r v tn
— 1+ A)i= E enr(¥)—. 5
(1+ADt +1 L A0 ()

Note that lim)_,c ,1(x) = B,(x) and limy—,co €4,1(x) = E,(x). Whenx = 0,8,1 = f1,1(0) and e,1 = €,,1(0)
are called degenerate Bernoulli and Euler numbers, respectively.

Now, we define the A-analogue of the falling factorial sequences as follows: (x)o1 = 1, (X)s1 = x(x —
AM(x —=2A)---(x = (n — 1)A),(n > 1). Note that limy_1(x)y 1 = x(x = 1)(x = 2)---(x = (n = 1)) = (x),, (n = 1).

In this paper, we study some special polynomials which are related to the Sheffer polynomials. Also,
we give some identities for these polynomials and numbers. Although some of results in this paper are
already presented in [9, 10, 12], the main goal of this paper is to support numerical results for the theoretical
identities and investigate new interesting pattern of the zeros of the Sheffer type degenerate Bernoulli and
Euler polynomials. To do this, we display the shapes of the polynomials and investigate their zeros.

2. Sheffer type degenerate Euler and Bernoulli polynomials

For p,q € R, we define the following two degenerate polynomials which are derived from the Taylor
expansions of (1 + )\t)% cos(gqt) and (1 + /\t)% sin (gt):

, = ik
(1+ 407 cos (gf) = kZ Coalp, )y (6)
=0
and
Lo, - tk
(L+ADTsin(@) = ) Seatp, - @)
k=0
From (6) and (7), we easily derive the following equations:
w (151 . e
14 m m
(1 + At) A COS (qt) = Z Z(p)k_sz/\(—l) (Zm)qz ﬁ (8)
k=0 \ m=0 :
and
o (5] L e
E\ : — _1\yn 2m+1 | b
(L a0 sin) = 37| 32 Phczu-1a(-D) (2m i 1)q s ©)
By (6), (7), (8) and (9), we get
(51 k
Gt = Y Pz 10
m=0
and
(5] k
Sealp,q) = Z(P)k—Zm—l,A(_l)m( - 1)612’”“, (k> 0). (11)
m=0

The two degenerate polynomials can be determined explicitly. A few of them are

Coalp,) =1, Cialp,9) =p,

Conlp,q) = —Ap+p* = 07,

Cs(p, q) = 2A%p = 3Ap? + p* - 3pg?,

Cua(p,q) = —6)\3;7 +117A%p% - 6/\;73 + p4 + 6)\pq2 - 6p2q2 + q4,
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and

Soalp, ) =0, Sialp,q) =4,
S24(p,q) = 2p1,
Ssalp.q) = =3Apq + 3% - ¢,
Su(p,q) = 8A%pq — 12Ap%q + 4p’g — dpq’.
Now, we define the Sheffer type degenerate Euler polynomials which are given by the generating
function to be

(o)

v t"
m(l + )\t)K cos (qt) = Z efﬁ(p, l])ﬁ (12)
A n=0 ’
and
2 r o, . S)
- (1 + At)T sin (gt) = ( " q)—. (13)
(1 + /\t)T n=0

Note that s( )(p, 0) = exa(p), e (p, 0) = 0,(n = 0). The Sheffer type degenerate Euler polynomials can be
determmed exphc1tly A few of them are

1
(C)(p/ ) - 1/ (C)(pr Q) -3 + P/

A
P =5-p-Ap+p -,

3p? 34*

(C>(p/ ) - i _/\2 +3/\p+2A2p— 7 —3/\p2 +p3 + 7 _3}71]2,

e, q) = % +3A% +p— 1A% — 6A%p + 9Ap? + 11A%% — 2p° — 6Ap°
+p* =304 + 6pg* + 6Apg* — 6p*¢* + g,

and (S) (S)
) = gy =gq,

(5’ (p,g) = —q+ ZPq,

M
e (p,q) = =+ = 3pg = 3Apq + 3p*q — ¢,
(S) (pq) =g - 4?\211 +12Apq + 8A%pq — 6p°q — 12Ap%q + 4p°q + 2° — 4p°.

Now, we observe that

2 4 kad tl b tm
—1+At3COS t) = E1 1 — Cm, ’ L
= e Cuoin(p, q)] —.

Z:0 ( 1=0 (Z) n!

n=l

(14)

Therefore, we obtain the following theorem:

Theorem 2.1. For n > 0, we have

= (n
éffA)(P/ q) = (l)fl,Acn—l,A(P, q)

I=

o

and

=

n
(S) (p/ ) (l )gl,/\ Sn—l,/\ (P/ ‘7)

=0
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From (12), we have
y > l ;
2(1 + ABT cos (4t) = ( ) eQtp, q)%] (@+ant+1)

_ Z[ ( ) o, )W+ € (M)]
1=0

By (6) and (15), we get

n

Conlp 1) = %( (120 0011+ €0, q)]
I

Therefore, we obtain the following theorem.

=0

Theorem 2.2. For n > 0, we have

~

Cun(p,9) =% ( ) o, DO+ €500, 9)
1=0

and

=

1 n
000 = 3| 1 (120 00+ 500 |

=0

From (6), we note that

o]

2 1
(C) -, =——F—1+At)7 cos(gt
L 1 Pq) (1”07”( ) (qt)
2 P
= —————(1+At) "7 cos(—qt)
(1+/\t)7+1( ) 1
2

(1 (=A)(=) " cos (—qt)

T A+ D)

(ifz A1) Z,][Zc 21" — ]

1=0
n\ . D"
= Z [Z (l)éz,—ACn—z,—A(PI 6])] Tt .
n=0 \ =0
Therefore, we obtain the following theorem.

Theorem 2.3. For n > 0, we have

n

1 -pa) = (1" ) (7)el,_Acn_,,_A<p, 9)

1=0
= (-1)"e (v, ),

and
e =p,q) = D" (n,q)

= (-1)"*! Z (7)61,—/\5;1—1,—)\(}7/ q)-

1=0

6176

(15)

(16)

(17)
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Now, we observe that

0o

© t 2 ol
e p+1L9)—=——F—(0+AH) T cos(qt)
Ly EnaP S = T 1 7
- ;1(1 +ADT((1+ A)T =1+ 1) cos (gt)
A+A)7T +1 (18)
14 2 r
=2(1+ At)* cos(qt) — ——————(1 + At)~ cos (qt)
Q+AH7T+1
Ry © t*
= nZS (2Cn,A(p, Q) =€, q)) o
By comparing the coefficients on the both sides, we get
enl(p+1,0)+ ) (7, 9) = 2Can(p, ), (12 0). (19)
Therefore, we obtain the following theorem.
Theorem 2.4. For n > 0, we have
e£9%p+1 2C
T+ L) + e (0,9) = 2Cua(p,9),
and
e +1,9)+ e\ (p,9) = 2Su1(p, q).
From (6) and (9), we have
Y 0,05 = Y E 0)
LA et

Therefore, by Theorem 2.4 and (20), we obtain the following corollary.
Corollary 2.5. For n > 0, we have

e (1) + el 0,9) = 2-1)"¢",

and
e (L) + e (0,q) = 2(=1)"q".

By (6) and (7), we get

- 2(1 + Af)T
O
+7, )
Eualp+ [ +ADT +1

[ LT ] (Z(r)k ) k,] 1)

= 2[2( ) Qw0 “]t

cos (qt)] (1+ A7

n=0

n

n=0 \ k=0

Therefore, by comparing the coefficients on the both sides, we obtain the following theorem.
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Theorem 2.6. Forn > 0,r € IN, we have

emip+1,q) = Z( ) Dk,

k=0

and
n

S (p+r.) = Z( ) &P, D

k=0

Taking = 1 in Theorem 2.6, we obtain the following corollary.

Corollary 2.7. For n > 0, we have

2Cua(p, ) = €52 (p,4) + Z( ) oDk,
k=0

and

25,,0(p,q) = €47 (p,4) +Z( ) PR e

From Corollary 2.7, we note that

(c> © 0 fn=2am+l,
2(0,9) + Z( ) 10, DDk = { 2(=1)"g*"  ifn=2m,

and

0 if n=2m.

= (n 2=1)"g2m+l  ifp =2 +1,
£ 0.0) + (k)eli?(o,q)(l)n_k,ﬁ{ (=D"g?t i n = 2m

k=0

By (12), we get

= 9 8 2 [
Z % O (b, q) (W(l + At)T cos (qt))

n=1

- 10 dT+AHA + /\t)\ cos (qt)
1+/\t)\ & 1

(
[ e?C)(P, ][i (—171);"_1 Am—ltm]
1=0 m=1

_ —I1=1)
=) {n, Qp, -y LD

Comparing the coefficients on the both sides of (24), we have

n-1

(9 (C)(P/Q) Z( l ) (C)(plq)( )" 1-1 yn-l- 1L__ll)!.

1=0

6178

(22)
(23)
(24)
J:
a5
(25)
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By the same method, we easily get

J * ©) ( 1)k n— Zk)\(p’q)(n 2k)' ifn > Zk,
(a_) 2w =

0 if n < 2k.

(26)

Similarly we have
81(53\(?)’ q) = Tlé’n 1/\(p1 )/ (7’1 > 1)

Now, we consider the Sheffer type degenerate Bernoulli polynomials which are given by the generating
function to be

—(1 APy (1+AB7 cos (qt) = Zﬁ (2 q) (27)
and
t v
_ At) 7 si .
- )\t)% ) I+ At)rsin(gt) = ;ﬁm\ P, q) (28)

Note that ﬁ( 1(p, 0) = By,A(p) are the Carlitz’s degenerate Bernoulli polynomials. The Sheffer type degenerate
Bernoulli polynomlals can be determined explicitly. A few of them are

LA
Pa ) =1, B =-5+35+p
AZ
Cp.9) = -———P+P s
Op,p=-ts X 0 30 3 W, S5 A
1 202 1974
B p.9) = 5t T~ o~ 2P - APt 60 + 41 - 27 - np?
+pt = g7 + A + 6pg” — 6p°q" + 4,

and )
Swa=0, g =

f}(n q) =-q+Aq+ 2pq,

q Mg
SE 5T o g -7,
ff/)\ p,9=-Ag+ /\317 +2pg + 6Apq — 6p2q - 6Ap2q + 4p3q + 2q3 - 2Aq3 — 4pq3.

From (27), we have

© t 4
;5 (b, ‘1) —(1 Ay 1(1 + At)T cos (qt)
[Z Buas ] (Z Cualp, 9)— ] (29)
I= m=0

[

Z [Z (l).Bl,/\Cn—l,/\(p/ q)] :Tn,

Comparing the coefficients on the both sides of (29), we obtain the following theorem.
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Theorem 2.8. For n > 0, we have

B (p.4) = Z (7)ﬁI,ACn—l,A(pr q),

1=0
and

n

.5,(3(77/ q) = Z (7),81,)\571—1,/\(]7/ q)-

1=0

By replacing p by 1 — p in (27), we get

. ©q - ﬁ=;1+/\t¥cos t
;ﬁn,}\( P (1+/\t)%—1( ) (qt)
t P
=—— (1+ At)" % cos (gt
A costan (30)

(o] . tn
= Za Bu-1(p, 9)(-1) pt

Therefore, we obtain the following theorem.

Theorem 2.9. Forn > 0, we have

(L=p,0) = (1B (p.4),
and

B =p.g) = (D)"Y (p,9).
Now, we observe that

00

O+, L = _ 1+ ADT cos (gt
;ﬁm(rﬂ 0 (1+)u)%—1( ) (@b
= (1 + AB)7 cos (gt) + ;1(1 + ABT cos (qt)
1+AD)T -1
ke i 0 © n (31)
= Z ncn—l,/\(p/ Q)E + Z ﬁn/A(pr Q)E
n=1 T on=0 :
(o) tn
= (nCn_u(p, 9) + B, q)) i
n=0 ’
Thus, by (31), we get
Bi\(p+1,9) = nCara(p, ) + B\ (0, ), (n 2 1). (32)

Therefore, by (32), we obtain the following theorem.
Theorem 2.10. For n > 1, we have
B +1,9) - B (0, 9) = nCuaa(p, 9,

and

ﬁff}(p +1,9) - ﬁ,(fj(n q) =nSu-1.1(p, q)-
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By (27), we have
- d t ?
— —|————@ + Af)T cos ( t))
Z{aﬁ 3P((1+/\t),\—1 7
t 1 y
= ——————log(1 + Af)(1 + Af) T cos (qt)
A+ AT —14 & g
o 33)
1yn-1 (
Zﬁ(c)( l| ] [Z =D ) ym- 1tm}
1=0
o n-1
weleq aneiq (T =1=1)1] #"
_ Z[n R ];.
n=1\ =0 ’
Comparing the coefficients on the both sides of (33), we obtain
n-1
n-1 g (=1 =1)
ﬁ(C)(p,q) _nZ( l ) (C)(p,q)( 1) 1=1 yn-l 1%'

3. Distribution of zeros of the Sheffer type degenerate Bernoulli and Euler polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theoretical
prediction and to discover new interesting pattern of the zeros of the Sheffer type degenerate Bernoulli and
Euler polynomials. By using the computer, the Sheffer type degenerate Bernoulli and Euler polynomials
can be determined explicitly. We display the shapes of the Sheffer type degenerate Bernoulli and Euler
polynomials and investigate the zeros of the Sheffer type degenerate Bernoulli and Euler polynomials. We
investigate the beautiful zeros of the Sheffer type degenerate Bernoulli and Euler polynomials by using a

computer. We plot the zeros of the Sheffer type degenerate Euler polynomials ELC}{ (p, 9)(Figure 1).

®
s 5
° °. o0
° ° o ®
[
o ) n&#ﬂ—o— ) 04*7 )
®
° o ® e
)
° ® o0
s s
)

Figure 1: Zeros of a(nc))\ (2]

In Figure 1 (first from left), we choose n = 30, A = 0, and q= %

In Figure 1 (second from left), we choose n = 30, A = 10, and g = 3.
In Figure 1 (second from right), we choose n = 30, A = 10, and g = %
In Figure 1 (first from right), we choose n = 30, A = 10, and g = 3.

We plot the zeros of the Sheffer type degenerate Euler polynomials eﬁ (p, q)(Figure 2).
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6182

o0
e o 0%,
o 0 o 0 o
X0
[ PO )

Im(x)

Figure 2: Zeros of a(nc))\ .9

In Figure 2 (first form left), we choose n = 30, A = %0, and p = %

In Figure 2 (second from left), we choose n = 30, A = %, and p = 3.

In Figure 2 (second from right), we choose n =30, A = 3, and p = 1.

5

In Figure 2 (first from right), we choose n = 30, A = 35, and p = 3.

Our numerical results for approximate solutions of real zeros of the Sheffer type degenerate Euler

polynomials eg (p, 9) are displayed(Table 1).

©

Table 1. Numbers of real and complex zeros of ¢

2=

. 3)

| degree n [ real zeros complex zeros
1 1 0
2 2 0
3 3 0
4 4 0
5 5 0
6 4 2
7 5 2
8 4 4
9 5 4
10 6 4
11 7 4
12 6 6
13 7 6
14 8 6

Our numerical results for approximate solutions of real zeros of the Sheffer type degenerate Bernoulli

polynomials ﬁf;\ (p, ) are displayed(Table 2).



T. Kim, C.S. Ryoo / Filomat 33:19 (2019), 6173-6185 6183

Table 2. Numbers of real and complex zeros of ﬁfl (.9

| degree n || real zeros complex zeros \
1 1 0
2 1 0
3 1 2
4 1 2
5 3 2
6 1 4
7 3 4
8 1 6
9 3 6
10 3 6
11 3 8
12 3 8
13 3 10
14 3 10

Stacks of zeros of the Sheffer type degenerate Euler polynomials eic/{ (p,q) for 1 <n < 30 from a 3-D structure
are presented(Figure 3).

Figure 3: Stacks of zeros of 853 (p,9),1<n<30

In Figure 3 (left), we choose n = 30, A = 11—0, andp = %

In Figure 3 (right), we choose n = 30, A = &, and p = 3.

Figure 4 presents Real zeros of the Sheffer type degenerate Bernoulli polynomials ,B;sj\ (p,q)forl <n <30.
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Figure 4: Real zeros of ‘B(nszl ».9)

In Figure 4 (first form left), we choose A = £ and p = 1.

In Figure 4 (second from right), we choose A = {5 and p = 3.

W=

In Figure 4 (second from right), we choose A = & and p = —
In Figure 4 (first from right), we choose A = 3 and p = -3.

We observe a remarkable regular structure of the complex roots of the Sheffer type degenerate Euler
polynomials equA)(p, gq). We also hope to verify a remarkable regular structure of the complex roots of the

Sheffer type degenerate Euler polynomials equA) (p, 9)- Next, we calculated an approximate solution satisfying

K(®)

€,1(P,q) = 0,p € R. The results are given in Table 3.

Table 3. Approximate solutions of e(cl ®3)

10
degree n x
1 0.50000
2 -0.053002, 1.1530
3 —-0.43003, 0.56949, 1.6605
4 —0.70000, 0.10330, 1.1171, 2.0796
5 —-0.87294, -0.31745, 0.66143, 1.5928, 2.4362
6 0.20892, 1.2078, 1.9886, 2.7497
7 —0.24161, 0.75991, 1.7584, 2.2652, 3.0423

($)

Next, we calculated an approximate solution satisfying 8"

(p,9) = 0,9 € R. The results are given in
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Table 4.
Table 4. Approximate solutions of ﬁ:ls)i (3.9
710

degree n x

0.00000
0.00000
0.00000
0.00000
—-0.095082, 0.00000, 0.095082
0.00000
-0.54377, 0.00000, 0.54377

N (|G| (N |-
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