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Abstract. In this paper, we define the dual mixed complex brightness integrals and establish related Brunn-
Minkowski type inequality, Aleksandrov-Fenchel inequality, cyclic inequality and monotonicity inequality,
respectively. As applications, we give the analogous version of the differences inequalities for the dual
mixed complex brightness integrals.

1. Introduction and main results

LetKn denote the set of convex bodies (compact, convex subsets with non-empty interiors) in Euclidean
space Rn. For the set of star bodies (about the origin) in Rn, we write Sn

o . Let Sn−1 denote the unit sphere
and V(K) denote the n-dimensional volume of the body K. For the standard unit ball U in Rn, its volume
V(U) = ωn.

The projection bodies were introduced by Minkowski at the turn of the previous century. For each
K ∈ Kn, the projection body, ΠK, of K is an origin-symmetric convex body whose support function is
defined by (see [7])

h(ΠK,u) =
1
2

∫
Sn−1
|u · v|dS(K, v),

for all u ∈ Sn−1. Here S(K, ·) denotes the surface area measure of K.
The mixed brightness of convex bodies first were given by Lutwak [23]. After, associated with the

notion of the projection bodies and the mixed brightness, Li and Zhu [21] introduced the mixed-brightness
integrals as follows: For K1, . . . ,Kn ∈ K

n, the mixed-brightness integrals, D(K1, . . . ,Kn), is defined by

D(K1, . . . ,Kn) =
1
n

∫
Sn−1

δ(K1,u) · · · δ(Kn,u)dS(u),

where δ(K,u) = 1
2 h(ΠK,u) is the half brightness of K ∈ Kn in the direction u and for all u ∈ Sn−1. Con-

vex bodies K1, . . . ,Kn are said to have similar brightness if there exist constants λ1, . . . , λn > 0 such that
λ1δ(K1,u) = · · · = λnδ(Kn,u) for all u ∈ Sn−1.
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For the mixed brightness integrals, Zhao [38] established the greatest upper bound for the product of
the mixed brightness-integrals of a convex body and its polar dual. Whereafter, Zhou, Wang and Feng [41]
established some Brunn-Minkowski type inequalities for the mixed brightness integrals. Recently, using
the general Lp-projection bodies (see [9, 22, 31, 32, 35]), Yan and Wang [37] defined the general Lp-mixed
brightness integrals and established some inequalities of general Lp-mixed brightness integrals.

The theory of real convex bodies goes back to ancient times and continues to be a very active field
now. Until recently, the situation with complex convex bodies began to attract attention (see [2, 4, 12–
15, 17, 26, 42, 43]). Some classical concepts of convex geometry in real vector space were extended to
complex cases, such as complex projection bodies (see [3, 20, 29, 39]), complex difference bodies (see [1]),
complex intersection bodies (see [16, 30, 36, 40]), complex centroid bodies (see [10, 19]) and mixed complex
brightness integrals (see [18]).

The notion of intersection body was introduced by Lutwak [24]: For K ∈ Sn
o , the intersection body, IK,

of K is a star body whose radial function in the direction u ∈ Sn−1 is equal to the (n− 1)-dimensional volume
of the section of K by u⊥, the hyperplane orthogonal to u, i.e., for all u ∈ Sn−1,

ρ(IK,u) = Vn−1(K ∩ u⊥),

where Vn−1 denotes (n − 1)-dimensional volume.
The intersection bodies belong to dual Brunn-Minkowski theory. In 2006, Haberl and Ludwig [8]

introduced the Lp-intersection bodies. Further, they [8] defined the asymmetric Lp-intersection bodies.
Based on this notion, Wang and Li [33, 34] defined the general Lp-intersection body, (also see [25, 28]).
The family of intersection bodies and mixed intersection bodies are valuable in geometry analysis, many
important results were obtained (see [7, 27]).

Let S(Cn) and So(Cn) respectively denote the set of star bodies (with respect to the origin) and the set of
origin-symmetric star bodies in Cn. The real vector space Rn of real dimension n is replaced by a complex
vector space Cn of dimension n. Koldobsky, Paouris and Zymonopoulou [16] identified Cn with R2n used
the standard mapping

ξ = (ξ1, . . . , ξn) = (ξ11 + iξ12, . . . , ξn1 + iξn2) 7→ (ξ11, ξ12, . . . , ξn1, ξn2).

The unit ball B in Cn is given by

B = {ξ ∈ Cn :
n∑

i=1

(ξ2
i1 + ξ2

i2) ≤ 1}.

For the unit sphere in R2n, we write S2n−1. The volume of the unit ball B in Cn is denoted by ω2n.
For ξ ∈ S2n−1, the complex hyperplane Hξ is denoted by

Hξ = {x ∈ Cn : (z, ξ) =

n∑
k=1

zkξk = 0}.

Here ξ is the complex conjugate of ξ, the complex hyperplane through the origin, perpendicular to ξ: Under
the standard mapping from Cn to R2n the hyperplane Hξ turns into a (2n − 2)-dimensional subspace of R2n

orthogonal to the vectors

ξ = (ξ11, ξ12, . . . , ξn1, ξn2) and ξ⊥ = (−ξ12, ξ11, . . . ,−ξn2, ξn1).

The orthogonal two-dimensional subspace H⊥ξ has orthonormal basis {ξ, ξ⊥}. A star body K in R2n is a
complex star body if and only if for every ξ ∈ S2n−1, the section K ∩ H⊥ξ is a two-dimensional Euclidean
circle with radius function ρ(K, ξ).

Recently, Koldobsky, Paouris and Zymonopoulou [16] firstly introduced the notion of mixed complex
intersection bodies as follows: For K,L ∈ So(Cn), K is the complex intersection body of L and write K = ICL
if for every ξ ∈ S2n−1,

V2(K ∩H⊥ξ ) = V2n−2(L ∩Hξ). (1)
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Here V2(K∩H⊥ξ ) denote the 2-dimensional volume of K∩H⊥ξ and V2n−2(L∩Hξ) denote the (2n−2)-dimensional
volume of L ∩Hξ.

Since K ∩ H⊥ξ is the 2-dimensional Euclidean circle with radius ρ(K, ξ) for each ξ ∈ S2n−1 (see [16]),
using the polar coordinates transform and (1), Koldobsky et al. also gave the radial function of complex
intersection body ICL, by

ρ(ICL, ξ)2 =
1
π

V2n−2(L ∩Hξ) =
1

2π(n − 1)

∫
S2n−1

⋂
Hξ

ρL(u)2n−2du, (2)

where du is the standard spherical Lebesgue measure on S2n−1 ⋂
Hξ.

In particular, by ICB =
√

ω2n−2
π B (see page 1642 of [36]), since for every ξ ∈ S2n−1, by (2), Wang et.al. (see

page 422 of [30]) obtained

ρ(ICB, ξ)2 =
1

2π(n − 1)

∫
S2n−1

⋂
Hξ

du =
ω2n−2

π
. (3)

In this article, similar to the definition of half brightness, based on the notion of complex intersection
bodies, we define the dual half complex brightness as follows:
Definition 1.1. For K ∈ So(Cn) and ξ ∈ S2n−1, the dual half complex brightness, δ̃C(K, ξ), of K is defined by

δ̃C(K, ξ) =
1
2
ρ(ICK, ξ)2. (4)

According to dual half complex brightness, we give the dual mixed complex brightness integrals of
complex star bodies as follows:
Definition 1.2. For K1, . . . ,K2n ∈ So(Cn), the dual mixed complex brightness integral, D̃C(K1, . . . ,K2n), of
K1, . . . ,K2n is defined by

D̃C(K1, . . . ,K2n) =
1

2n

∫
S2n−1

δ̃C(K1, ξ) · · · δ̃C(K2n, ξ)dS(ξ). (5)

Complex star bodies K1, . . . ,K2n are said to have similar dual complex brightness if there exist constants
λ1, . . . , λ2n > 0, such that λ1δ̃C(K1, ξ) = · · · = λ2nδ̃C(K2n, ξ) for all ξ ∈ S2n−1.

Let K1, . . . ,K2n−i︸         ︷︷         ︸
2n−i

= K and K2n−i+1, . . . ,K2n︸             ︷︷             ︸
i

= L (i = 0, . . . , 2n) in (5), we write D̃C
i (K,L) = D̃C(K, . . . ,K︸   ︷︷   ︸

2n−i

,L, . . . ,L︸  ︷︷  ︸
i

).

More general, for any real i, if K,L ∈ So(Cn), then the ith dual mixed complex brightness integrals, D̃C
i (K,L),

of K and L is given by

D̃C
i (K,L) =

1
2n

∫
S2n−1

δ̃C(K, ξ)2n−iδ̃C(L, ξ)idS(ξ). (6)

For L = B in (6), by (3) and (4), notice that δ̃C(B, ξ) = 1
2ρ(ICB, ξ)2 = ω2n−2

2π , we remark D̃C
i (K,B) = D̃C

i (K),
then (6) yields

D̃C
i (K) =

ωi
2n−2

2i+1πin

∫
S2n−1

δ̃C(K, ξ)2n−idS(ξ), (7)

where D̃C
i (K) is called the ith dual mixed complex brightness integrals of K.

For L = K in (6), write D̃C
i (K,L) = D̃C(K), which is called the dual complex brightness integral of K.

Clearly,

D̃C(K) =
1

2n

∫
S2n−1

δ̃C(K, ξ)2ndS(ξ). (8)
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Obviously, by (5), (6), (7) and (8), we have

D̃C(K, . . . ,K) = D̃C(K), D̃C
0 (K) = D̃C(K); (9)

D̃C
0 (K,L) = D̃C(K), D̃C

2n(K,L) = D̃C(L). (10)

In this paper, we establish several inequalities for dual mixed complex brightness integrals. First, we
obtain the following Brunn-Minkowski type inequality.
Theorem 1.1. If K,L ∈ So(Cn) and i ∈ R, then for i < 2n − 1,

D̃C
i (K+̂CL)

1
2n−i ≤ D̃C

i (K)
1

2n−i + D̃C
i (L)

1
2n−i ; (11)

for i > 2n − 1 and i , 2n,

D̃C
i (K+̂CL)

1
2n−i ≥ D̃C

i (K)
1

2n−i + D̃C
i (L)

1
2n−i . (12)

In each case, equality holds if and only if K and L have similar dual complex brightness.
Here, K+̂CL is the complex radial Blaschke linear combination of K,L ∈ S(Cn).
Next, we obtain the following Aleksandrov-Fenchel type inequality.

Theorem 1.2. If K1, . . . ,K2n ∈ So(Cn), 1 < m ≤ 2n, then

D̃C(K1, . . . ,K2n)m
≤

m∏
i=1

D̃C(K1, . . . ,K2n−m,K2n−i+1, . . . ,K2n−i+1︸                 ︷︷                 ︸
m

), (13)

equality holds if and only if K2n−m+1,K2n−m+2, . . . ,K2n are all of similar dual complex brightness.
Specially, taking m = 2n in Theorem 1.2 and using (9), we obtain the following result.

Corollary 1.1. If K1, . . . ,K2n ∈ So(Cn), then

D̃C(K1, . . . ,K2n)2n
≤ D̃C(K1) · · · D̃C(K2n),

equality holds if and only if K1,K2, . . . ,K2n are all of similar dual complex brightness.
Further, we establish the following cyclic inequality for the ith dual mixed complex brightness integrals.

Theorem 1.3. If K,L ∈ So(Cn), i, j, k ∈ R and i < j < k, then

D̃C
j (K,L)k−i

≤ D̃C
i (K,L)k− jD̃C

k (K,L) j−i, (14)

equality holds if and only if K and L have similar dual complex brightness.
In particular, if i = 0 and k = 2n in Theorem 1.3, then by (10), we have the following Minkowski type

inequality for the ith dual mixed complex brightness integrals.
Corollary 1.2. If K,L ∈ So(Cn), j ∈ R and 0 < j < 2n, then

D̃C
j (K,L)2n

≤ D̃C(K)2n− jD̃C(L) j, (15)

equality holds if and only if K and L have similar dual complex brightness. For j = 0 or j = 2n, equality always holds
in (15).

In addition, let L = B in Theorem 1.3, we may obtain the following result.
Corollary 1.3. If K,L ∈ So(Cn), i, j, k ∈ R and i < j < k, then

D̃C
j (K)k−i

≤ D̃C
i (K)k− jD̃C

k (K) j−i,

equality holds if and only if K have similar dual complex brightness, i.e., K has constant dual complex brightness.
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Finally, we establish monotonicity inequalities for the ith dual mixed complex brightness integrals as
follows:
Theorem 1.4. If K,L ∈ So(Cn), real number i, j , 0 and i < j, then

( D̃C
i (K,L)

D̃C(K)

) 1
i

≤

( D̃C
j (K,L)

D̃C(K)

) 1
j

, (16)

equality holds if and only if K and L have similar dual complex brightness.
Theorem 1.5. If K,L ∈ So(Cn), real number i, j , 0 and i < j, then

( D̃C
2n−i(K,L)

D̃C(L)

) 1
i

≤

( D̃C
2n− j(K,L)

D̃C(L)

) 1
j

, (17)

equality holds if and only if K and L have similar dual complex brightness.
This paper is organized as follows. In Section 2, we collect some basic concepts that will be used in

the proofs of our results. In Section 3, we complete the proofs of Theorems 1.1–1.5. Finally, in Section 4,
according to Theorem 1.1, Theorem 1.2 and Theorem 1.3, we establish the Brunn-Minkowski, Aleksandrov-
Fenchel and cycle type inequalities of differences, which are related to the dual mixed complex brightness
integrals, respectively.

2. Notations and Background Materials

For K ∈ Kn, its support function, h(K, ·) : Rn
→ R, is defined by (see [7, 27])

h(K, x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y.
If K be a compact star-shaped set (about the origin) inRn, then its radial function, ρK = ρ(K, ·) : Rn

\{0} →
[0,∞), is defined by (see [7, 27])

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn
\ {0}. (18)

If ρK is positive and continuous, K will be called a star body (respect to the origin).
By (18), we easily see that if K ⊆ L, then

ρ(K, ·) ≤ ρ(L, ·). (19)

For star bodies K,L and λ, µ ≥ 0 (not both zero), the radial Blaschke linear combination, λ · K+̂µ · L, of K
and L is defined by (see [7, 27])

ρ(λ · K+̂µ · L, ·)n−1 = λρ(K, ·)n−1 + µρ(L, ·)n−1. (20)

Above definition (20) was extended to the complex case by Wu et al. (see[36]). For K,L ∈ S(Cn) and
λ, µ ≥ 0 (not both zero), the complex radial Blaschke linear combination, λ · K+̂Cµ · L, of K and L as the star
body whose radial function is given by:

ρ(λ · K+̂Cµ · L, ·)2n−2 = λρ(K, ·)2n−2 + µρ(L, ·)2n−2. (21)



C. Li et al. / Filomat 33:19 (2019), 6161–6172 6166

3. Proofs of the Theorems

Proof of Theorem 1.1. For K,L ∈ So(Cn) and i ∈ R, let p = 2n − i, since p > 1, thus we have that i ≤ 2n − 1.
Hence, by (7), (4), (2), (21) and Minkowski integral inequality [11], we obtain

D̃C
2n−p(K+̂CL)

1
p

=
[ ω2n−p

2n−2

22n−p+1π2n−pn

∫
S2n−1

δ̃C(K+̂CL, ξ)pdS(ξ)
] 1

p

=
[ ω2n−p

2n−2

22n−p+1π2n−pn

∫
S2n−1

(
1
2
ρ(IC(K+̂CL), ξ))2pdS(ξ)

] 1
p

=
[ ω2n−p

2n−2

22n−p+1π2n−pn

∫
S2n−1

( 1
22 ·

1
2π(n − 1)

∫
S2n−1

⋂
Hξ

ρ(K+̂CL,u)2n−2du
)p

dS(ξ)
] 1

p

=
[ ω2n−p

2n−2

22n−p+1π2n−pn

∫
S2n−1

( 1
22 ·

1
2π(n − 1)

∫
S2n−1

⋂
Hξ

(ρ(K,u)2n−2 + ρ(L,u)2n−2)du
)p

dS(ξ)
] 1

p

=
[ ω2n−p

2n−2

22n−p+1π2n−pn

∫
S2n−1

[δ̃C(K, ξ) + δ̃C(L, ξ)]pdS(ξ)
] 1

p

≤

[ ω2n−p
2n−2

22n−p+1π2n−pn

∫
S2n−1

[δ̃C(K, ξ)]pdS(ξ)
] 1

p

+
[ ω2n−p

2n−2

22n−p+1π2n−pn

∫
S2n−1

[δ̃C(L, ξ)]pdS(ξ)
] 1

p

= D̃C
2n−p(K)

1
p + D̃C

2n−p(L)
1
p . (22)

Let 2n − p = i in (22), then inequality (11) is given.
The equality condition of Minkowski integral inequality imply that equality holds in inequality (22) if

and only if δ̃C(K, ξ) = λδ̃C(L, ξ), where λ is a constant, i.e., K and L have similar dual complex brightness.
Similar to the above method, for i > 2n − 1 and i , 2n, inequality (12) can be obtained from (7), (4), (2),

(21) and inverse Minkoeski integral inequality [11]. �
Lemma 3.3 ([6, 11]). If f0, f1, . . . , fm are (strictly) positive continuous functions defined on Sn−1 and λ1, . . . , λm are
positive constants the sum of whose reciprocals is unity, then∫

Sn−1
f0(u) · · · fm(u)dS(u) ≤

m∏
i=1

( ∫
Sn−1

f0(u) f λi
i (u)dS(u)

) 1
λi
, (23)

with equality if and only if there exist positive constants α1, α2, . . . , αm such that α1 f λ1
1 (u) = · · · = αm f λm

m (u) for all
u ∈ Sn−1.

Proof of Theorem 1.2. For K1, . . . ,K2n ∈ So(Cn) , taking

λi = m (1 ≤ i ≤ m),

f0(ξ) = δ̃C(K1, ξ) · · · δ̃C(K2n−m, ξ) (i f m = 2n, then f0 = 1),

fi(ξ) = δ̃C(K2n−i+1, ξ) (1 ≤ i ≤ m),

then by (23) we obtain∫
S2n−1

δ̃C(K1, ξ) · · · δ̃C(K2n, ξ)dS(ξ)

≤

m∏
i=1

( ∫
S2n−1

δ̃C(K1, ξ) · · · δ̃C(K2n−m, ξ) δ̃C(K2n−i+1, ξ) · · · δ̃C(K2n−i+1, ξ)︸                                ︷︷                                ︸
m

dS(ξ)
) 1

m

, (24)
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from (5) and (24), we deduce

D̃C(K1, . . . ,K2n)m
≤

m∏
i=1

D̃C(K1, . . . ,K2n−m,K2n−i+1, . . . ,K2n−i+1︸                 ︷︷                 ︸
m

).

This is just inequality (13).
According to the equality condition of (23), we see that equality holds in (24) if and only if there exist

positive constants λ1, λ2, . . . , λm such that

λ1δ̃
C(K2n−m+1, ξ)m = λ2δ̃

C(K2n−m+2, ξ)m = · · · = λmδ̃
C(K2n, ξ)m,

for all ξ ∈ S2n−1. Thus equality holds in (13) if and only if K2n−m+1,K2n−m+2, . . . ,K2n are all of similar dual
complex brightness. �

Proof of Theorem 1.3. For K,L ∈ So(Cn), if i < j < k, then k− j
k−i +

j−i
k−i = 1 and k−i

k− j > 1, thus from (6) and
Hölder’s integral inequality [11], we obtain

D̃C
i (K,L)

k− j
k−i D̃C

k (K,L)
j−i
k−i

=
( 1

2n

∫
S2n−1

δ̃C(K, ξ)2n−iδ̃C(L, ξ)idS(ξ)
) k− j

k−i

×

( 1
2n

∫
S2n−1

δ̃C(K, ξ)2n−kδ̃C(L, ξ)kdS(ξ)
) j−i

k−i

=
( 1

2n

∫
S2n−1

(δ̃C(K, ξ)
(2n−i)(k− j)

k−i δ̃C(L, ξ)
i(k− j)

k−i )
k−i
k− j dS(ξ)

) k− j
k−i

×

( 1
2n

∫
S2n−1

(δ̃C(K, ξ)
(2n−k)( j−i)

k−i δ̃C(L, ξ)
k( j−i)

k−i )
k−i
j−i dS(ξ)

) j−i
k−i

≥
1

2n

∫
S2n−1

δ̃C(K, ξ)2n− jδ̃C(L, ξ) jdS(ξ)

= D̃C
j (K,L).

This yields inequality (14).
According to the equality condition of Hölder’s integral inequality, we know that equality holds in (14)

if and only if there exists a constant λ > 0 such that

(δ̃C(K, ξ)
(2n−i)(k− j)

k−i δ̃C(L, ξ)
i(k− j)

k−i )
k−i
k− j = λ(δ̃C(K, ξ)

(2n−k)( j−i)
k−i δ̃C(L, ξ)

k( j−i)
k−i )

k−i
j−i ,

i.e., δ̃C(K, ξ) = λδ̃C(L, ξ) for all ξ ∈ S2n−1. Thus, equality holds in (14) if and only if K and L have similar dual
complex brightness. �

Proof of Theorem 1.4. For K,L ∈ So(Cn), by (6), we obtain

D̃C
i (K,L) =

1
2n

∫
S2n−1

δ̃C(K, ξ)2n−iδ̃C(L, ξ)idS(ξ)

=
1

2n

∫
S2n−1

(δ̃C(K, ξ)2n− jδ̃C(L, ξ) j)
i
j (δ̃C(K, ξ)2n)

j−i
j dS(ξ). (25)

If 0 < i < j, then i
j +

j−i
j = 1 and j

i > 1, thus according to Hölder’s integral inequality [11], (25), (6) and (8),
we obtain that

D̃C
i (K,L) ≤

( 1
2n

∫
S2n−1

δ̃C(K, ξ)2n− jδ̃C(L, ξ) jdS(ξ)
) i

j

×

( 1
2n

∫
S2n−1

δ̃C(K, ξ)2ndS(ξ)
) j−i

j

= D̃C
j (K,L)

i
j D̃C(K)

j−i
j . (26)
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Since i > 0, thus by (26), we get

( D̃C
i (K,L)

D̃C(K)

) 1
i

≤

( D̃C
j (K,L)

D̃C(K)

) 1
j

.

This yields the desired inequality (16).
According to the equality condition of Hölder’s integral inequality, we know that equality holds in (16)

if and only if K and L have similar dual complex brightness.
Similar to the above method, if i < 0 < j or i < j < 0, then j

i < 0 or 0 < j
i < 1. Thus, by (6), (8) and inverse

Hölder’s integral inequality [11], we know that inequality (26) is reversed. From this, notice that i < 0, we
can prove the inequality (16) is true. �

Proof of Theorem 1.5. For K,L ∈ So(Cn), by (6), we have

D̃C
2n−i(K,L) =

1
2n

∫
S2n−1

δ̃C(K, ξ)iδ̃C(L, ξ)2n−idS(ξ)

=
1

2n

∫
S2n−1

(δ̃C(K, ξ) jδ̃C(L, ξ)2n− j)
i
j (δ̃C(L, ξ)2n)

j−i
j dS(ξ). (27)

If 0 < i < j, then i
j +

j−i
j = 1 and j

i > 1, thus by Hölder’s integral inequality [11], (27), (6) and (8), we get that

D̃C
2n−i(K,L) ≤

( 1
2n

∫
S2n−1

δ̃C(K, ξ) jδ̃C(L, ξ)2n− jdS(ξ)
) i

j

×

( 1
2n

∫
S2n−1

δ̃C(L, ξ)2ndS(ξ)
) j−i

j

= D̃C
2n− j(K,L)

i
j D̃C(L)

j−i
j . (28)

Since i > 0, thus by (28), we get

( D̃C
2n−i(K,L)

D̃C(L)

) 1
i

≤

( D̃C
2n− j(K,L)

D̃C(L)

) 1
j

.

This deduces the desired inequality (17).
According to the equality condition of Hölder’s integral inequality, we know that equality holds in (17)

if and only if K and L have similar dual complex brightness.
Similar to the above method, if i < 0 < j or i < j < 0, then j

i < 0 or 0 < j
i < 1. Thus, by (6), (8) and inverse

Hölder’s integral inequality [11], we know that inequality (28) is reversed. From this, notice that i < 0, we
can prove the inequality (17) is true. �

4. Differences type inequalities

In this part, as the applications of Theorem 1.1-1.3 and their equality conditions, we give the analogous
version of the differences inequalities for the dual mixed complex brightness integrals. Firstly, we establish
Brunn-Minkowski type inequality of differences inequality which is related dual mixed complex brightness
integrals as follows:
Theorem 4.1. If K,L,M,N ∈ So(Cn) and i ∈ R, and M ⊆ K, N ⊆ L, K and L have similar dual complex brightness.
For i < 2n − 1, then

[D̃C
i (K+̂CL) − D̃C

i (M+̂CN)]
1

2n−i ≥ [D̃C
i (K) − D̃C

i (M)]
1

2n−i + [D̃C
i (L) − D̃C

i (N)]
1

2n−i , (29)

for i > 2n− 1 and i , 2n, inequality (29) is reversed. Equality holds in (29) if and only if M and N have similar dual
complex brightness and (D̃C

i (K), D̃C
i (M)) = λ(D̃C

i (L), D̃C
i (N)), where λ is a constant. For i = 2n− 1, (29) is identical.
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Lemma 4.1 (Bellman’s inequality [5]). If a = {a1, . . . , an} and b = {b1, . . . , bn} be two series of positive real numbers.
If ap

1 −
∑n

i=2 ap
i > 0, bp

1 −
∑n

i=2 bp
i > 0, then for p > 1,

(
ap

1 −

n∑
i=2

ap
i

) 1
p

+
(
bp

1 −

n∑
i=2

bp
i

) 1
p

≤

(
(a1 + b1)p

−

n∑
i=2

(ai + bi)p
) 1

p

, (30)

for p < 0 or 0 < p < 1, inequality (30) is reversed. Equality holds in (30) if and only if a = cb, where c is a constant.
Proof of Theorem 4.1. For K,L,M,N ∈ So(Cn), if i < 2n − 1, by (11), then

D̃C
i (M+̂CN)

1
2n−i ≤ D̃C

i (N)
1

2n−i + D̃C
i (M)

1
2n−i , (31)

with equality if and only if M and N have similar dual complex brightness. Since K and L have similar dual
complex brightness, thus according to the equality condition of inequality (11), we have

D̃C
i (K+̂CL)

1
2n−i = D̃C

i (K)
1

2n−i + D̃C
i (L)

1
2n−i . (32)

Due to M ⊆ K, N ⊆ L, by (7), (4), (2) and (19), we deduce

D̃C
i (K) ≥ D̃C

i (M), D̃C
i (L) ≥ D̃C

i (N), D̃C
i (K+̂CL) ≥ D̃C

i (M+̂CN),

from these, notice that 2n − i > 1 (i < 2n − 1), and according to (31), (32) and (30), we obtain

(D̃C
i (K+̂CL) − D̃C

i (M+̂CN))
1

2n−i

≥

[(
D̃C

i (K)
1

2n−i + D̃C
i (L)

1
2n−i

)2n−i

−

(
D̃C

i (M)
1

2n−i + D̃C
i (N)

1
2n−i

)2n−i] 1
2n−i

≥

(
D̃C

i (K) − D̃C
i (M)

) 1
2n−i

+
(
D̃C

i (L) − D̃C
i (N)

) 1
2n−i

.

This yields inequality (29).
Along the same line, for i > 2n − 1 and i , 2n, the reversed inequality of (29) can be deduced directly

via of follows from (12) and the reversed case of (30).
By the equality conditions of inequalities (11) and (30), we see that equality holds in (29) if and only

if M and N have similar dual complex brightness and there exists constant λ such that (D̃C
i (K), D̃C

i (M)) =

λ(D̃C
i (L), D̃C

i (N)). For i = 2n − 1, (29) is identical. �
Next, we establish Aleksandrov-Fenchel inequality of differences forms as follows.

Theorem 4.2. If K1, . . . ,K2n ∈ So(Cn), L1, . . . ,L2n ∈ So(Cn) and Li ⊆ Ki (1 ≤ i ≤ 2n), K2n−m+1,K2n−m+2, . . . ,K2n
are all of similar dual complex brightness and 1 < m ≤ 2n, then(

D̃C(K1, . . . ,K2n) − D̃C(L1, . . . ,L2n)
)m

≥

m∏
i=1

(
D̃C(K1, . . . ,K2n−m,K2n−i+1, . . . ,K2n−i+1) − D̃C(L1, . . . ,L2n−m,L2n−i+1, . . . ,L2n−i+1)

)
, (33)

with equality if and only if L2n−m+1,L2n−m+2, . . . ,L2n are all of similar dual complex brightness and

[D̃C(K1, . . . ,K2n−m,K2n, . . . ,K2n), . . . , D̃C(K1, . . . ,K2n−m,K2n−m+1, . . . ,K2n−m+1)]

= λ[D̃C(L1, . . . ,L2n−m,L2n, . . . ,L2n), . . . , D̃C(L1, . . . ,L2n−m,L2n−m+1, . . . ,L2n−m+1)],

where λ is a constant.
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Lemma 4.2 ([11]). If ci > 0, bi > 0, ci > bi, i = 1, · · · ,n, then( n∏
i=1

(ci − bi)
) 1

n

≤

( n∏
i=1

ci

) 1
n

−

( n∏
i=1

bi

) 1
n

, (34)

with equality if and only if c1
b1

= c2
b2

= · · · = cn
bn

.
Proof of Theorem 4.2. For L1, . . . ,L2n ∈ So(Cn), from (13), we know

D̃C(L1, . . . ,L2n)m
≤

m∏
i=1

D̃C(L1, . . . ,L2n−m,L2n−i+1, . . . ,L2n−i+1), (35)

with equality if and only if L2n−m+1,L2n−m+2, . . . ,L2n are all of similar dual complex brightness. Since the
bodies K2n−m+1,K2n−m+2, . . . ,K2n are all of similar dual complex brightness, thus by (13), we obtain

D̃C(K1, . . . ,K2n)m =

m∏
i=1

D̃C(K1, . . . ,K2n−m,K2n−i+1, . . . ,K2n−i+1). (36)

Notice that Li ⊆ Ki (1 ≤ i ≤ 2n) and associated with (5), (4), (2) and (19), we have

D̃C(K1, . . . ,K2n) ≥ D̃C(L1, . . . ,L2n), (37)

taking K2n−m+1 = · · · = K2n = K2n−i+1, L2n−m+1 = · · · = L2n = L2n−i+1 in (37), we obtain

D̃C(K1, . . . ,K2n−m,K2n−i+1, . . . ,K2n−i+1) ≥ D̃C(L1, . . . ,L2n−m,L2n−i+1, . . . ,L2n−i+1).

From these, and according to (35), (36) and (34), we deduce(
D̃C(K1, . . . ,K2n) − D̃C(L1, . . . ,L2n)

)m

≥

[( m∏
i=1

D̃C(K1, . . . ,K2n−m,K2n−i+1, . . . ,K2n−i+1)
) 1

m

−

( m∏
i=1

D̃C(L1, . . . ,L2n−m,L2n−i+1, . . . ,L2n−i+1)
) 1

m
]m

≥

m∏
i=1

(
D̃C(K1, . . . ,K2n−m,K2n−i+1, . . . ,K2n−i+1) − D̃C(L1, . . . ,L2n−m,L2n−i+1, . . . ,L2n−i+1)

)
.

By the equality conditions of inequalities (35) and (34), we see that equality holds in (33) if and only if
L2n−m+1,L2n−m+2, . . . ,L2n are all of similar dual complex brightness and

[D̃C(K1, . . . ,K2n−m,K2n, . . . ,K2n), . . . , D̃C(K1, . . . ,K2n−m,K2n−m+1, . . . ,K2n−m+1)]

= λ[D̃C(L1, . . . ,L2n−m,L2n, . . . ,L2n), . . . , D̃C(L1, . . . ,L2n−m,L2n−m+1, . . . ,L2n−m+1)],

where λ is a constant. �
Finally, we also obtain a new cycle type inequality for the differences of dual mixed complex brightness

integral.
Theorem 4.3. If K,L,M,N ∈ So(Cn), i, j, k ∈ R and M ⊆ K, N ⊆ L, K and L have similar dual complex brightness
and 0 ≤ i < j < k, then(

D̃C
j (K,L) − D̃C

j (M,N)
)k−i

≥

(
D̃C

k (K,L) − D̃C
k (M,N)

) j−i(
D̃C

i (K,L) − D̃C
i (M,N)

)k− j

, (38)

with equality if and only if M and N have similar dual complex brightness and there exists a constant λ such that
(D̃C

i (K,L), D̃C
i (M,N)) = λ(D̃C

k (K,L), D̃C
k (M,N)).
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Lemma 4.3 (Popviciu’s inequality [11]). If p > 0, q > 0, 1
p + 1

q = 1 and a = {a1, . . . , an} and b = {b1, . . . , bn} be
two series of positive real numbers such that ap

1 −
∑n

i=2 ap
i > 0, bq

1 −
∑n

i=2 bq
i > 0, then(

ap
1 −

n∑
i=2

ap
i

) 1
p
(
bq

1 −

n∑
i=2

bq
i

) 1
q

≤ a1b1 −

n∑
i=2

aibi, (39)

with equality if and only if a = cb, where c is a constant.
Proof of Theorem 4.3. For K,L,M,N ∈ So(Cn), i, j, k ∈ R and 0 ≤ i < j < k, by (14), then

D̃C
j (M,N)k−i

≤ D̃C
i (M,N)k− jD̃C

k (M,N) j−i, (40)

with equality if and only if M and N have similar dual complex brightness. Since K and L have similar dual
complex brightness, thus according to the equality condition of inequality (14), we have

D̃C
j (K,L)k−i = D̃C

i (K,L)k− jD̃C
k (K,L) j−i. (41)

Hence, by (40) and (41), we get

D̃C
j (K,L) − D̃C

j (M,N) ≥ D̃C
i (K,L)

k− j
k−i D̃C

k (K,L)
j−i
k−i − D̃C

i (M,N)
k− j
k−i D̃C

k (M,N)
j−i
k−i , (42)

with equality if and only if M and N have similar dual complex brightness. Notice that M ⊆ K, N ⊆ L, by
(6), (4), (2) and (19), we obtain

D̃C
i (K,L) ≥ D̃C

i (M,N), D̃C
k (K,L) ≥ D̃C

k (M,N).

From these, and notice that k−i
k− j > 0, k−i

j−i > 0 and k− j
k−i +

j−i
k−i = 1, thus according to (39) we have

D̃C
i (K,L)

k− j
k−i D̃C

k (K,L)
j−i
k−i − D̃C

i (M,N)
k− j
k−i D̃C

k (M,N)
j−i
k−i ≥

(
D̃C

i (K,L) − D̃C
i (M,N)

) k− j
k−i

(
D̃C

k (K,L) − D̃C
k (M,N)

) j−i
k−i

.

This and (42) give inequality (38).
By the equality conditions of inequalities (42) and (39), we see that equality holds in (38) if and only if M

and N have similar dual complex brightness and there exists a constant λ such that (D̃C
i (K,L),DC

i (M,N)) =

λ(D̃C
k (K,L), D̃C

k (M,N)). �
In particular, if L = N = B in Theorem 4.3, by (7) the following result is obvious.

Corollary 4.1. If K,M ∈ So(Cn), i, j, k ∈ R and M ⊆ K, K have constant dual complex brightness and i < j < k,
then (

D̃C
j (K) − D̃C

j (M)
)k−i

≥

(
D̃C

i (K) − D̃C
i (M)

)k− j(
D̃C

k (K) − D̃C
k (M)

) j−i

,

with equality if and only if M have constant dual complex brightness.
If i = 0 and k = 2n in (38), then by (10), we have the following cycle Minkowski type inequality for the

differences of dual mixed complex brightness integrals.
Corollary 4.2. If K,L,M,N ∈ So(Cn), M ⊆ K, N ⊆ L, K and L have similar dual complex brightness, j ∈ R and
0 < j < 2n, then(

D̃C
j (K,L) − D̃C

j (M,N)
)2n

≥

(
D̃C(K) − D̃C(M)

)2n− j(
D̃C(L) − D̃C(N)

) j

,

with equality if and only if M and N have similar dual complex brightness and there exists a constant λ such that
(D̃C(K), D̃C(M)) = λ(D̃C(L), D̃C(N)).
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