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Abstract. In the present article, we construct a new family of locally univalent and sense preserving
harmonic mappings by considering a suitable transformation of normalized univalent analytic functions
defined in the open unit discD. We present necessary and sufficient conditions for the functions of this new
family to be univalent. Apart from studying properties of this new family, results about the convolutions
or Hadamard products of functions from this family with some suitable analytic or harmonic mappings
are proved by introducing a new technique which can also be used to simplify the proofs of earlier known
results on convolutions of harmonic mappings. The technique presented also enables us to generalize
existing such results.

1. Introduction

LetD = {z ∈ C : |z| < 1} denote the open unit disc in the complex plane and S the usual class of univalent
analytic functions f : D → C, such that f (0) = 0, f ′(0) = 1. Further, let SH denote the class of univalent
harmonic functions f : D → C, such that f (0) = 0 and fz(0) = 1. It is known that f ∈ SH can be uniquely
represented as f = h + 1, where h and 1 are analytic functions in D. Lewy [10] proved that a harmonic
function f = h+1 is locally univalent and sense preserving inD if and only if the Jacobian J f (z) of f , defined
by

J f (z) = | fz(z)|2 − | fz(z)|2 = |h′(z)|2 − |1′(z)|2,

is positive in D. This is equivalent to the existence of an analytic function w(z) =
1′(z)
h′(z) , defined on D, such

that |w(z)| < 1 inD. Here w is referred to as dilatation of f . For more details on planar harmonic mappings
see [4].

A domain E inC is said to be convex in the directionψ, 0 ≤ ψ < π, if every line parallel to the line through
0 and eiψ has an empty or connected intersection with E. Let K(ψ) and KH(ψ) be the respective subclasses
of S and SH, whose members map D onto the domain convex in the direction of ψ, 0 ≤ ψ < π. Functions
in K(0) or KH(0) are said to be convex in the direction of the real axis or simply CHD functions. Similarly,
functions in K(π/2) or KH(π/2) are referred to as functions convex in the direction of the imaginary axis. Let
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S∗,K and C be the usual subclasses of S consisting of starlike (with respect to the origin), convex and close
to convex functions, respectively. We denote by S∗H,KH and CH, respectively, the corresponding subclasses
of SH. Note that, a domain is convex if and only if it is convex in every direction. Further, it is known that
K(ψ) ⊂ C and KH(ψ) ⊂ CH.

The convolution or Hadamard product of two analytic functions f (z) = z +
∑
∞

n=2 anzn and F(z) = z +∑
∞

n=2 Anzn, is denoted by f ∗ F and is defined as ( f ∗ F)(z) = z +
∑
∞

n=2 anAnzn. In the harmonic case, for
f (z) = h + 1 = z +

∑
∞

n=2 anzn +
∑
∞

n=1 bnzn and F(z) = H + G = z +
∑
∞

n=2 Anzn +
∑
∞

n=1 Bnzn, we define their
convolution as,

( f ∗F)(z) = (h∗H)(z) + (1∗G)(z) = z +

∞∑
n=2

anAnzn +

∞∑
n=1

bnBnzn.

In 1984, Clunie and Shiel-Small [2] introduced a technique, called shear construction, to construct new
univalent harmonic functions on the open unit discD and provided an interesting example of a univalent
harmonic mapping given by

L0(z) =
I(z) + zI′(z)

2
+

I(z) − zI′(z)
2

where I(z) = z/(1−z). The mapping L0 is now popularly known as standard right half plane mapping which
maps the open unit discD onto the region {w : Rew > −1/2} in the complex plane.

Stacey Muir [12], in 2012, defined a transformation Tα[ f ] on an analytic function f satisfying f (0) = 0
and f ′(0) = 1 to generate a new harmonic function given by

Tα[ f ](z) =
f (z) + αz f ′(z)

1 + α
+

f (z) − αz f ′(z)
1 + α

, (1)

where α > 0 is some real number and proved that
(i) Tα[ f ] is locally univalent and convex in the direction of the imaginary axis if and only if f is convex.
(ii) Tα[ f ] ∈ KH if and only if f ∈ DCP, where DCP is the class of direction convexity preserving functions.
(Note that a function f ∈ S is direction convexity preserving if it preserves the class K(ψ), ψ fixed, under
convolution.)

In the present article, we define a general transformation to generate a new family of locally univalent
and sense preserving maps, which contains transformation of Stacey Muir as a particular case.
For f ∈ S, define

Cα,h[ f ](z) =
f (z) + α(h ∗ f )(z)

1 + α
+

f (z) − α(h ∗ f )(z)
1 + α

, α > 0, z ∈ D, (2)

where h : D → C is any analytic function with h(0) = 0 and h′(0) = 1. For example, in Cα,h[ f ] we can take
h = hi, i = 1, 2, 3, 4, where hi are analytic functions given below.

h1(z) =

∞∑
n=1

nzn, h2(z) =

∞∑
n=1

n + 1
2

zn, h3(z) =

∞∑
n=1

1
n

zn, h4(z) =

∞∑
n=1

2
n + 1

zn.

Obviously,

h1 ∗ f = z f ′, h2 ∗ f =
1
2

[ f + z f ′], h3 ∗ f =

∫ z

0

f (ξ)
ξ

dξ, h4 ∗ f =
2
z

∫ z

0
f (ξ)dξ.

Note that, h3 ∗ f and h4 ∗ f are famous Alexander and Libera transformations of f , respectively (see [1] and
[11]) and Cα,h1 [ f ] = Tα[ f ].
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In Section 3, we establish a necessary and sufficient condition for Cα,h[ f ] to be locally univalent and
sense preserving in D. Further we also prove here that if f ∈ K then for i = 1, 2, 3, 4, Cα,hi [ f ] ∈ SH and are
convex in the direction of the imaginary axis.

It is known that the class SH is not closed under convolutions with functions from the class K i.e. for
F = H + G ∈ SH, ψ ∈ K, the convolution ψ ∗ F = ψ ∗H + ψ ∗ G need not belong to SH (see Example 3.2 [13]).
In Theorem 4.1, we show that if f ∈ K, then ψ ∗ Cα,h[ f ] ∈ SH for every ψ ∈ K.

It is interesting to explore the properties of convolutions of harmonic functions as they are quite different
from those of analytic functions. Many fruitful convolution results have been established in the recent past
(see [3, 5, 6, 8, 13, 16–18]). We mention below few of them. Consider the vertical strip mappings fη = hη +1η
where

hη(z) + 1η(z) =
1

2i sin η
log

(
1 + zeiη

1 + ze−iη

)
, π/2 ≤ η < π. (3)

In 2001, Dorff [5] proved the following result.

Theorem 1.1. Let f1 = h1 + 11 ∈ KH be any right half plane mapping with h1(z) + 11(z) = z/(1 − z) and fη be as
given in (3). Then f1 ∗ fη ∈ SH and is convex in the direction of real axis provided f1 ∗ fη is locally univalent and sense
preserving.

In 2012, Dorff et al. [6] established the following result.

Theorem 1.2. Let fη be as given by (3) with 1′η/h′η = eiθzn(θ ∈ R). Further let F0 = H0 + G0, where H0(z) + G0(z) =

z/(1 − z) and G′0
H′0

= −z, be the standard right half plane mapping. Then for n = 1, 2,F0 ∗ fη ∈ SH and is convex in the
direction of the real axis.

In 2015, Kumar et al. [8] considered more general class of right half plane mappings Fa = Ha + Ga, given by

Ha(z) + Ga(z) =
z

1 − z
,

G′a(z)
H′a(z)

=
a − z

1 − az
, a ∈ (−1, 1) (4)

and generalized Theorem 1.2 as under.

Theorem 1.3. Let Fa be the harmonic mappings as given in (4)and fη be the harmonic mappings as given in (3) with
1′η/h′η = eiθzn(n ∈N, θ ∈ R). Then Fa ∗ fη ∈ SH and is convex in the direction of the real axis for all a ∈ [ n−2

n+2 , 1).

In 2017, Liu et al. [17] considered the mappings Tα[ f ] given by Stacey Muir [12](mentioned above) and
presented following results.

Theorem 1.4. Let Tα[I] and fη be harmonic mappings as given in (1) and (3), respectively with 1′η/h′η = eiθzn(n ∈
N, θ ∈ R). Then
(a) Tα[I] ∗ fη ∈ S0

H and is convex in the direction of the real axis for n = 1, π/2 ≤ η < π and 0 < α ≤ 2;
(b) Tα[I] ∗ fη ∈ S0

H and is convex in the direction of the real axis for η = π/2 and 0 < α ≤ 2/n.

In 2018, Liu et al. [18] further generalized the result given in Theorem 1.4(b) by replacing the condition
η = π/2 with π/2 ≤ η < π and proved the following result.

Theorem 1.5. Let Tα[I(z)] and fη be harmonic mappings as given in (1) and (3), respectively with 1′η/h′η = eiθzn(n ∈
N, θ ∈ R). Then Tα[I(z)] ∗ fη ∈ S0

H and is convex in the direction of the real axis for 0 < α ≤ 2/n.

In the proofs of Theorem 1.3, Theorem 1.4 and Theorem 1.5, authors have used Cohn’s rule or Schur- Cohn
algorithm and Gauss- Lucas Theorem, which involve, to some extent, lengthy computations. In Section 4
of this article, we present a different and simple technique, which enables us to prove more general results
on convolutions of Cα,h[ f ] and fη. Theorem 1.4 and Theorem 1.5 follow as particular cases of our result.
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2. Preliminaries

We shall need the following results to prove our main theorems in subsequent sections.

Lemma 2.1. Let ψ and G be analytic in D with ψ(0) = G(0) = 0. If ψ is convex and G is starlike, then for each
analytic function F satisfying ReF(z) > 0 inD, we have

Re
(ψ ∗ FG)(z)
(ψ ∗ G)(z)

> 0, z ∈ D.

Lemma 2.2. Let a harmonic mapping f = h + 1 be locally univalent inD. Then f is univalent mapping ofD onto a
domain convex in the direction of α if and only if h− e2iα1 is a univalent analytic mapping ofD onto a domain convex
in the direction of α.

Lemma 2.3. Let f be analytic function inD with f (0) = 0 and f ′(0) , 0 and let

φ(z) =
z

(1 + zeiθ)(1 + ze−iθ)
,

where θ ∈ R. If

Re
[

z f ′(z)
φ(z)

]
> 0, for all z ∈ D,

then f is convex in the direction of the real axis.

Lemma 2.1. is due to Ruscheweyh and Sheil Small [15], Lemma 2.2. is due to Clunie and Shiel-Small [2]
and Lemma 2.3 is due to Pommerenke [14].

3. Local Univalence and Univalence of Cα,h[ f ]

We start this section by proving a necessary and sufficient condition for Cα,h[ f ] to be locally univalent and
sense preserving in the open unit discD.

Theorem 3.1. Let f ∈ S and h any analytic functions. Then the function Cα,h[ f ] defined in (2) is locally univalent
and sense preserving inD if and only if

Re
(

(h ∗ z f ′)(z)
z f ′(z)

)
> 0, z ∈ D.

Proof. Let w denote the dilatation of Cα,h[ f ]. Thus Cα,h[ f ] is locally univalent and sense preserving in D if
and only if

|w(z)| =
∣∣∣∣∣ f ′(z) − α(h ∗ f )′(z)

f ′(z) + α(h ∗ f )′(z)

∣∣∣∣∣ < 1, z ∈ D,

which is equivalent (because α > 0) to

Re
(

z(h ∗ f )′(z)
z f ′(z)

)
= Re

(
(h ∗ z f ′)(z)

z f ′(z)

)
> 0, z ∈ D.

Theorem 3.1 and Lemma 2.2 immediately lead to the following result.

Theorem 3.2. Let f and h be analytic functions such that Re(h ∗ z f ′)(z)/z f ′(z)) > 0 inD. Then,Cα,h[ f ] ∈ SH and is
convex in the direction of the imaginary axis if and only if f is convex in the direction of the imaginary axis.

Theorem 3.3. If f ∈ K, then for i = 1, 2, 3, 4, Cα,hi [ f ] ∈ SH and is convex in the direction of the imaginary axis.
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Proof. In view of Theorem 3.1 and Theorem 3.2, to prove our result, it is enough to prove that for i = 1, 2, 3, 4,

Re
{

(hi ∗ f )′(z)
f ′(z)

}
> 0, z ∈ D.

Now, i = 1 is the case already proved by Stacey Muir [12].
We have h2 ∗ f = 1

2 [ f + z f ′]. So,

Re
{

(h2 ∗ f )′(z)
f ′(z)

}
=

1
2

+
1
2

Re
{

1 +
z f ′′(z)
f ′(z)

}
>

1
2
, (5)

as f ∈ K.
We have (h3 ∗ f )′(z) = f (z)/z. Hence,

Re
{

(h3 ∗ f )′(z)
f ′(z)

}
= Re

{
f (z)

z f ′(z)

}
> 0,

as f ∈ K ⊂ S∗.
Note that h4 ∗ h2 = z/(1 − z). So,

Re
{

(h4 ∗ f )′

f ′

}
= Re

{
(h4 ∗ f )′

(h4 ∗ h2 ∗ f )′

}
= Re

{
h4 ∗ z f ′

h4 ∗ z(h2 ∗ f )′

}
= Re

 h4 ∗ z f ′

h4 ∗
(h2∗ f )′

f ′ z f ′


Now, f ∈ K implies z f ′ ∈ S∗ and Re(h2 ∗ f )′/ f ′ > 0, by (5). Also, h4 ∈ K (see [9]). Hence, in view of Lemma
2.1,

Re

 h4 ∗ z f ′

h4 ∗
(h2∗ f )′

f ′ z f ′

 > 0, z ∈ D.

4. Convolution Properties of the Family Cα,h[ f ]

In this section, we have investigated convolution properties of Cα,h[ f ] with some other functions - both
analytic and harmonic. The Example 3.2 presented by Nagpal and Ravichandran [13] clearly shows that
for F ∈ SH, ψ ∗ F need not be in SH for each ψ ∈ K. In the following theorem, we prove that, for each ψ ∈ K,
ψ ∗ Cα,h[ f ] ∈ SH, provided f ∈ K.

Theorem 4.1. Let ψ ∈ K and Cα,h[ f ] as given by (2) be locally univalent and sense preserving in D. Then
ψ ∗ Cα,h[ f ] ∈ SH and is convex in the direction of the imaginary axis provided f ∈ K.

Proof. We note that,

ψ ∗ Cα,h[ f ] =
ψ ∗ f + α(ψ ∗ h ∗ f )

1 + α
+
ψ ∗ f − α(ψ ∗ h ∗ f )

1 + α
.

Now, Cα,h[ f ] is locally univalent and sense preserving in D implies Re[(h ∗ z f ′)/z f ′] > 0 in D, by Theorem
3.1. Therefore, in view of Lemma 2.1,

Re
(

z(ψ ∗ h ∗ f )′

z(ψ ∗ f )′

)
= Re

(
ψ ∗ h ∗ z f ′

ψ ∗ z f ′

)
= Re

ψ ∗ ( h∗z f ′

z f ′ )z f ′

ψ ∗ z f ′

 > 0, z ∈ D, (6)

because ψ ∈ K and z f ′ ∈ S∗(as f ∈ K). In view of Theorem 3.1 and Theorem 3.2, proof shall follow provided
ψ ∗ f is convex in the direction of the imaginary axis, which is true as ψ ∗ f ∈ K.
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In the next part of this section, a different and simple technique is introduced to prove the following
result which generalizes the results given in Theorem 1.4 and Theorem 1.5. For this, consider a harmonic
mapping fη = hη + 1η ∈ S0

H where

hη(z) + 1η(z) = k(z),
1′η

h′η
= eiθzn(θ ∈ R,n ∈N). (7)

Here k ∈ K is such that

zk′(z) =
z

(1 + zeiη)(1 + ze−iη)
, η ∈ R. (8)

Theorem 4.2. Let Cα,hi [I], i = 1, 2 be as defined in (2), where h1(z) =
∑
∞

n=1 nzn and h2(z) =
∑
∞

n=1
n+1

2 zn. If
fη = hη + 1η ∈ S0

H is given by (7), then
(a) Cα,h1 [I] ∗ fη ∈ S0

H and is convex in the direction of the real axis for 0 < α ≤ 2/n;
(b) Cα,h2 [I] ∗ fη ∈ S0

H and is convex in the direction of the real axis for 0 < α ≤ 4/n.

To prove Theorem 4.2, we need following two lemmas which we prove here first.

Lemma 4.3. Let F1 = H1 + G1 and F2 = H2 + G2 be two functions in SH, with H1(z) + G1(z) = βz/(1 − z),H2(z) +
G2(z) = k(z), where β > 0 and

zk′(z) =
z

(1 + zeiη)(1 + ze−iη)

for some η ∈ R. Then F1 ∗ F2 ∈ SH and is convex in the direction of the real axis provided F1 ∗ F2 is locally univalent
and sense preserving inD.

Proof. Let

Pi =
1 − G′i/H

′

i

1 + G′i/H
′

i
, i = 1, 2.

Then Fi = Hi + Gi ∈ SH, implies that, |G′i/H
′

i | < 1 inD and consequently

RePi(z) > 0, z ∈ D, (9)

for i = 1, 2. Further, let

L1 = (H1 + G1) ∗ (H2 − G2) = H1 ∗H2 −H1 ∗ G2 + G1 ∗H2 − G1 ∗ G2

L2 = (H1 − G1) ∗ (H2 + G2) = H1 ∗H2 + H1 ∗ G2 − G1 ∗H2 − G1 ∗ G2.

Then
1
2

[L1 + L2] = H1 ∗H2 − G1 ∗ G2.

In view of Lemma 2.2, it is enough to show that L1 + L2 is convex in the direction of the real axis. Now, we
have

zL′1 = z[(H1 + G1) ∗ (H2 − G2)]′ = z(H′2 + G′2)
(

1 − G′2/H
′

2

1 + G′2/H
′

2

)
= βzk′P2(z).

Hence, in view of (9) and the fact that β > 0,

Re
(

zL′1(z)
zk′(z)

)
> 0, z ∈ D. (10)

Next, consider

zL′2 = z[(H1 − G1) ∗ (H2 + G2)]′ = z
(

1 − G′1/H
′

1

1 + G′1/H
′

1

)
(H′1 + G′1) ∗ k = β[

z
(1 − z)2 ]P1(z) ∗ k.
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As k ∈ K (because zk′ ∈ S∗ ([14], Theorem 4)), therefore, by Lemma 2.1, we get

Re
(

zL′2(z)
zk′(z)

)
= βRe

k(z) ∗ P1(z) z
(1−z)2

k(z) ∗ z
(1−z)2

 > 0, z ∈ D. (11)

So, from (10) and (11), we have

Re
(

z[L′1(z) + L′2(z)]
zk′(z)

)
> 0, z ∈ D

and therefore, L1 + L2 is convex in the direction of the real axis by Lemma 2.4.

Lemma 4.4. Let s and s′ be real numbers with s′ − s > 0. Then for w ∈ C,∣∣∣∣ s + w
s′ + w

∣∣∣∣ < 1

if and only if

Re(w) > −
( s + s′

2

)
.

Proof. We can easily see that ∣∣∣∣ s + w
s′ + w

∣∣∣∣ < 1

if and only if
s2 + |w|2 + 2sRe(w) < s′2 + |w|2 + 2s′Re(w).

This is equivalent to

Re(w) > −
( s + s′

2

)
as s′ − s > 0.

Proof of Theorem 4.2. (a) From (2), we have

Cα,h1 [I](z) =
I(z) + αzI′(z)

1 + α
+

I(z) − αzI′(z)
1 + α

and

(Cα,h1 [I] ∗ fη)(z) =
1

1 + α

[
hη(z) + αzh′η(z)

]
+

1
1 + α

[
1η(z) − αz1′η(z)

]
.

In view of Lemma 4.3, it is enough to prove that Cα,h1 [I] ∗ fη is locally univalent and sense preserving inD
and we know that Cα,h1 [I] ∗ fη is locally univalent and sense preserving inD if its dilatation

W(z) =
(1 − α)1′η(z) − αz1′′η (z)

(1 + α)h′η(z) + αzh′′η (z)
(12)

is having modulus value less than 1. From 1′η(z) = eiθznh′η(z), we get 1′′η (z) = eiθznh′′η (z) + neiθzn−1h′η(z).
Substituting these values of 1′η and 1′′η in (12), we have

W(z) = −eiθzn
[ ((n + 1)α − 1)h′η(z) + αzh′′η (z)

(1 + α)h′η(z) + αzh′′η (z)

]
.

For α = 2/n, we have W(z) = −eiθzn and hence |W| < 1 for α = 2/n. In view of Lemma 4.4,∣∣∣∣∣∣ ((n + 1)α − 1)h′η(z) + αzh′′η (z)

(1 + α)h′η(z) + αzh′′η (z)

∣∣∣∣∣∣ < 1
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if and only if Re
(

zh′′η (z)
h′η(z)

)
> −

(
n+2

2

)
for 0 < α < 2/n. So it is enough to prove that Re

(
zh′′η (z)
h′η(z)

)
> −

(
n+2

2

)
for

0 < α < 2/n. As hη(z) + 1η(z) = k(z) and 1′η/h′η = eiθzn, using simple calculations, we have

Re
{2zh′′η (z)

h′η(z)
+ n + 2

}
= 2Re

(
1 +

zk′′(z)
k′(z)

)
+ nRe

(
1 − eiθzn

1 + eiθzn

)
> 0,

because k ∈ K. The proof is now complete.
(b) Proof of this part is similar to proof of part (a), hence omitted.

Remark 4.5. 1. We note that in the proofs of Theorem 4.2(a), we need not to put any restrictions on the values of
η except that η ∈ R. Also from equation (8), we immediately get

k(z) =
1

2i sin η
log

(
1 + zeiη

1 + ze−iη

)
,

for η , mπ,m = 0,±1,±2,±3, ..... Therefore, by taking values of η in the interval [π/2, π),we get Theorem 1.5.
2. By taking n = 1 and restricting η in [π/2, π), we get Theorem 1.4(a). By setting η = π/2 in Theorem 4.2(a),

we deduce Theorem 1.4(b).

For η = mπ, from equation (8), we have

k(z) =

{
z

1+z : if m is even
z

1−z : if m is odd

}
Therefore in view of Theorem 4.2(a), we get following results.

Theorem 4.6. Let Cα,h1 [I] be as defined in (2), where h1(z) =
∑
∞

n=1 nzn.

(a) If fη = hη + 1η ∈ S0
H with hη + 1η = z/(1− z) and

1′η

h′η
= eiθzn(θ ∈ R,n ∈N). Then Cα,h1 [I] ∗ fη ∈ S0

H and is convex
in the direction of the real axis for 0 < α ≤ 2/n;

(b) If fη = hη + 1η ∈ S0
H with hη + 1η = z/(1 + z) and

1′η

h′η
= eiθzn(θ ∈ R,n ∈N). Then Cα,h1 [I] ∗ fη ∈ S0

H and is convex
in the direction of the real axis for 0 < α ≤ 2/n.

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. 17(1) (1915) 12–22.
[2] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984) 3–25.
[3] L. Li, S. Ponnusamy, Convolutions of harmonic mappings convex in one direction, Complex Anal. Oper. Theory 9(1) (2015)

183–199.
[4] P. Duren, Harmonic Mappings in the plane, Cambridge Univ. Press (2004).
[5] M. Dorff, Convolutions of planar harmonic convex mappings, Complex Var. Elliptic Equ. 45(3) (2001) 263–271.
[6] M. Dorff, M. Nowak, M. Woloszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ. 57(5) (2012)

489–503.
[7] W. Hengartner, G. Schober, On Schlicht mappings to domains convex in one direction, Comment. Math. Helv. 45 (1970) 303–314.
[8] R. Kumar, S. Gupta, S. Singh, M. Dorff, On harmonic convolutions involving a vertical strip mapping, Bull. Korean Math. Soc.

52(1) (2015) 105–123.
[9] S. Y. Lee, Application of convolution operators to some problems in geometric function theory, J. Korean Math. Soc. 24(2) (1987)

217–237.
[10] H. Lewy, On the non vanishing of the jacobian in certain one to one mappings, Bull. Amer. Math. Soc. 42 (1936) 689–692.
[11] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16(4) (1965) 755–758.
[12] S. Muir, Harmonic mappings convex in one or every direction, Comput. Methods Funct. Theory 12(1) (2012) 221–239.
[13] S. Nagpal, V. Ravichandran, Convolution properties of the harmonic Koebe function and its connection with 2-starlike mappings,

Complex Var. and Elliptic Equ. 60(2) (2015) 191–210.
[14] C. Pommerenke, On Starlike and close-to-convex functions, Proc. Lond. Math. Soc. 13(3) (1963) 290–304.
[15] S. Ruscheweyh, T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math.
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