Complement of the Generalized Total Graph of \mathbb{Z}_{n}

T. Tamizh Chelvam ${ }^{\text {a }}$, M. Balamurugan ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India

Abstract

Let R be a commutative ring with identity and H be a nonempty proper multiplicative prime subset of R. The generalized total graph of R is the (undirected) simple graph $G T_{H}(R)$ with all elements of R as the vertex set and two distinct vertices x and y are adjacent if and only if $x+y \in H$. The complement of the generalized total graph $\overline{G T_{H}(R)}$ of R is the (undirected) simple graph with vertex set R and two distinct vertices x and y are adjacent if and only if $x+y \notin H$. In this paper, we investigate certain domination properties of $\overline{G T_{H}(R)}$. In particular, we obtain the domination number, independence number and a characterization for γ-sets in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ where P is a prime ideal of \mathbb{Z}_{n}. Further, we discuss properties like Eulerian, Hamiltonian, planarity, and toroidality of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.

1. Introduction

Through out this paper R denotes a commutative ring with nonzero identity, $Z(R)$ its set of all zerodivisors, $Z^{*}(R)=Z(R) \backslash\{0\}$ and $U(R)$ its set of all units. Anderson and Livingston [3] introduced the zero-divisor graph of R, denoted by $\Gamma(R)$, as the (undirected) simple graph with vertex set $Z^{*}(R)$ and two distinct vertices $x, y \in Z^{*}(R)$ are adjacent if and only if $x y=0$. Subsequently, Anderson and Badawi [5] introduced the concept of the total graph of a commutative ring. The total graph $T_{\Gamma}(R)$ of R is the undirected graph with vertex set R and for distinct $x, y \in R$ are adjacent if and only if $x+y \in Z(R)$. Akbari et al. [1], Anderson and Badawi [4], Petrović et al. [11] and Tamizh Chelvam and Asir [6, 13, 14] have extensively studied about various graph theoretical aspects of the total graph of commutative rings.

Recently, Anderson and Badawi [2] introduced the concept of the generalized total graph of a commutative ring. A nonempty proper subset H of a commutative ring R is said to be a multiplicative prime subset of R if the following two conditions hold: (i) $a b \in H$ for every $a \in H$ and $b \in R$; (ii) if $a b \in H$ for $a, b \in R$, then either $a \in H$ or $b \in H$. For example, every prime ideal, union of prime ideals and $H=R \backslash U(R)$ are some of the multiplicative prime subsets of R. For a multiplicative prime subset H of R, the generalized total graph $G T_{H}(R)$ of R is the (undirected) simple graph with vertex set R and two distinct vertices x and y are adjacent if and only if $x+y \in H$, As usual, \mathbb{Z} and \mathbb{Z}_{n} will denote the ring of integers and ring of integers modulo n.

Let $G=(V, E)$ be a graph. We say that G is connected if there is a path between any two distinct vertices of G. For a graph $G=(V, E)$ and a subset $S \subseteq V$, the neighbor set of S in G to be the set of all vertices adjacent

[^0]to vertices in S; and $\operatorname{deg}(v)$ is the degree of a vertex $v . \delta(G)$ and $\Delta(G)$ denote the minimum and maximum degree of vertices in G respectively. K_{n} denotes the complete graph on n vertices and $K_{m, n}$ denotes the complete bipartite graph. A nonempty subset S of V is called a dominating set if every vertex in $V \backslash S$ is adjacent to at least one vertex in S. A graph G is called excellent if, for every vertex $v \in V(G)$, there is a γ-set S containing v. For the terms in graph theory which are not explicitly mentioned here, one can refer [8] and for the terms regarding algebra one can refer [7].

In this paper, we study about the complement of a class of generalized total graphs on \mathbb{Z}_{n}. In particular, we investigate the structure of $\overline{G T_{H}\left(\mathbb{Z}_{n}\right)}$, where H is a prime ideal $P=<p>$ for a prime element $p \in \mathbb{Z}_{n}$. More specifically, we determine the domination number of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Having determined the domination number γ of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$, we characterize all γ-sets in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. In Section 2, we study some properties namely degree of the vertices, Eulerian and Hamiltonian of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Further we obtain the independence and covering numbers of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. In section 3, we characterize all integers n for which $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is either planar or toroidal. In Section 4, we study some standard domination parameters of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.

2. Basic Properties of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$

In this section, we first obtain some results on the degree of the vertices in the complement of the generalized total graph of \mathbb{Z}_{n}. Later, we discuss about some graph theoretical properties of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. More specifically, we discuss about Eulerian and Hamiltonian characterizations of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Let p be a prime number in \mathbb{Z} which divides n. Then $x \in<p>\subseteq \mathbb{Z}_{n}$ if and only if $(x, p) \neq 1$ for $x \in \mathbb{Z}_{n}$, where (x, p) is the gcd of x and p. We recall the following structure theorem for generalized total graphs of commutative rings. Hereafter we take $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ for distinct primes $p_{j}, 1 \leq j \leq k$ with $p_{1}<p_{2}<\ldots<p_{k}$ and the prime ideal $P=<p_{j}>$ for some j.

Theorem 2.1. [5, Theorem 2.2] Let H be a prime ideal of a commutative ring R, and let $|H|=\lambda$ and $\left|\frac{R}{H}\right|=\mu$.
(i) If $2 \in H$, then $G T_{H}(R \backslash H)$ is the union of $\mu-1$ disjoint K_{λ} 's;
(ii) If $2 \notin H$, then $G T_{H}(R \backslash H)$ is the union of $\frac{\mu-1}{2}$ disjoint $K_{\lambda, \lambda}$'s.

Using Theorem 2.1, one can write $G T_{H}(R)$ is the union of μ disjoint $K_{\lambda}{ }^{\prime}$ s if $2 \in H$; and $G T_{H}(R)$ is the union of $\frac{\mu-1}{2}$ disjoint $K_{\lambda, \lambda}$'s and a K_{λ} if $2 \notin H$. Now, we obtain degrees of the vertices in the complement of the generalized total graph of \mathbb{Z}_{n} with respect to a prime ideal $P=<p>$ of \mathbb{Z}_{n}.

Lemma 2.2. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{j}>$ for some j. Then the following are true in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$:
(i) If $n=2$, then $\operatorname{deg}(v)=1$, for every $v \in \mathbb{Z}_{n}$.
(ii) If n is an odd prime p, then $\operatorname{deg}(v)=\left\{\begin{array}{ll}n-1 \\ n-2\end{array} \quad\right.$ if $v=0 ;$
(iii) If n is composite and $2 \in P$, then $\operatorname{deg}(v)=\frac{n}{2}$ for every $v \in \mathbb{Z}_{n}$.
(iv) If n is composite and $2 \notin P$, then

$$
\operatorname{deg}(v)= \begin{cases}n-\frac{n}{p_{j}} & \text { for } v \in P \\ n-\frac{n}{p_{j}}-1 & \text { for } v \in \mathbb{Z}_{n} \backslash P .\end{cases}
$$

The following is an immediate consequence of Lemma 2.2.

Lemma 2.3. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{j}>$ for some j. Then
(i) $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ contains no isolated vertex;
(ii) $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ contains a vertex of degree $n-1$ if and only if n is a prime integer;
(iii) $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is regular if and only if $n=2$ or $2 \in P$;
(iv) $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is biregular if and only if n is odd. Moreover in this case, $\Delta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\delta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)+1$;
(v) $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is a nontrivial connected graph.

The following observation follows from Theorem 2.1 and is useful throughout this paper.
Lemma 2.4. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime and α_{j}^{\prime} s are positive integers. If $P=<p_{1}>$ and $p_{1}=2$, then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}=K_{\frac{n}{2}, \frac{n}{2}}$.

Remark 2.5. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime} s$ are prime and $\alpha_{j}^{\prime} s$ are positive integers. If p_{j} is an odd prime and $P=<p_{j}>$, then two distinct vertices x and y are adjacent in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ if and only if $x \in i+P$ and $y \in \mathbb{Z}_{n} \backslash\left(p_{j}-i+P\right)$ for some i and $1 \leq i<p_{j}$.

A circuit in a graph G is a closed trail of length 3 or more. A circuit C is called an Eulerian circuit if C contains every edge of G. A connected graph G is said to be Eulerian if it contains an Eulerian circuit. The following characterization for Eulerian graphs is used for characterization of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ to be Eulerian.
Corollary 2.6. [8, Theorem 6.1] A nontrivial connected graph G is Eulerian if and only if every vertex of G has even degree.
Using Corollary 2.6, in the following lemma, we obtain a characterization for $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ to be Eulerian.
Lemma 2.7. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{j}>$ for some j. Then the following are true:
(i) Let n be composite, $P=<p_{1}>$ and $p_{1}=2$. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is Eulerian if and only if $n=4 k$ for some positive integer k.
(ii) If n is prime or $P=<p_{j}>$ for $p_{j} \neq 2$, then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is not Eulerian.

Proof. Proof of (i) follows from Lemma 2.4, where as proof of (ii) follows from Lemma 2.3(v) and Lemma 2.2(ii) and (iv).

A graph G is said to be Hamiltonian if it has a circuit which contains all the vertices of G. The following corollary is useful in proving $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is always Hamiltonian.
Corollary 2.8. [8, Corollary 6.7] Let G be a graph of order $n \geq 3$. If $\operatorname{deg}(v) \geq \frac{n}{2}$ for each vertex v of G, then G is Hamiltonian.
Lemma 2.9. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}>3$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{j}>$ for some j. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is Hamiltonian.
Proof. Let $G=\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Since $n>3$, we have $n-2 \geq \frac{n}{2}$.
If n is prime, by Lemma 2.2(ii), $\delta(G)=n-2 \geq \frac{n}{2}$. By Corollary 2.8, $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is Hamiltonian.
Suppose n is a composite integer, $P=<p_{j}>$ and $p_{j} \neq 2$. Since $\frac{n}{2} \geq \frac{n}{p_{j}}+1$, by Lemma 2.2(iv), $\delta(G)=$ $n-\frac{n}{p_{j}}-1 \geq \frac{n}{2}$. By Corollary 2.8, $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is Hamiltonian.

Suppose n is a composite integer and $P=<2>$. By Lemma 2.4, $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ $=K_{\frac{n}{2}, \frac{n}{2}}$ and hence the proof follows from Corollary 2.8.

A set S of vertices in a graph G is said to be independent if no two vertices in S are adjacent. The vertex independence number (or the independence number) $\beta(G)$ of G is the maximum cardinality of an independent set of G. A vertex cover in G is a set of vertices which covers all edges of G. The minimum number of vertices in a vertex cover of G is called the vertex covering number $\alpha(G)$ of G. Now, we obtain the independence domination number of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.

Lemma 2.10. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{j}>$ for some j. Then
$\beta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)= \begin{cases}1 & \text { if } n=2 ; \\ 2 & \text { if } n \text { is an odd prime; } \\ \frac{n}{2} & \text { if } n \text { is a composite integer and } p_{j}=2 ; \\ \frac{n}{p_{j}} & \text { if } n \text { is a composite integer and } p_{j} \neq 2 .\end{cases}$
Proof. Suppose $n=2$. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}=K_{2}$ and so $\beta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=1$.
Let n be an odd prime. Suppose $\beta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right) \geq 3$. This gives that there exists a complete subgraph of order ≥ 3 in $G T_{P}\left(\mathbb{Z}_{n}\right)=K_{1} \bigcup_{\frac{n-1}{2}} K_{2}$, which is a contradiction. Hence $\beta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right) \leq 2$. Note that, for $1 \leq i \leq p-1$, i is adjacent with $p-i$ only in $G T_{P}\left(\mathbb{Z}_{n}\right)$ and hence $\beta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$.

Suppose n is composite and $P=<2>$. By Lemma 2.4, $\beta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\frac{n}{2}$.
Suppose n is composite and $p_{j} \neq 2$. Then P is an independent set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ and $|P|=\frac{n}{p_{j}} \geq 2$. Let $S \subseteq \mathbb{Z}_{n} \backslash P$ be an independent subset of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.

Claim : $|S| \leq 2$.

Let x_{1}, x_{2} and x_{3} be three distinct elements in S such that $x_{1} \in i_{1}+P, x_{2} \in i_{2}+P$ and $x_{3} \in i_{3}+P$ for $1 \leq i_{1}, i_{2}, i_{3} \leq p_{j}-1$.

Assume that at least two of i_{1}, i_{2} and i_{3} are equal. Without loss of generality, let us take $i_{1}=i_{2}$. Then x_{1}, x_{2} are adjacent in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ and so K_{2} is a subgraph of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Hence S is not an independent in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.

Assume that i_{1}, i_{2} and i_{3} are all distinct. Suppose the sum of at least any two of i_{1}, i_{2} and i_{3} is p_{j}. Without loss of generality, let $i_{1}+i_{2}=p_{j}$. Then x_{3} is adjacent with both x_{1} and x_{2}. Hence S is not an independent set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Suppose the sum of any two of i_{1}, i_{2} and i_{3} is not equal to p_{j}. Then the subgraph induced by $\left\{x_{1}, x_{2}, x_{3}\right\}$ is K_{3}, which is a contradiction to S is an independent set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Hence $|S| \leq 2$. Therefore P is a maximal independent set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ having order $\frac{n}{p_{j}} \geq 2$.

Corollary 2.11. [8, Corollary 8.8] For every graph G of order n containing no isolated vertices, $\alpha(G)+\beta(G)=n$.
Using Corollary 2.11, we obtain the following on the vertex covering number.
Corollary 2.12. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{j}>$ for some j. Then the vertex covering number
$\alpha\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)= \begin{cases}1 & \text { if } n=2 ; \\ n-2 & \text { if } n \text { is an odd prime; } \\ \frac{n}{2} & \text { if } n \text { is a composite integer and } p_{j}=2 ; \\ n-\frac{n}{p_{j}} & \text { if } n \text { is a composite integer and } p_{j} \neq 2 .\end{cases}$

3. Characterization of genus for $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$

In section, we study about the genus of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. More specifically we characterize all integers n for which $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is either planar or toroidal. Let k be a non-negative integer and S_{k} an orientable surface
of genus n. The genus of the graph G, denoted by $g(G)$, is the smallest k such that G embeds into S_{k}. If H is a subgraph of G, then $g(H) \leq g(G)$. Graphs with genus 0 are planar and graphs of genus 1 are toroidal. Maimani et al. [10], Pucanović [12] and Tamizh Chelvam et al. [15] have studied about the genus of total graphs and other graphs associated with commutative rings. Let us first recall some known results connecting genus of graphs.

Theorem 3.1. [16, Euler formula] If G is a finite connected graph with n vertices, e edges, and of genus g, then $n-e+f=2-2 g$, where f is a number of faces obtained when G is embedded in S_{n}.

Theorem 3.2. [16, Theorems $6.37 \& 6.38]$ The following statements hold:
(i) For $n \geq 3, g\left(K_{n}\right)=\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil$.
(ii) For $m, n \geq 2, g\left(K_{m, n}\right)=\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil$.

Note that a graph G is planar if and only if G does not contain either K_{5} or $K_{3,3}$ [8, Theorem 9.7]. According to Theorem 3.2, if $n=5,6,7$ then $g\left(K_{n}\right)=1$. Further, $g\left(K_{4,4}\right)=g\left(K_{3, n}\right)=1$ if $n=3,4,5,6$ and $g\left(K_{5,4}\right)=g\left(K_{6,4}\right)=g\left(K_{m, 4}\right)=2$ if $m=7,8,9,10$. Now, we obtain in the following theorem, a characterization for $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ to be planar.

Theorem 3.3. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime and α_{j}^{\prime} s are positive integers. Then the following are true:
(i) Let n be composite, $p_{1}=2$ and $P=<p_{1}>$. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is planar if and only if $n=4$;
(ii) Let n be composite, $p_{j} \neq 2$ and $P=\left\langle p_{j}\right\rangle$. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is planar if and only if $n=6$;
(iii) Let n be prime, $n=p$ and $P=\langle p\rangle$. Then $\overline{G T_{P}\left(\mathbb{Z}_{p}\right)}$ is planar if and only if $p \in\{2,3,5\}$.

Proof. (i) Assume that n is composite, $p_{1}=2$ and $P=<p_{1}>$. Suppose $n=4$. One can see that $\overline{G T_{P}\left(\mathbb{Z}_{4}\right)}=K_{2,2}$ and hence planar. Conversely assume that $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is planar. Suppose $n>4$. Since $p_{1}=2$ and p_{1} divides n, we have $n \geq 6$. By Lemma 2.4, we have $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}=K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2} \geq 3$ which implies that $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ contains $K_{3,3}$, which is a contradiction.
(ii) Assume that n is composite, $p_{j} \neq 2$ and $P=<p_{j}>$. If $n=6$, then $p_{j}=3$. A planar embedding of $\overline{G T_{P}\left(\mathbb{Z}_{6}\right)}$ is given in Figure 1 and so it is planar.

Figure 1: $\overline{G T_{\langle 3\rangle}\left(\mathbb{Z}_{6}\right)}$

Conversely assume that $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is planar, $P=<p_{j}>$ and $p_{j} \neq 2$. Suppose $n>6$.
If $p_{j}=3$, then $|P|=|1+P|=|2+P|=\frac{n}{3} \geq 3$. Clearly the induced subgraph $<P \cup(1+P)>$ contains $K_{3,3}$ as a subgraph and so $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is non-planar, a contradiction.

If $p_{j} \geq 5$, then $n \geq 10$ and $|P|=|i+P| \geq 2$ for $1 \leq i \leq p_{j}-1$. Consider $S=\{x\} \cup(1+P) \cup(2+P)$ where $x \in P$. Then $|S| \geq 5$ and $<S>$ contains K_{5} as a subgraph and so K_{5} is a subgraph of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$, a contradiction to $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is planar. Hence $n=6$.
(iii) It is easy to check that $\overline{G T_{P}\left(\mathbb{Z}_{p}\right)}$ is planar for $P=<p>$ and $p \in\{2,3,5\}$. Conversely assume that $\overline{G T_{P}\left(\mathbb{Z}_{p}\right)}$ is planar where $P=<p>$ and p is a prime number. Suppose $p=7$. By Lemma 2.2 (iv), $\operatorname{deg}(0)=6$ and $\operatorname{deg}(v)=5$ for $v \neq 0$. This implies that $\overline{G T_{P}\left(\mathbb{Z}_{7}\right)}$ contains $m=18$ edges and $m=18>15=3 p-6$. By [8, Theorem 9.2], $\overline{G T_{P}\left(\mathbb{Z}_{7}\right)}$ is not planar. Suppose $p \geq 11$ and p is an odd prime integer. Note that the induced subgraph induced by $\{0,1,2,3,4\}$ of $\overline{G T_{P}\left(\mathbb{Z}_{p}\right)}$ is K_{5} a contradiction. Hence $p \in\{2,3,5\}$.

Now, we obtain in the following theorem, a characterization for $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ to be toroidal.
Theorem 3.4. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime and α_{j}^{\prime} s are positive integers. Then the following are true:
(i) Let n be composite, $p_{1}=2$ and $P=<p_{1}>$. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is toroidal if and only if $n \in\{6,8\}$;
(ii) Let $n \geq 9$ be composite, $p_{j} \neq 2$ and $P=<p_{j}>$. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is not toroidal.
(iii) Let n be prime and $P=\langle n\rangle$. Then $\overline{G T_{P}\left(\mathbb{Z}_{p}\right)}$ is toroidal if and only if $n=7$.
 $\overline{G T_{P}\left(\mathbb{Z}_{8}\right)}=K_{4,4}$. By Theorem 3.2, $g\left(\overline{G T_{P}\left(\mathbb{Z}_{6}\right)}\right)=1$ and $g\left(\overline{G T_{P}\left(\mathbb{Z}_{8}\right)}\right)=1$. Hence $\overline{G T_{P}\left(\mathbb{Z}_{p}\right)}$ is toroidal if $p=6$ or $p=8$.

Conversely assume that n is composite, $p_{1}=2$ and $P=<p_{1}>$. Suppose $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is toroidal. By Theorem 3.3, $n \geq 6$. Suppose $n \geq 9$. Since $p_{1}=2$ and p_{1} divides n, we have $n \geq 10$. By Lemma 2.4, we have $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}=K_{\frac{n}{2}}, \frac{n}{2}$ with $\frac{n}{2} \geq 5$ which implies that $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ contains $K_{5,5}$ as a subgraph, which is a contradiction. Hence $n \in\{6,8\}$.
(ii) Let n be composite, $p_{j} \neq 2$ and $P=<p_{j}>$.

Case 1. Consider the case that $n=9$. Then $p_{j}=3$ and so $|P|=|1+P|=|2+P|=\frac{n}{3}=3$. The graph $\overline{G T_{P}\left(\mathbb{Z}_{9}\right)}$ is given in Figure 2 and one can see that $K_{3,6}$ is a subgraph of $\overline{G T_{P}\left(\mathbb{Z}_{9}\right)}$ with vertex partition $V_{1}=\{0,3,6\}$ and $V_{2}=\{1,2,4,5,7,8\}$. By Theorem $3.2, g\left(K_{3,6}\right)=1$ and hence one can fix an embedding of $K_{3,6}$ on the surface of torus. Note that, there are 9 faces in the embedding of $K_{3,6}$, say $\left\{f_{1}, \ldots, f_{9}\right\}$. Let n_{i} be the length of the face f_{i}. Then $n_{i} \geq 4$ for every i and $\sum_{i=1}^{9} n_{i}=36$. Thus implies that $n_{i}=4$ for every i. Now, the induced subgraph $<S>=<\{1,4,7\}>\subseteq V\left(\frac{i=1}{G T_{<3>}\left(\mathbb{Z}_{9}\right)}\right)$ is K_{3}. Also, edges of the induced subgraph $<S>$ are disjoint from edges of $K_{3,6}$. Since K_{3} cannot be embedded in the torus along with an embedding with only rectangles as faces, one cannot have an embedding of K_{3} and $K_{3,6}$ together in the torus. This implies that $g\left(\overline{G T_{3}\left(\mathbb{Z}_{9}\right)}\right) \geq 2$. Hence $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is not toroidal

Figure $2: \overline{G T_{3}\left(\mathbb{Z}_{9}\right)}$
Case 2. Consider the case that $n>9$.
Subcase 2.1. If $p_{j}=3$, then $n \geq 12$ and so $|P|=|1+P|=|2+P|=\frac{n}{3} \geq 4$. Clearly subgraphs induced by cosets $1+P$ and $2+P$ are two disjoint $K_{\frac{n}{3}}$'s. Let $S=(1+P) \cup\{y\}$ where $y \in 2+P$. Now, the induced
subgraph $<S>$ contains $K_{4} \cup K_{1}$ and so the the subgraph induced by $P \cup S$ contains $K_{4,5}$ as a subgraph. Hence $g\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right) \geq 2$. Hence $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is not toroidal

Subcase 2.2. If $p_{j} \geq 5$, then $n \geq 10$ and $|P|=|i+P| \geq 2$ for $1 \leq i \leq p_{j}-1$. Let $S=\{x\} \cup(1+P) \cup(2+P)$ and $T=\{y\} \cup(4+P) \cup(5+P)$ where $x, y \in P$. Then $|S|=|T| \geq 5$ and $<S \cup T>$ contains $K_{5} \cup K_{5}$ as a subgraph. Therefore $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ contains $2 K_{5}$ and so $g\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right) \geq 2$ which implies that $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is not toroidal
(iii) Assume that n is prime and $P=\left\langle n>\right.$. An embedding of $\overline{G T_{P}\left(\mathbb{Z}_{7}\right)}$ where $P=<7>$ in S_{1} is given in Figure 3 and so it is toroidal.

Figure $3: \overline{G T_{P}\left(\mathbb{Z}_{7}\right)}$
Conversely assume that $\overline{G T_{P}\left(\mathbb{Z}_{p}\right)}$ is toroidal for a prime number n and $P=<n>$. By Theorem 3.3, $p \geq 7$.
Suppose $p \geq 11$. Consider the partition of $\mathbb{Z}_{p}=\{0\} \bigcup_{i=1}^{\frac{p-1}{2}}\left\{x_{i}\right\} \bigcup_{i=1}^{\frac{p-1}{2}}\left\{y_{i}\right\}$, where each x_{i} is the additive inverse of y_{i}.
Note that $<\bigcup_{i=1}^{\frac{p-1}{2}}\left\{x_{i}\right\}>=<\bigcup_{i=1}^{\frac{p-1}{2}}\left\{y_{i}\right\}>=K_{\frac{p-1}{2}}$ and x_{i}, y_{i} are not adjacent in $\overline{G T\left(\left(\mathbb{Z}_{p}\right)\right.}$. Since $\frac{p-1}{2} \geq 5, \overline{G T_{P}\left(\mathbb{Z}_{p}\right)}$ contains $2 K_{5}$ as a subgraph, a contradiction to $\overline{G T_{P}\left(\mathbb{Z}_{p}\right)}$ is toroidal. Hence $p=7$.

4. Domination Parameters of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$

In this section, we discuss about various domination parameters of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. More specifically, we discuss about $\gamma_{t}, \gamma_{c}, \gamma_{c l}, \gamma_{p}, \gamma_{e f f}, \gamma_{s}, \gamma_{w}$ and γ_{i} of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.

For a graph $G=(V, E)$, a subset $S \subseteq V$ is called a dominating set if every vertex in $V \backslash S$ is adjacent to at least one vertex in S. A subset $S \subseteq V$ is called a total dominating set if every vertex in $v \in V$ is adjacent to some vertex $u \in S$ and $v \neq u$. A dominating set S is called a connected (or clique) dominating set if the subgraph induced by S is connected (or complete). A dominating set S is called an independent dominating set if no two vertices of S are adjacent. A dominating set S is called a perfect dominating set if every vertex in $V \backslash S$ is adjacent to exactly one vertex in S. A dominating set S is called an efficient dominating set if S is both an independent and a perfect dominating set of G. A dominating set S is called a strong (or weak) dominating set if for every vertex $u \in V \backslash S$, there is a vertex $v \in S$ with $\operatorname{deg}_{G}(v) \geq \operatorname{deg}_{G}(u)\left(\operatorname{or~}_{\operatorname{deg}_{G}}(v) \leq \operatorname{deg}_{G}(u)\right)$ and u is adjacent to v. The domination number γ of G is defined to be minimum cardinality of a dominating set in G and such a domination set is called γ-set in G. One can refer Haynes et al., [9] for definitions of other domination parameters like total dominating number γ_{t}, connected dominating number γ_{c}, clique dominating number $\gamma_{c l}$, independent dominating number $i(G)$, perfect dominating number γ_{p}, efficient dominating number $\gamma_{e f f}$, strong dominating number γ_{s} and weak dominating number γ_{w}. A graph G is called excellent if, for every vertex $v \in V$, there exists a γ-set S containing v. A domatic partition of G is a partition of V, into dominating sets
in G. The maximum number of sets in a domatic partition is called a domatic number of G and is denoted by $d(G)$. The maximum number of sets in a domatic partition in which each partition is a total dominating set is called a total domatic number of G and is denoted by $d_{t}(G)$. A graph G is called domatically full if $d(G)=\delta(G)+1$. The bondage number $b(G)$ is the minimum number of edges whose removal increases the domination number. The independent number $\beta_{0}(G)$ is the maximum cardinality of an independent set in G. A graph G is well-covered if $\beta_{0}(G)=i(G)$.

In the following lemma, we obtain the domination number of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.
Lemma 4.1. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{j}>$ for some j. Then

$$
\gamma\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)= \begin{cases}1 & \text { if } n \text { is prime; } \\ 2 & \text { if } n \text { is composite } .\end{cases}
$$

Proof. Assume that n is prime. By Lemma 2.2(i) and (ii), $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ contains a vertex of degree $n-1$ and so $\gamma\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=1$.

Suppose n is composite and $P=<2>$. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}=K_{\frac{n}{2}, \frac{n}{2}}$ and so $\gamma\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$.
Suppose n is composite and $P=<p_{j}>, p_{j} \neq 2$. By Lemma 2.3(ii), $\gamma\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)>1$. Let $x \in P$ and $y \notin P$. Let $z \in \mathbb{Z}_{n} \backslash\{x, y\}$. Suppose $z \in P$. Then z, y are adjacent in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ by Lemma 2.4. Suppose $z \notin P$. Then z, x are adjacent in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ by Lemma 2.4. Therefore $\{x, y\}$ is a dominating set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. By Lemma 2.3, $\{x, y\}$ is a minimal dominating set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.

In view of Lemma 2.4, we have the following characterization of γ-sets in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.
Theorem 4.2. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{j}>$ for some j.
(i) Let n be composite and $S=\{x, y\} \subseteq \mathbb{Z}_{n}$. Then S is a γ-set if and only if x, y are in two distinct cosets of P in \mathbb{Z}_{n};
(ii) The set $S=\{0\}$ is a γ-set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ if and only if n is prime.

Corollary 4.3. Let n be a composite integer. Then $\gamma_{t}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{c}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{c l}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$.
Proof. Assume that n is a composite integer. Let $x \in P$ and $y \in \mathbb{Z}_{n} \backslash P$. By Lemma $2.4, S=\{x, y\}$ is a dominating set of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. By Lemma 2.2, x, y are adjacent in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Therefore S is a total dominating set of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Therefore $\gamma_{t}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{c}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{c l}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$.

Recall that when $p_{1}=2$ and $P=<p_{1}>, \overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is a complete bi-partite graph. Using this along with Theorem 4.2, we have the following result.

Lemma 4.4. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{j}>$ for some j. Then the following are true:
(i) If n is composite, then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is excellent;
(ii) Let n be prime. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is excellent if and only if $n=2$.

Proof. (i) Assume that n is a composite integer. Let $x \in \mathbb{Z}_{n}$. Then either $x \in P$ or $x \in \mathbb{Z}_{n} \backslash P$. Without loss of generality $x \in P$. By Lemma 4.2(i), for any $y \in \mathbb{Z}_{n} \backslash P,\{x, y\}$ is a γ-set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.
(ii) When $n=2, \overline{G T_{P}\left(\mathbb{Z}_{n}\right)}=K_{2}$ and hence it is excellent. Conversely suppose $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is excellent for a prime number n. By Lemma 4.1, $\gamma\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}=1\right.$. By the assumption that $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is excellent, degree of every vertex must be $n-1$ and hence $n-1=1$ which in turn implies that $n=2$.

Lemma 4.5. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{1}>$. Then the following are true:
(i) If n is prime, then $\{0\}$ is a perfect dominating set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$;
(ii) Let n be composite. Then a perfect dominating set exists in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ if and only if $p_{1}=2$.

Proof. (i) If n is prime, then by Theorem $4.2, S=\{0\}$ is a perfect domination set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.
(ii) Let n be a composite integer. Assume that $p_{1} \neq 2$. Suppose S is a perfect dominating set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Since n is composite, $|P|=|i+P| \geq 2$, for $1 \leq i \leq p_{j}-1$. Let x, y be two distinct elements in \mathbb{Z}_{n}. Suppose $x, y \in P$. Note that, every $z \in \mathbb{Z}_{n} \backslash P$ is adjacent to both x and y and hence both x and y cannot be in S.

Suppose $x \in P \cap S$ and $y \in P$ with $y \notin S$. Since P is an independent set, x, y are not adjacent in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Since S is dominating set, $\exists z_{1} \in S$ such that z_{1}, y are adjacent in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. By Lemma $2.4, z_{1} \in i+P$ for some i where $1 \leq i \leq p_{j}-1$. Since $|i+P| \geq 2, \exists z_{2} \in i+P$ with $z_{2} \neq z_{1}$. If $z_{2} \in S$, by Lemma 2.4 and $p_{j} \neq 2, y$ is adjacent to z_{1}, z_{2} which is a contradiction. Hence $z_{2} \in V \backslash S$. By Lemma 2.4, x, z_{2} are adjacent and z_{1}, z_{2} are also adjacent in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$, which is a contradiction to S is a perfect dominating set.

Suppose $x, y \in S \backslash P$. Since every element in P is adjacent to both x, y again a contradiction. Hence $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ has no perfect dominating set.

Conversely, assume that $p_{1}=2$. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}=K_{\frac{n}{2}, \frac{n}{2}}$. Let $x \in P$ and $y \in 1+P$. Then $S=\{x, y\}$ is a dominating set of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Clearly every odd number in \mathbb{Z}_{n} is adjacent with only $x \in S$, and every even number is adjacent with only $y \in S$. Hence S is a γ_{p}-set of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.

In view of Lemma 4.5, we have the following corollary.
Corollary 4.6. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ be an integer where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime and α_{j}^{\prime} s are positive integers. Then the following are true:

$$
\gamma_{p}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)= \begin{cases}1 & \text { if } n \text { is a prime } ; \\ 2 & \text { if } n \text { is a composite and } p_{1}=2 ; \\ 0 & \text { if } n \text { is a composite and } p_{1} \neq 2 .\end{cases}
$$

Lemma 4.7. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ be a composite integer where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime and α_{j}^{\prime} s are positive integer. Then the following are true:
(i) If n is composite, $p_{1}=2$ and $P=<p_{1}>$, then $\gamma_{s}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{w}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$;
(ii) If n is composite, $p_{j} \neq 2$ and $P=<p_{j}>$ for some j, then $\gamma_{s}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\frac{n}{p_{j}}$ and $\gamma_{w}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$.

Proof. (i) Suppose n is a composite integer and $p_{1}=2$. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}=K_{\frac{n}{2}, \frac{n}{2}}$. For $x \in P$ and $y \in 1+P, S=\{x, y\}$ is a dominating set of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Also $\operatorname{deg}(v)=\frac{n}{2}$ for all $v \in \mathbb{Z}_{n}$. Therefore $\gamma_{s}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{w}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$.
(ii) Suppose n is a composite integer and $p_{j} \neq 2$. By the definition of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$, each vertex $x \in P$ is adjacent with each vertex $y \in \mathbb{Z}_{n} \backslash P$. By Lemma 2.2(iv), we have $\operatorname{deg}(x)=n-\frac{n}{p_{j}}$ and $\operatorname{deg}(y)=n-\frac{n}{p_{j}}-1$. Since P dominates $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ and $\operatorname{deg}(x)>\operatorname{deg}(y), P$ is a strong dominating set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Then $\gamma_{s}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\frac{n}{p_{j}}$.

Let $x \in i+P$ and $y \in\left(p_{j}-i\right)+P$ where $1 \leq i \leq \frac{p_{j}-1}{2}$. By Theorem $4.2, S=\{x, y\}$ is a dominating set of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ and by Lemma 2.2(iv), $\operatorname{deg}(x)=\operatorname{deg}(y)=n-\frac{n}{p_{j}}-1=\delta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)$. Then $\{x, y\}$ is a weak dominating set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ and so $\gamma_{w}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$.

Lemma 4.8. Let $n>1$ be a prime integer. Then the following are true:
(i) If $n=2$, then $\gamma_{s}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{w}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=1$.
(ii) If $n \neq 2$, then $\gamma_{s}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=1$ and $\gamma_{t}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{c}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{c l}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{w}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$.

Proof. (i) If $n=2$, then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}=K_{2}$ and so $\gamma_{s}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{w}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=1$;
(ii) Let n be an odd prime. By Theorem 4.2, $S=\{0\}$ is a γ-set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. By Lemma 2.2(ii), $\operatorname{deg}(0)>\operatorname{deg}(v)$ for all $v \in \mathbb{Z}_{n} \backslash\{0\}$. This gives that $\gamma_{s}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=1$. If $a \neq 0$, then $S=\{0, a\}$ is a γ-set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. By Lemma 2.2(ii), $\operatorname{deg}(a) \leq \operatorname{deg}(v)$ for all $v \in \mathbb{Z}_{n}$. By Lemma 2.4, $0, a$ are adjacent in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Hence $\gamma_{t}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{c}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{c l}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\gamma_{w}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$.

Now, we obtain the independent dominating number of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$.
Lemma 4.9. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{j}>$ for some j. Then

$$
\gamma_{i}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)= \begin{cases}1 & \text { if } n \text { is prime; } \\ \frac{n}{2} & \text { if } n \text { is composite and } p_{1}=2 ; \\ 2 & \text { if } n \text { is composite and } p_{j} \neq 2 .\end{cases}
$$

Proof. Let n be a prime integer. By Theorem $4.2, S=\{0\}$ is a γ-set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Clearly S is an independent dominating set and so $\gamma_{i}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=1$.

Suppose n is a composite integer and $p_{1}=2$. By Lemma 2.4, $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}=K_{\frac{n}{2}, \frac{n}{2}}$ and hence P is an independent dominating set. Therefore $\gamma_{i}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\frac{n}{2}$.

Let n be composite and $p_{j} \neq 2$. For $x \in i+P$ and $y \in\left(p_{j}-i\right)+P$ where $1 \leq i \leq p_{j}$, by Lemma $4.2,\{x, y\}$ is a dominating set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. By Lemma 2.4, x, y are not adjacent in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Hence $\gamma_{i}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$.

Corollary 4.10. Let $n>1$ be a prime number. Then $\gamma_{e f f}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=1$.
Proof. Let $n>1$ be a prime integer. By Theorem $4.2, S=\{0\}$ is a γ-set in $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. Clearly S is both independent and perfect dominating set and so $\gamma_{e f f}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=1$.

A graph G is well-covered if $\beta(G)=\gamma_{i}(G)$.
Lemma 4.11. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime and α_{j}^{\prime} s are positive integers. Then the following are true:
(i) If $n=2, p_{1}=2$ and $P=<p_{1}>$, then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is well-covered;
(ii) If n is composite, $p_{1}=2$ and $P=<p_{1}>$, then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is well-covered;
(iii) Let n be composite, $p_{j} \neq 2$ and $P=<p_{j}>$. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is well-covered if and only if $n=2 p_{j}$.

Proof. Proof of (i) and (ii) follows from Theorem 2.10 and Lemma 4.9.
(iii) Suppose $n=2 p_{j}$ is a composite integer and $p_{j} \neq 2$. Note that $\frac{n}{p_{j}}=2$. By Theorem 2.10 and Lemma 4.9, $\gamma_{i}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\beta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$. Conversely assume that $n \neq 2 p_{j}$. By Theorem 2.10 and Lemma 4.9, $\gamma_{i}\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right) \neq \beta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)\left(\right.$ Since $\left.\frac{n}{p_{j}}>2\right)$. Hence $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is not well-covered.

Lemma 4.12. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k} p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{j}>$ for some j. Then

$$
d\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)= \begin{cases}2 & \text { if } n=2, p_{1}=2 \text { and } P=<p_{1}>; \\ \frac{n+1}{2} & \text { if } n=p_{j} \text { an odd prime and } P=<p_{j}>; \\ \frac{n}{2} & \text { if } n \text { is composite, } p_{1}=2 \text { and } P=<p_{1}>; \\ \frac{n-\frac{n}{p_{j}}}{2}+1 & \text { if } n \text { is composite } p_{j} \neq 2 \text { and } P=<p_{j}>\end{cases}
$$

Proof. For $n=2, \overline{G T_{P}\left(\mathbb{Z}_{2}\right)}=K_{2}$ and hence $d\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=2$.
Suppose n is an odd prime. Let a and b be such that $a \neq 0$ and $a+b=n$. Then $S=\{a, b\} \subseteq \mathbb{Z}_{n}$ is a dominating set and so $\mathbb{Z}_{n}=\{0\} \bigcup\{a, b\}$ is a maximal domatic partition of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$. This gives that $\frac{n-1}{2}$
$d\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\frac{n+1}{2}$.
Suppose n is a composite integer and $p_{1}=2$. By Lemma 2.4, $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}=K_{\frac{n}{2}, \frac{n}{2}}$. Select $a \in P$ and $b \in 1+P$. Then $X=\bigcup_{\frac{n}{2}}\{a, b\}$ is a maximal domatic partition of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ and hence $\left.d \overline{\left(G T_{P}\left(\mathbb{Z}_{n}\right)\right.}\right)=\frac{n}{2}$.

Suppose n is a composite integer and $p_{j} \neq 2$. Select i_{1} and i_{2} such that $1 \leq i_{1} \leq p_{j}-1$ and $i_{1}+i_{2}=p_{j}$. Let $a \in i_{1}+P$ and $b \in i_{2}+P$. Note that $\mathbb{Z}_{n} \backslash P=\bigcup_{n}\{a, b\}$ and hence $\mathbb{Z}_{n}=P \bigcup_{n}\{a, b\}$ is a maximal domatic $\frac{\bigcup^{n-\frac{n}{P_{j}}}}{2} \quad \frac{{ }^{n-\frac{n}{P_{j}}}}{2}$
partition of $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ and hence $d\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\frac{n-\frac{n}{p_{j}}}{2}+1$.
Lemma 4.13. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ where $p_{1}<p_{2}<\ldots<p_{k}, p_{j}^{\prime}$ s are prime, α_{j}^{\prime} s are positive integers and $P=<p_{j}>$ for some j. Then $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is domatically full if and only if $n=2,3$.

Proof. If part follows from Lemma 2.2(iv) and Lemma 4.12.
Conversely assume that $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is domatically full. Suppose that n is prime and $n \neq 2$. Then n is an odd prime. By Lemma 2.2, $\delta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=n-2$ and by Lemma $4.12, d\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\frac{n+1}{2}$. By the assumption $n-2+1=\frac{n+1}{2}$, which in turn implies that $n=3$.

Let n be a composite integer. If $p_{j}=2$, by Lemma 2.2 and Lemma 4.12, $\delta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=d\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)$. Therefore $\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}$ is not domatically full. If $p_{j} \neq 2$, then by Lemma 2.2 and Lemma $4.12, n-\frac{n}{p_{j}}-1+1=$ $\delta\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)+1=d\left(\overline{G T_{P}\left(\mathbb{Z}_{n}\right)}\right)=\frac{n-\frac{n}{p_{j}}}{2}+1$, which is impossible.

References

[1] S. Akbari, D. Kiani, F. Mohammadi and S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213(2009) 2224-2228.
[2] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320(2008) 2706-2719 .
[3] D. F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217(1999) 443-447.
[4] D. F. Anderson and A. Badawi, On the total graph of a commutative ring without the zero element, J. Algebra Appl. 11(4)(2012) \# 125007418 pages DOI:10.1142/S0219498812500740.
[5] D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12(5)(2013) \# 125021218 pages DOI: 10.1142/S021949881250212X.
[6] T. Asir and T. Tamizh Chelvam, On the total graph and its complement of a commutative ring, Comm. Algebra 41(2013) 3820-3835 DOI:10.1080/00927872.2012.678956.
[7] I. Kaplansky, Commutative Rings, Polygonal Publishing House, Washington NJ, 1974.
[8] G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, 2006.
[9] T. W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, 1998.
[10] H. R. Maimani, C. Wickham, S. Yassemi, Rings whose total graphs have genus at most one, Rocky Mountain J. Math. 42(5)(2012) 1551-1560.
[11] Z. Z. Petrović and Z. S. Pucanović, On the Radius and the Relation Between the Total Graph of a Commutative Ring and Its Extensions, Publ. Inst. Math. 89(103) (2011) 1-9.
[12] Z. S. Pucanović and Z. Z. Petrović, Toroidality of intersection graphs of ideals of commutative rings, Graphs Combin. 30(3) (2014) 707-716.
[13] T. Tamizh Chelvam and T. Asir, Domination in total graph on \mathbb{Z}_{n}, Discrete Math. Algorithms Appl. 3(4)(2011) 413-421 DOI: 10.1142/S1793830911001309.
[14] T. Tamizh Chelvam and T. Asir, Domination in the total graph of a commutative ring, J. Combin Math. Combin. Comput. 87(2013) 147-158.
[15] T. Tamizh Chelvam and T. Asir, On the genus of the total graph of a commutative ring, Comm. Algebra, 41(2013) 142-153.
[16] A. T. White, Graphs, Groups and Surfaces, North-Holland Mathematics Studies, North-Holland, 1973.

[^0]: 2010 Mathematics Subject Classification. Primary 05C75, 05C25; Secondary 13A15, 13M05
 Keywords. commutative rings, total graph, complement, domination, gamma sets, planar, toroidal
 Received: 02 May 2017; Accepted: 03 April 2019
 Communicated by Francesco Belardo
 Research supported by the SERB Project No.SR/S4/MS: 806/13 of Science and Engineering Research Board, Government of India through the first author.

 Email addresses: tamche59@gmail.com (T. Tamizh Chelvam), bm4050@gmail.com (M. Balamurugan)

