Filomat 33:18 (2019), 6103–6113 https://doi.org/10.2298/FIL1918103T

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Complement of the Generalized Total Graph of \mathbb{Z}_n

T. Tamizh Chelvam^a, M. Balamurugan^a

^aDepartment of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India

Abstract. Let *R* be a commutative ring with identity and *H* be a nonempty proper multiplicative prime subset of *R*. *The generalized total graph* of *R* is the (undirected) simple graph $GT_H(R)$ with all elements of *R* as the vertex set and two distinct vertices *x* and *y* are adjacent if and only if $x + y \in H$. *The complement of the generalized total graph* $\overline{GT_H(R)}$ of *R* is the (undirected) simple graph with vertex set *R* and two distinct vertices *x* and *y* are adjacent if and only if $x + y \in H$. The complement of the generalized total graph $\overline{GT_H(R)}$ of *R* is the (undirected) simple graph with vertex set *R* and two distinct vertices *x* and *y* are adjacent if and only if $x + y \notin H$. In this paper, we investigate certain domination properties of $\overline{GT_H(R)}$. In particular, we obtain the domination number, independence number and a characterization for γ -sets in $\overline{GT_P(\mathbb{Z}_n)}$ where *P* is a prime ideal of \mathbb{Z}_n . Further, we discuss properties like Eulerian, Hamiltonian, planarity, and toroidality of $\overline{GT_P(\mathbb{Z}_n)}$.

1. Introduction

Through out this paper *R* denotes a commutative ring with nonzero identity, *Z*(*R*) its set of all zerodivisors, $Z^*(R) = Z(R) \setminus \{0\}$ and U(R) its set of all units. Anderson and Livingston [3] introduced the *zero-divisor graph* of *R*, denoted by $\Gamma(R)$, as the (undirected) simple graph with vertex set $Z^*(R)$ and two distinct vertices $x, y \in Z^*(R)$ are adjacent if and only if xy = 0. Subsequently, Anderson and Badawi [5] introduced the concept of the *total graph* of a commutative ring. The *total graph* $T_{\Gamma}(R)$ of *R* is the undirected graph with vertex set *R* and for distinct $x, y \in R$ are adjacent if and only if $x + y \in Z(R)$. Akbari et al. [1], Anderson and Badawi [4], Petrović et al. [11] and Tamizh Chelvam and Asir [6, 13, 14] have extensively studied about various graph theoretical aspects of the total graph of commutative rings.

Recently, Anderson and Badawi [2] introduced the concept of the generalized total graph of a commutative ring. A nonempty proper subset *H* of a commutative ring *R* is said to be a multiplicative prime subset of *R* if the following two conditions hold: (i) $ab \in H$ for every $a \in H$ and $b \in R$; (ii) if $ab \in H$ for $a, b \in R$, then either $a \in H$ or $b \in H$. For example, every prime ideal, union of prime ideals and $H = R \setminus U(R)$ are some of the multiplicative prime subsets of *R*. For a multiplicative prime subset *H* of *R*, the *generalized total graph* $GT_H(R)$ of *R* is the (undirected) simple graph with vertex set *R* and two distinct vertices *x* and *y* are adjacent if and only if $x + y \in H$, As usual, \mathbb{Z} and \mathbb{Z}_n will denote the ring of integers and ring of integers modulo *n*.

Let G = (V, E) be a graph. We say that G is connected if there is a path between any two distinct vertices of G. For a graph G = (V, E) and a subset $S \subseteq V$, the neighbor set of S in G to be the set of all vertices adjacent

²⁰¹⁰ Mathematics Subject Classification. Primary 05C75, 05C25; Secondary 13A15, 13M05

Keywords. commutative rings, total graph, complement, domination, gamma sets, planar, toroidal

Received: 02 May 2017; Accepted: 03 April 2019

Communicated by Francesco Belardo

Research supported by the SERB Project No.SR/S4/MS: 806/13 of Science and Engineering Research Board, Government of India through the first author.

Email addresses: tamche59@gmail.com (T. Tamizh Chelvam), bm4050@gmail.com (M. Balamurugan)

to vertices in *S*; and deg(v) is the degree of a vertex v. $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degree of vertices in *G* respectively. K_n denotes the complete graph on *n* vertices and $K_{m,n}$ denotes the complete bipartite graph. A nonempty subset *S* of *V* is called a *dominating set* if every vertex in $V \setminus S$ is adjacent to at least one vertex in *S*. A graph *G* is called *excellent* if, for every vertex $v \in V(G)$, there is a γ -set *S* containing *v*. For the terms in graph theory which are not explicitly mentioned here, one can refer [8] and for the terms regarding algebra one can refer [7].

In this paper, we study about the complement of a class of generalized total graphs on \mathbb{Z}_n . In particular, we investigate the structure of $\overline{GT_H(\mathbb{Z}_n)}$, where H is a prime ideal $P = \langle p \rangle$ for a prime element $p \in \mathbb{Z}_n$. More specifically, we determine the domination number of $\overline{GT_P(\mathbb{Z}_n)}$. Having determined the domination number γ of $\overline{GT_P(\mathbb{Z}_n)}$, we characterize all γ -sets in $\overline{GT_P(\mathbb{Z}_n)}$. In Section 2, we study some properties namely degree of the vertices, Eulerian and Hamiltonian of $\overline{GT_P(\mathbb{Z}_n)}$. Further we obtain the independence and covering numbers of $\overline{GT_P(\mathbb{Z}_n)}$. In section 3, we characterize all integers *n* for which $\overline{GT_P(\mathbb{Z}_n)}$ is either planar or toroidal. In Section 4, we study some standard domination parameters of $\overline{GT_P(\mathbb{Z}_n)}$.

2. Basic Properties of $GT_P(\mathbb{Z}_n)$

In this section, we first obtain some results on the degree of the vertices in the complement of the generalized total graph of \mathbb{Z}_n . Later, we discuss about some graph theoretical properties of $\overline{GT_P(\mathbb{Z}_n)}$. More specifically, we discuss about Eulerian and Hamiltonian characterizations of $\overline{GT_P(\mathbb{Z}_n)}$. Let p be a prime number in \mathbb{Z} which divides n. Then $x \in \langle p \rangle \subseteq \mathbb{Z}_n$ if and only if $(x, p) \neq 1$ for $x \in \mathbb{Z}_n$, where (x, p) is the gcd of x and p. We recall the following structure theorem for generalized total graphs of commutative rings. Hereafter we take $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ for distinct primes $p_j, 1 \leq j \leq k$ with $p_1 < p_2 < \dots < p_k$ and the prime ideal $P = \langle p_j \rangle$ for some j.

Theorem 2.1. [5, Theorem 2.2] Let *H* be a prime ideal of a commutative ring *R*, and let $|H| = \lambda$ and $|\frac{R}{H}| = \mu$.

- (i) If $2 \in H$, then $GT_H(R \setminus H)$ is the union of $\mu 1$ disjoint K_{λ} 's;
- (ii) If $2 \notin H$, then $GT_H(R \setminus H)$ is the union of $\frac{\mu-1}{2}$ disjoint $K_{\lambda,\lambda}$'s.

Using Theorem 2.1, one can write $GT_H(R)$ is the union of μ disjoint K_{λ} 's if $2 \in H$; and $GT_H(R)$ is the union of $\frac{\mu-1}{2}$ disjoint $K_{\lambda,\lambda}$'s and a K_{λ} if $2 \notin H$. Now, we obtain degrees of the vertices in the complement of the generalized total graph of \mathbb{Z}_n with respect to a prime ideal $P = \langle p \rangle$ of \mathbb{Z}_n .

Lemma 2.2. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, p'_j s are prime, α'_j s are positive integers and $P = < p_j >$ for some *j*. Then the following are true in $\overline{GT_P(\mathbb{Z}_n)}$:

- (i) If n = 2, then deg(v) = 1, for every $v \in \mathbb{Z}_n$.
- (ii) If n is an odd prime p, then $deg(v) = \begin{cases} n-1 & \text{if } v = 0; \\ n-2 & \text{if } v \neq 0. \end{cases}$
- (iii) If *n* is composite and $2 \in P$, then $deg(v) = \frac{n}{2}$ for every $v \in \mathbb{Z}_n$.
- (iv) If n is composite and $2 \notin P$, then

$$deg(v) = \begin{cases} n - \frac{n}{p_j} & \text{for } v \in P; \\ n - \frac{n}{p_j} - 1 & \text{for } v \in \mathbb{Z}_n \setminus P. \end{cases}$$

The following is an immediate consequence of Lemma 2.2.

Lemma 2.3. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, $p'_i s$ are prime, $\alpha'_i s$ are positive integers and $P = < p_j >$ for some j. Then

- (i) $\overline{GT_P(\mathbb{Z}_n)}$ contains no isolated vertex;
- (ii) $\overline{GT_P(\mathbb{Z}_n)}$ contains a vertex of degree n-1 if and only if n is a prime integer;
- (iii) $\overline{GT_P(\mathbb{Z}_n)}$ is regular if and only if n = 2 or $2 \in P$;
- (iv) $\overline{GT_P(\mathbb{Z}_n)}$ is biregular if and only if n is odd. Moreover in this case, $\Delta(\overline{GT_P(\mathbb{Z}_n)}) = \delta(\overline{GT_P(\mathbb{Z}_n)}) + 1$;
- (v) $\overline{GT_P(\mathbb{Z}_n)}$ is a nontrivial connected graph.

The following observation follows from Theorem 2.1 and is useful throughout this paper.

Lemma 2.4. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, p'_j s are prime and α'_j s are positive integers. If $P = < p_1 > p_1 > p_2 < \dots < p_k$, p'_j s are prime and α'_j s are positive integers. and $p_1 = 2$, then $\overline{GT_P(\mathbb{Z}_n)} = K_{\frac{n}{2},\frac{n}{2}}$.

Remark 2.5. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, $p'_j s$ are prime and $\alpha'_j s$ are positive integers. If p_j is an odd prime and $P = \langle p_j \rangle$, then two distinct vertices x and y are adjacent in $\overline{GT_P(\mathbb{Z}_n)}$ if and only if $x \in i + P$ and $y \in \mathbb{Z}_n \setminus (p_i - i + P)$ for some *i* and $1 \le i < p_i$.

A circuit in a graph G is a closed trail of length 3 or more. A circuit C is called an Eulerian circuit if C contains every edge of G. A connected graph G is said to be Eulerian if it contains an Eulerian circuit. The following characterization for Eulerian graphs is used for characterization of $GT_P(\mathbb{Z}_n)$ to be Eulerian.

Corollary 2.6. [8, Theorem 6.1] A nontrivial connected graph G is Eulerian if and only if every vertex of G has even degree.

Using Corollary 2.6, in the following lemma, we obtain a characterization for $\overline{GT_P(\mathbb{Z}_n)}$ to be Eulerian.

Lemma 2.7. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, p'_j s are prime, α'_j s are positive integers and $P = < p_j >$ for some *j*. Then the following are true:

- (i) Let n be composite, $P = \langle p_1 \rangle$ and $p_1 = 2$. Then $\overline{GT_P(\mathbb{Z}_n)}$ is Eulerian if and only if n = 4k for some positive integer k.
- (ii) If n is prime or $P = \langle p_i \rangle$ for $p_i \neq 2$, then $\overline{GT_P(\mathbb{Z}_n)}$ is not Eulerian.

Proof. Proof of (i) follows from Lemma 2.4, where as proof of (ii) follows from Lemma 2.3(v) and Lemma 2.2(ii) and (iv). \Box

A graph G is said to be *Hamiltonian* if it has a circuit which contains all the vertices of G. The following corollary is useful in proving $\overline{GT_P(\mathbb{Z}_n)}$ is always Hamiltonian.

Corollary 2.8. [8, Corollary 6.7] Let G be a graph of order $n \ge 3$. If $deq(v) \ge \frac{n}{2}$ for each vertex v of G, then G is Hamiltonian.

Lemma 2.9. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k} > 3$ where $p_1 < p_2 < \dots < p_k$, p'_j s are prime, α'_j s are positive integers and $P = \langle p_i \rangle$ for some *j*. Then $\overline{GT_P(\mathbb{Z}_n)}$ is Hamiltonian.

Proof. Let $G = \overline{GT_P(\mathbb{Z}_n)}$. Since n > 3, we have $n - 2 \ge \frac{n}{2}$.

If *n* is prime, by Lemma 2.2(ii), $\delta(G) = n - 2 \ge \frac{n}{2}$. By Corollary 2.8, $\overline{GT_P(\mathbb{Z}_n)}$ is Hamiltonian. Suppose *n* is a composite integer, $P = \langle p_j \rangle$ and $p_j \neq 2$. Since $\frac{n}{2} \ge \frac{n}{p_j} + 1$, by Lemma 2.2(iv), $\delta(G) = \frac{n}{2} \ge \frac{n}{2} + \frac{n}{2}$. $n - \frac{n}{p_i} - 1 \ge \frac{n}{2}$. By Corollary 2.8, $\overline{GT_P(\mathbb{Z}_n)}$ is Hamiltonian.

Suppose *n* is a composite integer and *P* =< 2 > . By Lemma 2.4, $\overline{GT_P(\mathbb{Z}_n)} = K_{\frac{n}{2},\frac{n}{2}}$ and hence the proof follows from Corollary 2.8. \Box

A set *S* of vertices in a graph *G* is said to be *independent* if no two vertices in *S* are adjacent. The *vertex independence number* (or the *independence number*) $\beta(G)$ of *G* is the maximum cardinality of an independent set of *G*. A *vertex cover* in *G* is a set of vertices which covers all edges of *G*. The minimum number of vertices in a vertex cover of *G* is called the *vertex covering number* $\alpha(G)$ of *G*. Now, we obtain the independence domination number of $\overline{GT_P(\mathbb{Z}_n)}$.

Lemma 2.10. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, p'_j 's are prime, α'_j 's are positive integers and $P = < p_j >$ for some j. Then

 $\beta(\overline{GT_P(\mathbb{Z}_n)}) = \begin{cases} 1 & \text{if } n = 2; \\ 2 & \text{if } n \text{ is an odd prime;} \\ \frac{n}{2} & \text{if } n \text{ is a composite integer and } p_j = 2; \\ \frac{n}{p_j} & \text{if } n \text{ is a composite integer and } p_j \neq 2. \end{cases}$

Proof. Suppose n = 2. Then $\overline{GT_P(\mathbb{Z}_n)} = \underline{K_2}$ and so $\beta(\overline{GT_P(\mathbb{Z}_n)}) = 1$.

Let *n* be an odd prime. Suppose $\beta(\overline{GT_P(\mathbb{Z}_n)}) \ge 3$. This gives that there exists a complete subgraph of order ≥ 3 in $GT_P(\mathbb{Z}_n) = K_1 \bigcup_{\frac{n-1}{2}} K_2$, which is a contradiction. Hence $\beta(\overline{GT_P(\mathbb{Z}_n)}) \le 2$. Note that, for $1 \le i \le p-1$,

i is adjacent with p - i only in $GT_P(\mathbb{Z}_n)$ and hence $\beta(\overline{GT_P(\mathbb{Z}_n)}) = 2$.

Suppose *n* is composite and $P = \langle 2 \rangle$. By Lemma 2.4, $\beta(\overline{GT_P(\mathbb{Z}_n)}) = \frac{n}{2}$.

Suppose *n* is composite and $p_j \neq 2$. Then *P* is an independent set in $\overline{GT_P(\mathbb{Z}_n)}$ and $|P| = \frac{n}{p_j} \geq 2$. Let $S \subseteq \mathbb{Z}_n \setminus P$ be an independent subset of $\overline{GT_P(\mathbb{Z}_n)}$.

 $S \subseteq \mathbb{Z}_n \setminus T$ be all fild **Claim :** $|S| \le 2$.

Let x_1, x_2 and x_3 be three distinct elements in *S* such that $x_1 \in i_1 + P$, $x_2 \in i_2 + P$ and $x_3 \in i_3 + P$ for $1 \le i_1, i_2, i_3 \le p_j - 1$.

Assume that at least two of i_1 , i_2 and i_3 are equal. Without loss of generality, let us take $i_1 = i_2$. Then x_1, x_2 are adjacent in $\overline{GT_P(\mathbb{Z}_n)}$ and so K_2 is a subgraph of $\overline{GT_P(\mathbb{Z}_n)}$. Hence *S* is not an independent in $\overline{GT_P(\mathbb{Z}_n)}$.

Assume that i_1 , i_2 and i_3 are all distinct. Suppose the sum of at least any two of i_1 , i_2 and i_3 is p_j . Without loss of generality, let $i_1 + i_2 = p_j$. Then x_3 is adjacent with both x_1 and x_2 . Hence S is not an independent set in $\overline{GT_P(\mathbb{Z}_n)}$. Suppose the sum of any two of i_1 , i_2 and i_3 is not equal to p_j . Then the subgraph induced by $\{x_1, x_2, x_3\}$ is K_3 , which is a contradiction to S is an independent set in $\overline{GT_P(\mathbb{Z}_n)}$. Hence $|S| \le 2$. Therefore P is a maximal independent set in $\overline{GT_P(\mathbb{Z}_n)}$ having order $\frac{n}{p_j} \ge 2$. \Box

Corollary 2.11. [8, Corollary 8.8] For every graph G of order n containing no isolated vertices, $\alpha(G) + \beta(G) = n$.

Using Corollary 2.11, we obtain the following on the vertex covering number.

Corollary 2.12. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, $p'_j s$ are prime, $\alpha'_j s$ are positive integers and $P = \langle p_j \rangle$ for some j. Then the vertex covering number

 $\alpha(\overline{GT_P(\mathbb{Z}_n)}) = \begin{cases} 1 & \text{if } n = 2; \\ n-2 & \text{if } n \text{ is an odd prime;} \\ \frac{n}{2} & \text{if } n \text{ is a composite integer and } p_j = 2; \\ n-\frac{n}{p_j} & \text{if } n \text{ is a composite integer and } p_j \neq 2. \end{cases}$

3. Characterization of genus for $\overline{GT_P(\mathbb{Z}_n)}$

In section, we study about the genus of $\overline{GT_P(\mathbb{Z}_n)}$. More specifically we characterize all integers *n* for which $\overline{GT_P(\mathbb{Z}_n)}$ is either planar or toroidal. Let *k* be a non-negative integer and *S_k* an orientable surface

of genus n. The genus of the graph *G*, denoted by g(G), is the smallest *k* such that *G* embeds into S_k . If *H* is a subgraph of *G*, then $g(H) \leq g(G)$. Graphs with genus 0 are planar and graphs of genus 1 are toroidal. Maimani et al. [10], Pucanović [12] and Tamizh Chelvam et al. [15] have studied about the genus of total graphs and other graphs associated with commutative rings. Let us first recall some known results connecting genus of graphs.

Theorem 3.1. [16, Euler formula] If *G* is a finite connected graph with *n* vertices, *e* edges, and of genus *g*, then n - e + f = 2 - 2g, where *f* is a number of faces obtained when *G* is embedded in *S*_n.

Theorem 3.2. [16, Theorems 6.37 & 6.38] The following statements hold:

- (i) For $n \ge 3$, $g(K_n) = \left\lceil \frac{(n-3)(n-4)}{12} \right\rceil$.
- (ii) For $m, n \ge 2, g(K_{m,n}) = \left\lceil \frac{(m-2)(n-2)}{4} \right\rceil$.

Note that a graph *G* is planar if and only if *G* does not contain either K_5 or $K_{3,3}[8$, Theorem 9.7]. According to Theorem 3.2, if n = 5, 6, 7 then $g(K_n) = 1$. Further, $g(K_{4,4}) = g(K_{3,n}) = 1$ if n = 3, 4, 5, 6 and $g(K_{5,4}) = g(K_{6,4}) = g(K_{m,4}) = 2$ if m = 7, 8, 9, 10. Now, we obtain in the following theorem, a characterization for $\overline{GT_P(\mathbb{Z}_n)}$ to be planar.

Theorem 3.3. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, $p'_j s$ are prime and $\alpha'_j s$ are positive integers. Then the following are true:

- (i) Let *n* be composite, $p_1 = 2$ and $P = \langle p_1 \rangle$. Then $\overline{GT_P(\mathbb{Z}_n)}$ is planar if and only if n = 4;
- (ii) Let n be composite, $p_i \neq 2$ and $P = \langle p_i \rangle$. Then $\overline{GT_P(\mathbb{Z}_n)}$ is planar if and only if n = 6;
- (iii) Let n be prime, n = p and $P = \langle p \rangle$. Then $\overline{GT_P(\mathbb{Z}_p)}$ is planar if and only if $p \in \{2, 3, 5\}$.

Proof. (i) Assume that *n* is composite, $p_1 = 2$ and $P = \langle p_1 \rangle$. Suppose n = 4. One can see that $\overline{GT_P(\mathbb{Z}_4)} = K_{2,2}$ and hence planar. Conversely assume that $\overline{GT_P(\mathbb{Z}_n)}$ is planar. Suppose n > 4. Since $p_1 = 2$ and p_1 divides *n*, we have $n \ge 6$. By Lemma 2.4, we have $\overline{GT_P(\mathbb{Z}_n)} = K_{\frac{n}{2},\frac{n}{2}}$ with $\frac{n}{2} \ge 3$ which implies that $\overline{GT_P(\mathbb{Z}_n)}$ contains $K_{3,3}$, which is a contradiction.

(ii) Assume that *n* is composite, $p_j \neq 2$ and $P = \langle p_j \rangle$. If n = 6, then $p_j = 3$. A planar embedding of $\overline{GT_P(\mathbb{Z}_6)}$ is given in Figure 1 and so it is planar.

Figure 1: $\overline{GT_{\langle 3 \rangle}(\mathbb{Z}_6)}$

Conversely assume that $\overline{GT_P(\mathbb{Z}_n)}$ is planar, $P = \langle p_j \rangle$ and $p_j \neq 2$. Suppose n > 6.

If $p_j = 3$, then $|P| = |1 + P| = |2 + P| = \frac{n}{3} \ge 3$. Clearly the induced subgraph $\langle P \cup (1 + P) \rangle$ contains $K_{3,3}$ as a subgraph and so $\overline{GT_P(\mathbb{Z}_n)}$ is non-planar, a contradiction.

If $p_j \ge 5$, then $n \ge 10$ and $|P| = |i + P| \ge 2$ for $1 \le i \le p_j - 1$. Consider $S = \{x\} \cup (1 + P) \cup (2 + P)$ where $x \in P$. Then $|S| \ge 5$ and $\langle S \rangle$ contains K_5 as a subgraph and so K_5 is a subgraph of $\overline{GT_P(\mathbb{Z}_n)}$, a contradiction to $\overline{GT_P(\mathbb{Z}_n)}$ is planar. Hence n = 6.

(iii) It is easy to check that $\overline{GT_P(\mathbb{Z}_p)}$ is planar for $P = \langle p \rangle$ and $p \in \{2, 3, 5\}$. Conversely assume that $\overline{GT_P(\mathbb{Z}_p)}$ is planar where $P = \langle p \rangle$ and p is a prime number. Suppose p = 7. By Lemma 2.2 (iv), deg(0) = 6 and deg(v) = 5 for $v \neq 0$. This implies that $\overline{GT_P(\mathbb{Z}_7)}$ contains m = 18 edges and $m = 18 \rangle 15 = 3p - 6$. By [8, Theorem 9.2], $\overline{GT_P(\mathbb{Z}_7)}$ is not planar. Suppose $p \geq 11$ and p is an odd prime integer. Note that the induced subgraph induced by $\{0, 1, 2, 3, 4\}$ of $\overline{GT_P(\mathbb{Z}_p)}$ is K_5 a contradiction. Hence $p \in \{2, 3, 5\}$.

Now, we obtain in the following theorem, a characterization for $\overline{GT_P(\mathbb{Z}_n)}$ to be toroidal.

Theorem 3.4. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, $p'_j s$ are prime and $\alpha'_j s$ are positive integers. Then the following are true:

- (i) Let n be composite, $p_1 = 2$ and $P = \langle p_1 \rangle$. Then $\overline{GT_P(\mathbb{Z}_n)}$ is toroidal if and only if $n \in \{6, 8\}$;
- (ii) Let $n \ge 9$ be composite, $p_i \ne 2$ and $P = \langle p_i \rangle$. Then $\overline{GT_P(\mathbb{Z}_n)}$ is not toroidal.
- (iii) Let *n* be prime and $P = \langle n \rangle$. Then $\overline{GT_P(\mathbb{Z}_p)}$ is toroidal if and only if n = 7.

Proof. (i) Assume that *n* is composite, $p_1 = 2$ and $P = \langle p_1 \rangle$. One can see that $\overline{GT_P(\mathbb{Z}_6)} = K_{3,3}$ and $\overline{GT_P(\mathbb{Z}_8)} = K_{4,4}$. By Theorem 3.2, $g(\overline{GT_P(\mathbb{Z}_6)}) = 1$ and $g(\overline{GT_P(\mathbb{Z}_8)}) = 1$. Hence $\overline{GT_P(\mathbb{Z}_p)}$ is toroidal if p = 6 or p = 8.

Conversely assume that *n* is composite, $p_1 = 2$ and $P = \langle p_1 \rangle$. Suppose $\overline{GT_P(\mathbb{Z}_n)}$ is toroidal. By Theorem 3.3, $n \ge 6$. Suppose $n \ge 9$. Since $p_1 = 2$ and p_1 divides *n*, we have $n \ge 10$. By Lemma 2.4, we have $\overline{GT_P(\mathbb{Z}_n)} = K_{\frac{n}{2},\frac{n}{2}}$ with $\frac{n}{2} \ge 5$ which implies that $\overline{GT_P(\mathbb{Z}_n)}$ contains $K_{5,5}$ as a subgraph, which is a contradiction. Hence $n \in \{6, 8\}$.

(ii) Let *n* be composite, $p_j \neq 2$ and $P = \langle p_j \rangle$.

Case 1. Consider the case that n = 9. Then $p_j = 3$ and so $|P| = |1 + P| = |2 + P| = \frac{n}{3} = 3$. The graph $\overline{GT_P(\mathbb{Z}_9)}$ is given in Figure 2 and one can see that $K_{3,6}$ is a subgraph of $\overline{GT_P(\mathbb{Z}_9)}$ with vertex partition $V_1 = \{0, 3, 6\}$ and $V_2 = \{1, 2, 4, 5, 7, 8\}$. By Theorem 3.2, $g(K_{3,6}) = 1$ and hence one can fix an embedding of $K_{3,6}$ on the surface of torus. Note that, there are 9 faces in the embedding of $K_{3,6}$, say $\{f_1, \ldots, f_9\}$. Let n_i be the length of the face f_i . Then $n_i \ge 4$ for every i and $\sum_{i=1}^9 n_i = 36$. Thus implies that $n_i = 4$ for every i. Now, the induced subgraph $\langle S \rangle = \langle \{1, 4, 7\} \rangle \subseteq V(\overline{GT_{\langle 3 \rangle}(\mathbb{Z}_9)})$ is K_3 . Also, edges of the induced subgraph $\langle S \rangle$ are disjoint from edges of $K_{3,6}$. Since K_3 cannot be embedded in the torus along with an embedding with only rectangles as faces,

of $K_{3,6}$. Since K_3 cannot be embedded in the torus along with an embedding with only rectangles as faces, one cannot have an embedding of K_3 and $K_{3,6}$ together in the torus. This implies that $g(\overline{GT_3(\mathbb{Z}_9)}) \ge 2$. Hence $\overline{GT_P(\mathbb{Z}_n)}$ is not toroidal

Case 2. Consider the case that n > 9.

Subcase 2.1. If $p_j = 3$, then $n \ge 12$ and so $|P| = |1 + P| = |2 + P| = \frac{n}{3} \ge 4$. Clearly subgraphs induced by cosets 1 + P and 2 + P are two disjoint $K_{\frac{n}{3}}$'s. Let $S = (1 + P) \cup \{y\}$ where $y \in 2 + P$. Now, the induced

subgraph $\langle S \rangle$ contains $K_4 \cup K_1$ and so the subgraph induced by $P \cup S$ contains $K_{4,5}$ as a subgraph. Hence $g(\overline{GT_P(\mathbb{Z}_n)}) \geq 2$. Hence $\overline{GT_P(\mathbb{Z}_n)}$ is not toroidal

Subcase 2.2. If $p_j \ge 5$, then $n \ge 10$ and $|P| = |i + P| \ge 2$ for $1 \le i \le p_j - 1$. Let $S = \{x\} \cup (1 + P) \cup (2 + P)$ and $T = \{y\} \cup (4 + P) \cup (5 + P)$ where $x, y \in P$. Then $|S| = |T| \ge 5$ and $\langle S \cup T \rangle$ contains $K_5 \cup K_5$ as a subgraph. Therefore $\overline{GT_P(\mathbb{Z}_n)}$ contains $2K_5$ and so $g(\overline{GT_P(\mathbb{Z}_n)}) \ge 2$ which implies that $\overline{GT_P(\mathbb{Z}_n)}$ is not toroidal

(iii) Assume that *n* is prime and $P = \langle n \rangle$. An embedding of $\overline{GT_P(\mathbb{Z}_7)}$ where $P = \langle 7 \rangle$ in S_1 is given in Figure 3 and so it is toroidal.

Conversely assume that $\overline{GT_P(\mathbb{Z}_p)}$ is toroidal for a prime number n and $P = \langle n \rangle$. By Theorem 3.3, $p \ge 7$. Suppose $p \ge 11$. Consider the partition of $\mathbb{Z}_p = \{0\} \bigcup_{i=1}^{\frac{p-1}{2}} \{x_i\} \bigcup_{i=1}^{\frac{p-1}{2}} \{y_i\}$, where each x_i is the additive inverse of y_i . Note that $\langle \bigcup_{i=1}^{\frac{p-1}{2}} \{x_i\} \rangle = \langle \bigcup_{i=1}^{\frac{p-1}{2}} \{y_i\} \rangle = K_{\frac{p-1}{2}}$ and x_i, y_i are not adjacent in $\overline{GT((\mathbb{Z}_p))}$. Since $\frac{p-1}{2} \ge 5$, $\overline{GT_P(\mathbb{Z}_p)}$ contains $2K_5$ as a subgraph, a contradiction to $\overline{GT_P(\mathbb{Z}_p)}$ is toroidal. Hence p = 7. \Box

4. Domination Parameters of $\overline{GT_P(\mathbb{Z}_n)}$

In this section, we discuss about various domination parameters of $\overline{GT_P(\mathbb{Z}_n)}$. More specifically, we discuss about γ_t , γ_c , γ_{cl} , γ_p , γ_{eff} , γ_s , γ_w and γ_i of $\overline{GT_P(\mathbb{Z}_n)}$.

For a graph G = (V, E), a subset $S \subseteq V$ is called a *dominating set* if every vertex in $V \setminus S$ is adjacent to at least one vertex in S. A subset $S \subseteq V$ is called a *total dominating set* if every vertex in $v \in V$ is adjacent to some vertex $u \in S$ and $v \neq u$. A dominating set S is called a *connected (or clique) dominating* set if the subgraph induced by S is connected (or complete). A dominating set S is called an *independent dominating set* if no two vertices of S are adjacent. A dominating set S is called a *perfect dominating set* if every vertex in $V \setminus S$ is adjacent to exactly one vertex in S. A dominating set S is called an *efficient dominating set* if S is both an independent and a perfect dominating set of G. A dominating set S is called a *strong* (or *weak*) dominating set if for every vertex $u \in V \setminus S$, there is a vertex $v \in S$ with $\deg_G(v) \ge \deg_G(u)$ (or $\deg_G(v) \le \deg_G(u)$) and uis adjacent to v. The domination number γ of G is defined to be minimum cardinality of a dominating set in G and such a domination set is called γ -set in G. One can refer Haynes et al., [9] for definitions of other domination parameters like *total dominating number* γ_t , *connected dominating number* γ_c , *clique dominating number* γ_{cl} , *independent dominating number* i(G), *perfect dominating number* γ_p , *efficient dominating number* γ_{eff} , *strong dominating number* γ_s and *weak dominating number* γ_w . A graph G is called *excellent* if, for every vertex $v \in V$, there exists a γ -set S containing v. A *domatic partition* of G is a partition of V, into dominating sets in *G*. The maximum number of sets in a domatic partition is called a *domatic number* of *G* and is denoted by d(G). The maximum number of sets in a domatic partition in which each partition is a total dominating set is called a *total domatic number* of *G* and is denoted by $d_i(G)$. A graph *G* is called *domatically full* if $d(G) = \delta(G) + 1$. The *bondage number* b(G) is the minimum number of edges whose removal increases the domination number. The *independent number* $\beta_0(G)$ is the maximum cardinality of an independent set in *G*. A graph *G* is well-covered if $\beta_0(G) = i(G)$.

In the following lemma, we obtain the domination number of $\overline{GT_P(\mathbb{Z}_n)}$.

Lemma 4.1. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, $p'_j s$ are prime, $\alpha'_j s$ are positive integers and $P = < p_j >$ for some *j*. Then

$$\gamma(\overline{GT_P(\mathbb{Z}_n)}) = \begin{cases} 1 & \text{if } n \text{ is prime;} \\ 2 & \text{if } n \text{ is composite.} \end{cases}$$

Proof. Assume that *n* is prime. By Lemma 2.2(i) and (ii), $\overline{GT_P(\mathbb{Z}_n)}$ contains a vertex of degree n - 1 and so $\gamma(\overline{GT_P(\mathbb{Z}_n)}) = 1$.

Suppose *n* is composite and $P = \langle 2 \rangle$. Then $\overline{GT_P(\mathbb{Z}_n)} = K_{\frac{n}{2},\frac{n}{2}}$ and so $\gamma(\overline{GT_P(\mathbb{Z}_n)}) = 2$.

Suppose *n* is composite and $P = \langle p_j \rangle$, $p_j \neq 2$. By Lemma 2.3(ii), $\gamma(\overline{GT_P(\mathbb{Z}_n)}) > 1$. Let $x \in P$ and $y \notin P$. Let $z \in \mathbb{Z}_n \setminus \{x, y\}$. Suppose $z \in P$. Then *z*, *y* are adjacent in $\overline{GT_P(\mathbb{Z}_n)}$ by Lemma 2.4. Suppose $z \notin P$. Then *z*, *x* are adjacent in $\overline{GT_P(\mathbb{Z}_n)}$ by Lemma 2.4. Therefore $\{x, y\}$ is a dominating set in $\overline{GT_P(\mathbb{Z}_n)}$. By Lemma 2.3, $\{x, y\}$ is a minimal dominating set in $\overline{GT_P(\mathbb{Z}_n)}$.

In view of Lemma 2.4, we have the following characterization of γ -sets in $GT_P(\mathbb{Z}_n)$.

Theorem 4.2. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, $p'_j s$ are prime, $\alpha'_j s$ are positive integers and $P = < p_j >$ for some j.

- (i) Let *n* be composite and $S = \{x, y\} \subseteq \mathbb{Z}_n$. Then *S* is a γ -set if and only if *x*, *y* are in two distinct cosets of *P* in \mathbb{Z}_n ;
- (ii) The set $S = \{0\}$ is a γ -set in $\overline{GT_P(\mathbb{Z}_n)}$ if and only if n is prime.

Corollary 4.3. Let *n* be a composite integer. Then $\gamma_t(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_c(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_{cl}(\overline{GT_P(\mathbb{Z}_n)}) = 2$.

Proof. Assume that *n* is a composite integer. Let $x \in P$ and $\underline{y} \in \mathbb{Z}_n \setminus P$. By Lemma 2.4, $S = \{x, y\}$ is a dominating set of $\overline{GT_P(\mathbb{Z}_n)}$. By Lemma 2.2, *x*, *y* are adjacent in $\overline{GT_P(\mathbb{Z}_n)}$. Therefore *S* is a total dominating set of $\overline{GT_P(\mathbb{Z}_n)}$. Therefore $\gamma_t(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_{cl}(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_{cl}(\overline{GT_P(\mathbb{Z}_n)}) = 2$. \Box

Recall that when $p_1 = 2$ and $P = \langle p_1 \rangle$, $\overline{GT_P(\mathbb{Z}_n)}$ is a complete bi-partite graph. Using this along with Theorem 4.2, we have the following result.

Lemma 4.4. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, p'_j 's are prime, α'_j 's are positive integers and $P = < p_j >$ for some *j*. Then the following are true:

- (i) If *n* is composite, then $\overline{GT_P(\mathbb{Z}_n)}$ is excellent;
- (ii) Let *n* be prime. Then $\overline{GT_P(\mathbb{Z}_n)}$ is excellent if and only if n = 2.

Proof. (i) Assume that *n* is a composite integer. Let $x \in \mathbb{Z}_n$. Then either $x \in P$ or $x \in \mathbb{Z}_n \setminus P$. Without loss of generality $x \in P$. By Lemma 4.2(i), for any $y \in \mathbb{Z}_n \setminus P$, $\{x, y\}$ is a γ -set in $\overline{GT_P(\mathbb{Z}_n)}$.

(ii) When n = 2, $\overline{GT_P(\mathbb{Z}_n)} = K_2$ and hence it is excellent. Conversely suppose $\overline{GT_P(\mathbb{Z}_n)}$ is excellent for a prime number *n*. By Lemma 4.1, $\gamma(\overline{GT_P(\mathbb{Z}_n)} = 1)$. By the assumption that $\overline{GT_P(\mathbb{Z}_n)}$ is excellent, degree of every vertex must be n - 1 and hence n - 1 = 1 which in turn implies that n = 2. \Box

Lemma 4.5. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, p'_j s are prime, α'_j s are positive integers and $P = < p_1 > .$ Then the following are true:

- (i) If *n* is prime, then {0} is a perfect dominating set in $\overline{GT_P(\mathbb{Z}_n)}$;
- (ii) Let *n* be composite. Then a perfect dominating set exists in $\overline{GT_P(\mathbb{Z}_n)}$ if and only if $p_1 = 2$.

Proof. (i) If *n* is prime, then by Theorem 4.2, $S = \{0\}$ is a perfect domination set in $\overline{GT_P(\mathbb{Z}_n)}$.

(ii) Let *n* be a composite integer. Assume that $p_1 \neq 2$. Suppose *S* is a perfect dominating set in $\overline{GT_P(\mathbb{Z}_n)}$. Since *n* is composite, $|P| = |i + P| \ge 2$, for $1 \le i \le p_j - 1$. Let *x*, *y* be two distinct elements in \mathbb{Z}_n . Suppose *x*, *y* \in *P*. Note that, every $z \in \mathbb{Z}_n \setminus P$ is adjacent to both *x* and *y* and hence both *x* and *y* cannot be in *S*.

Suppose $x \in P \cap S$ and $y \in P$ with $y \notin S$. Since P is an independent set, x, y are not adjacent in $\overline{GT_P(\mathbb{Z}_n)}$. Since S is dominating set, $\exists z_1 \in S$ such that z_1, y are adjacent in $\overline{GT_P(\mathbb{Z}_n)}$. By Lemma 2.4, $z_1 \in i + P$ for some i where $1 \leq i \leq p_j - 1$. Since $|i + P| \geq 2$, $\exists z_2 \in i + P$ with $z_2 \neq z_1$. If $z_2 \in S$, by Lemma 2.4 and $p_j \neq 2$, y is adjacent to z_1, z_2 which is a contradiction. Hence $z_2 \in V \setminus S$. By Lemma 2.4, x, z_2 are adjacent and z_1, z_2 are also adjacent in $\overline{GT_P(\mathbb{Z}_n)}$, which is a contradiction to S is a perfect dominating set.

Suppose $x, y \in S \setminus P$. Since every element in *P* is adjacent to both *x*, *y* again a contradiction. Hence $\overline{GT_P(\mathbb{Z}_n)}$ has no perfect dominating set.

Conversely, assume that $p_1 = 2$. Then $\overline{GT_P(\mathbb{Z}_n)} = K_{\frac{n}{2},\frac{n}{2}}$. Let $x \in P$ and $y \in 1 + P$. Then $S = \{x, y\}$ is a dominating set of $\overline{GT_P(\mathbb{Z}_n)}$. Clearly every odd number in \mathbb{Z}_n is adjacent with only $x \in S$, and every even number is adjacent with only $y \in S$. Hence S is a γ_p -set of $\overline{GT_P(\mathbb{Z}_n)}$. \Box

In view of Lemma 4.5, we have the following corollary.

Corollary 4.6. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ be an integer where $p_1 < p_2 < \dots < p_k$, p'_j s are prime and α'_j s are positive integers. Then the following are true:

 $\gamma_{p}(\overline{GT_{P}(\mathbb{Z}_{n})}) = \begin{cases} 1 & \text{if } n \text{ is a prime }; \\ 2 & \text{if } n \text{ is a composite and } p_{1} = 2; \\ 0 & \text{if } n \text{ is a composite and } p_{1} \neq 2. \end{cases}$

Lemma 4.7. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ be a composite integer where $p_1 < p_2 < \dots < p_k$, p'_j s are prime and α'_j s are positive integer. Then the following are true:

- (i) If *n* is composite, $p_1 = 2$ and $P = \langle p_1 \rangle$, then $\gamma_s(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_w(\overline{GT_P(\mathbb{Z}_n)}) = 2$;
- (ii) If *n* is composite, $p_j \neq 2$ and $P = \langle p_j \rangle$ for some *j*, then $\gamma_s(\overline{GT_P(\mathbb{Z}_n)}) = \frac{n}{p_j}$ and $\gamma_w(\overline{GT_P(\mathbb{Z}_n)}) = 2$.

Proof. (i) Suppose *n* is a composite integer and $p_1 = 2$. Then $\overline{GT_P(\mathbb{Z}_n)} = K_{\frac{n}{2},\frac{n}{2}}$. For $x \in P$ and $y \in 1+P, S = \{x, y\}$ is a dominating set of $\overline{GT_P(\mathbb{Z}_n)}$. Also $deg(v) = \frac{n}{2}$ for all $v \in \mathbb{Z}_n$. Therefore $\gamma_s(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_w(\overline{GT_P(\mathbb{Z}_n)}) = 2$.

(ii) Suppose *n* is a composite integer and $p_j \neq 2$. By the definition of $\overline{GT_P(\mathbb{Z}_n)}$, each vertex $x \in P$ is adjacent with each vertex $y \in \mathbb{Z}_n \setminus P$. By Lemma 2.2(iv), we have $deg(x) = n - \frac{n}{p_j}$ and $deg(y) = n - \frac{n}{p_j} - 1$. Since P dominates $\overline{GT_P(\mathbb{Z}_n)}$ and deg(x) > deg(y), P is a strong dominating set in $\overline{GT_P(\mathbb{Z}_n)}$. Then $\gamma_s(\overline{GT_P(\mathbb{Z}_n)}) = \frac{n}{p_j}$. Let $x \in i + P$ and $y \in (p_j - i) + P$ where $1 \le i \le \frac{p_j - 1}{2}$. By Theorem 4.2, $S = \{x, y\}$ is a dominating set of $\overline{GT_P(\mathbb{Z}_n)}$ and by Lemma 2.2(iv), $deg(x) = deg(y) = n - \frac{n}{p_j} - 1 = \delta(\overline{GT_P(\mathbb{Z}_n)})$. Then $\{x, y\}$ is a weak dominating

Lemma 4.8. Let
$$n > 1$$
 be a prime integer. Then the following are true

(i) If n = 2, then $\gamma_s(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_w(\overline{GT_P(\mathbb{Z}_n)}) = 1$.

set in $\overline{GT_P(\mathbb{Z}_n)}$ and so $\gamma_w(\overline{GT_P(\mathbb{Z}_n)}) = 2$. \Box

(ii) If $n \neq 2$, then $\gamma_s(\overline{GT_P(\mathbb{Z}_n)}) = 1$ and $\gamma_t(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_c(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_{cl}(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_w(\overline{GT_P(\mathbb{Z}_n)}) = 2$.

Proof. (i) If n = 2, then $\overline{GT_P(\mathbb{Z}_n)} = K_2$ and so $\gamma_s(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_w(\overline{GT_P(\mathbb{Z}_n)}) = 1$;

(ii) Let *n* be an odd prime. By Theorem 4.2, $S = \{0\}$ is a γ -set in $\overline{GT_P(\mathbb{Z}_n)}$. By Lemma 2.2(ii), deg(0) > deg(v) for all $v \in \mathbb{Z}_n \setminus \{0\}$. This gives that $\gamma_s(\overline{GT_P(\mathbb{Z}_n)}) = 1$. If $a \neq 0$, then $S = \{0, a\}$ is a γ -set in $\overline{GT_P(\mathbb{Z}_n)}$. By Lemma 2.2(ii), $deg(a) \leq deg(v)$ for all $v \in \mathbb{Z}_n$. By Lemma 2.4, 0, *a* are adjacent in $\overline{GT_P(\mathbb{Z}_n)}$. Hence $\gamma_t(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_c(\overline{GT_P(\mathbb{Z}_n)}) = \gamma_{vl}(\overline{GT_P(\mathbb{Z}_n)}) = 2$. \Box

Now, we obtain the independent dominating number of $\overline{GT_P(\mathbb{Z}_n)}$.

Lemma 4.9. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, p'_j s are prime, α'_j s are positive integers and $P = < p_j >$ for some j. Then

 $\gamma_i(\overline{GT_P(\mathbb{Z}_n)}) = \begin{cases} 1 & \text{if } n \text{ is prime;} \\ \frac{n}{2} & \text{if } n \text{ is composite and } p_1 = 2; \\ 2 & \text{if } n \text{ is composite and } p_j \neq 2. \end{cases}$

Proof. Let *n* be a prime integer. By Theorem 4.2, $S = \{0\}$ is a γ -set in $\overline{GT_P(\mathbb{Z}_n)}$. Clearly *S* is an independent dominating set and so $\gamma_i(\overline{GT_P(\mathbb{Z}_n)}) = 1$.

Suppose *n* is a composite integer and $p_1 = 2$. By Lemma 2.4, $\overline{GT_P(\mathbb{Z}_n)} = K_{\frac{n}{2},\frac{n}{2}}$ and hence *P* is an independent dominating set. Therefore $\gamma_i(\overline{GT_P(\mathbb{Z}_n)}) = \frac{n}{2}$.

Let *n* be composite and $p_j \neq 2$. For $x \in i + P$ and $y \in (p_j - i) + P$ where $1 \le i \le p_j$, by Lemma 4.2, $\{x, y\}$ is a dominating set in $\overline{GT_P(\mathbb{Z}_n)}$. By Lemma 2.4, *x*, *y* are not adjacent in $\overline{GT_P(\mathbb{Z}_n)}$. Hence $\gamma_i(\overline{GT_P(\mathbb{Z}_n)}) = 2$. \Box

Corollary 4.10. Let n > 1 be a prime number. Then $\gamma_{eff}(\overline{GT_P(\mathbb{Z}_n)}) = 1$.

Proof. Let n > 1 be a prime integer. By Theorem 4.2, $S = \{0\}$ is a γ -set in $\overline{GT_P(\mathbb{Z}_n)}$. Clearly S is both independent and perfect dominating set and so $\gamma_{eff}(\overline{GT_P(\mathbb{Z}_n)}) = 1$.

A graph *G* is *well-covered* if $\beta(G) = \gamma_i(G)$.

Lemma 4.11. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, p'_j s are prime and α'_j s are positive integers. Then the following are true:

- (i) If n = 2, $p_1 = 2$ and $P = \langle p_1 \rangle$, then $\overline{GT_P(\mathbb{Z}_n)}$ is well-covered;
- (ii) If *n* is composite, $p_1 = 2$ and $P = \langle p_1 \rangle$, then $\overline{GT_P(\mathbb{Z}_n)}$ is well-covered;
- (iii) Let *n* be composite, $p_j \neq 2$ and $P = \langle p_j \rangle$. Then $\overline{GT_P(\mathbb{Z}_n)}$ is well-covered if and only if $n = 2p_j$.

Proof. Proof of (i) and (ii) follows from Theorem 2.10 and Lemma 4.9.

(iii) Suppose $n = 2p_j$ is a composite integer and $p_j \neq 2$. Note that $\frac{n}{p_j} = 2$. By Theorem 2.10 and Lemma 4.9, $\gamma_i(\overline{GT_P(\mathbb{Z}_n)}) = \beta(\overline{GT_P(\mathbb{Z}_n)}) = 2$. Conversely assume that $n \neq 2p_j$. By Theorem 2.10 and Lemma 4.9, $\gamma_i(\overline{GT_P(\mathbb{Z}_n)}) \neq \beta(\overline{GT_P(\mathbb{Z}_n)})$ (Since $\frac{n}{p_i} > 2$). Hence $\overline{GT_P(\mathbb{Z}_n)}$ is not well-covered. \Box

Lemma 4.12. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, p'_j s are prime, α'_j s are positive integers and $P = < p_j >$ for some *j*. Then

 $d(\overline{GT_P(\mathbb{Z}_n)}) = \begin{cases} 2 & \text{if } n = 2, \ p_1 = 2 \text{ and } P = < p_1 >;\\ \frac{n+1}{2} & \text{if } n = p_j \text{ an odd prime and } P = < p_j >;\\ \frac{n}{2} & \text{if } n \text{ is composite, } p_1 = 2 \text{ and } P = < p_1 >;\\ \frac{n-\frac{n}{p_j}}{2} + 1 & \text{if } n \text{ is composite } p_j \neq 2 \text{ and } P = < p_j >. \end{cases}$

Proof. For n = 2, $\overline{GT_P(\mathbb{Z}_2)} = K_2$ and hence $d(\overline{GT_P(\mathbb{Z}_n)}) = 2$.

Suppose *n* is an odd prime. Let *a* and *b* be such that $a \neq 0$ and $a + b = \underline{n}$. Then $S = \{a, b\} \subseteq \mathbb{Z}_n$ is a dominating set and so $\mathbb{Z}_n = \{0\} \bigcup_{\frac{n-1}{2}} \{a, b\}$ is a maximal domatic partition of $\overline{GT_P(\mathbb{Z}_n)}$. This gives that

$$d(GT_P(\mathbb{Z}_n)) = \frac{n+1}{2}.$$

Suppose *n* is a composite integer and $p_1 = 2$. By Lemma 2.4, $\overline{GT_P(\mathbb{Z}_n)} = K_{\frac{n}{2},\frac{n}{2}}$. Select $a \in P$ and $b \in 1 + P$. Then $X = \bigcup \{a, b\}$ is a maximal domatic partition of $\overline{GT_P(\mathbb{Z}_n)}$ and hence $d(\overline{GT_P(\mathbb{Z}_n)}) = \frac{n}{2}$.

Suppose *n* is a composite integer and $p_j \neq 2$. Select i_1 and i_2 such that $1 \le i_1 \le p_j - 1$ and $i_1 + i_2 = p_j$. Let $a \in i_1 + P$ and $b \in i_2 + P$. Note that $\mathbb{Z}_n \setminus P = \bigcup_{\substack{n = \frac{n}{p_j} \\ \frac{1}{2}}} \{a, b\}$ and hence $\mathbb{Z}_n = P \bigcup_{\substack{n = \frac{n}{p_j} \\ \frac{n - \frac{n}{p_j}}{2}}} \{a, b\}$ is a maximal domatic

partition of $\overline{GT_P(\mathbb{Z}_n)}$ and hence $d(\overline{GT_P(\mathbb{Z}_n)}) = \frac{n - \frac{2}{n}}{2} + 1$.

Lemma 4.13. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where $p_1 < p_2 < \dots < p_k$, p'_j s are prime, α'_j s are positive integers and $P = < p_j >$ for some j. Then $\overline{GT_P(\mathbb{Z}_n)}$ is domatically full if and only if n = 2, 3.

Proof. If part follows from Lemma 2.2(iv) and Lemma 4.12.

Conversely assume that $\overline{GT_P(\mathbb{Z}_n)}$ is domatically full. Suppose that *n* is prime and $n \neq 2$. Then *n* is an odd prime. By Lemma 2.2, $\delta(\overline{GT_P(\mathbb{Z}_n)}) = n - 2$ and by Lemma 4.12, $d(\overline{GT_P(\mathbb{Z}_n)}) = \frac{n+1}{2}$. By the assumption $n - 2 + 1 = \frac{n+1}{2}$, which in turn implies that n = 3.

Let *n* be a composite integer. If $p_j = 2$, by Lemma 2.2 and Lemma 4.12, $\delta(\overline{GT_P(\mathbb{Z}_n)}) = d(\overline{GT_P(\mathbb{Z}_n)})$. Therefore $\overline{GT_P(\mathbb{Z}_n)}$ is not domatically full. If $p_j \neq 2$, then by Lemma 2.2 and Lemma 4.12, $n - \frac{n}{p_j} - 1 + 1 = 1$

$$\delta(\overline{GT_P(\mathbb{Z}_n)}) + 1 = d(\overline{GT_P(\mathbb{Z}_n)}) = \frac{n - \frac{n}{p_j}}{2} + 1, \text{ which is impossible.} \quad \Box$$

References

- S. Akbari, D. Kiani, F. Mohammadi and S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213(2009) 2224–2228.
- [2] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320(2008) 2706–2719.
- [3] D. F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217(1999) 443–447.
- [4] D. F. Anderson and A. Badawi, On the total graph of a commutative ring without the zero element, J. Algebra Appl. 11(4)(2012) # 1250074 18 pages DOI:10.1142/S0219498812500740.
- [5] D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12(5)(2013) # 1250212 18 pages DOI: 10.1142/S021949881250212X.
- [6] T. Asir and T. Tamizh Chelvam, On the total graph and its complement of a commutative ring, Comm. Algebra 41(2013) 3820–3835 DOI:10.1080/00927872.2012.678956.
- [7] I. Kaplansky, Commutative Rings, Polygonal Publishing House, Washington NJ, 1974.
- [8] G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, 2006.
- [9] T. W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, 1998.
- [10] H. R. Maimani, C. Wickham, S. Yassemi, Rings whose total graphs have genus at most one, Rocky Mountain J. Math. 42(5)(2012) 1551–1560.
- [11] Z. Z. Petrović and Z. S. Pucanović, On the Radius and the Relation Between the Total Graph of a Commutative Ring and Its Extensions, Publ. Inst. Math. 89(103) (2011) 1–9.
- [12] Z. S. Pucanović and Z. Z. Petrović, Toroidality of intersection graphs of ideals of commutative rings, Graphs Combin. 30(3) (2014) 707–716.
- [13] T. Tamizh Chelvam and T. Asir, Domination in total graph on \mathbb{Z}_n , Discrete Math. Algorithms Appl. 3(4)(2011) 413–421 DOI: 10.1142/51793830911001309.
- [14] T. Tamizh Chelvam and T. Asir, Domination in the total graph of a commutative ring, J. Combin Math. Combin. Comput. 87(2013) 147–158.
- [15] T. Tamizh Chelvam and T. Asir, On the genus of the total graph of a commutative ring, Comm. Algebra, 41(2013) 142–153.
- [16] A. T. White, Graphs, Groups and Surfaces, North-Holland Mathematics Studies, North-Holland, 1973.