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Available at: http://www.pmf.ni.ac.rs/filomat

A Riordan Array Approach to Apostol Type-Sheffer Sequences
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aDepartment of Mathematics, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India

Abstract. In this article, the generalized Apostol type-Sheffer sequences are introduced and their prop-
erties including the quasi-monomiality, determinant form and series and conjugate representations are
derived via Riordan array techniques. The generalized Apostol-Bernoulli, Apostol-Euler and Apostol-
Genocchi-Sheffer sequences are considered as their special cases. Certain examples are framed in terms
of the generalized Apostol Bernoulli-associated Laguerre sequences, generalized Apostol-Euler-Hermite
sequences and generalized Apostol-Genocchi-Legendre sequences to give the applications of main results.
The numerical results to calculate the zeros and approximate solutions of these sequences are given and
their graphical representations are shown.

1. Introduction and preliminaries

Sheffer polynomial sequences arise in numerous problems of applied mathematics, theoretical physics,
approximation theory and several other branches of the mathematical sciences. Sheffer polynomial se-
quences contain their associated sequences as well as the Appell sequences as two subclasses. Sheffer
sequences are studied systematically by theory of modern umbral calculus (see, for example, [14], [15] and
[13]; see also several related recent works including [3], [18], [4] and [19]). Some definitions and results to
be used in this work are being recalled here from the work by Wang [23].

Let K be a field of characteristic zero and suppose that F is the set of all formal power series in the
variable t overK. An element of F has the following form:

f (t) =

∞∑
k=0

aktk,

where ak ∈ K for all k ∈ N0 := N ∪ {0} = {0, 1, 2, . . .}. The order o
(

f (t)
)

of a power series f (t) is the smallest
integer k for which the coefficient of tk does not vanish. The series f (t) has a multiplicative inverse, denoted
by [ f (t)]−1 or by 1

f (t) , if and only if o
(

f (t)
)

= 0. In this case, f (t) is called an invertible series. The series f (t)

has a compositional inverse, denoted by f (t) and satisfying the following condition:

f
(

f (t)
)

= f
(

f (t)
)

= t ⇐⇒ o
(

f (t)
)

= 1.
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The series f (t) with o
(

f (t)
)

= 1 is called a delta series.

Definition 1.1. Let 1(t) be an invertible series and f (t) be a delta series of the following forms:

f (t) =

∞∑
n=0

fn
tn

n!

(
f0 = 0; f1 , 0

)
and 1(t) =

∞∑
n=0

1n
tn

n!
(10 , 0). (1)

Then the sequence
(
sn(x)

)
n∈N0

is called a Sheffer sequence for the pair
(
1(t), f (t)

)
if and only if

〈1(t)[ f (t)]k
|sn(x)〉 = cnδn,k,

for all n, k ∈N0, δn,k being the Kronecker delta.

We recall the concept of the Riordan arrays, which was introduced by Shapiro et al. [17] and further
studied by many authors (see, for example, [6] and [7]).

Definition 1.2. Let 1(t) be an invertible series and let f (t) be a delta series. A generalized Riordan array
with respect to the sequence (cn)n∈N0 is a pair

(
1(t), f (t)

)
, which defines an infinite lower triangular array

(an,k)05k5n<∞ according to the following rule:

an,k =
[ tn

cn

]
1(t)

[ f (t)]k

ck
, (2)

where such quotients as 1(t)[ f (t)]k

ck
are called the column generating functions of the Riordan array. In particular,

the classical Riordan arrays correspond to the case when cn = 1 and the exponential Riordan arrays correspond
to the case when cn = n!.

For any fixed sequence (cn)n∈N0 , the set of all Riordan arrays
(
1(t), f (t)

)
is a group under matrix multipli-

cation and is called a Riordan group with respect to the sequence (cn)n∈N0 . The identity of this group is (1, t)
and the inverse of the array

(
1(t), f (t)

)
is  1

1
(

f (t)
) , f (t)

 ,
where f̄ (t) is the compositional inverse of f (t). Moreover, for any fixed sequence (cn)n∈N0 , the Riordan group
and the Sheffer group are isomorphic [22].

It is shown by Wang [23] that the Sheffer sequences can be expressed as determinants. The determinant
form for the Sheffer sequences is given by

Let
(
sn(x)

)
n∈N0

be a Sheffer sequence for the pair
(
1(t), f (t)

)
. Then we have

s0(x) =
1

a0,0
(3)
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sn(x) =
(−1)n

a0,0 a1,1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2
· · · xn−1 xn

a0,0 a1,0 a2,0 · · · an−1,0 an,0

0 a1,1 a2,1 · · · an−1,1 an,1

0 0 a2,2 · · · an−1,2 an,2

· · · · · · · ·

· · · · · · · ·

0 0 0 · · · an−1,n−1 an,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(−1)n

a0,0 a1,1 · · · an,n
det

(
Xn+1

Sn×(n+1)

)
, (4)

where
Xn+1 = (1, x, x2, · · · , xn−1, xn) and Sn×(n+1) = (a j−1,i−1)15i5n; 15 j5n+1

and an,k is the (n, k) entry of the Riordan array
(
1(t), f (t)

)
.

The Sheffer sequences
(
sn(x)

)
n∈N0

defined by the equation (1.4) also satisfy the following condition:

sn(x) =

n∑
k=0

bn,k xk, (5)

where bn,k is the (n, k) entry of the Riordan array

 1

1

(
f (t)

) , f (t)

 and
(
sn(x)

)
n∈N0

is a Sheffer sequence for the

pair
(
1(t), f (t)

)
(see [22]).

For the pair
(
1(t), f (t)

)
, the exponential generating function and conjugate representation for the Sheffer

sequences sn(x) are given by

1

1
(

f (t)
) εx

(
f (t)

)
=

∞∑
n=0

sn(x)
tn

cn
, where εx(t) =

∞∑
k=0

xktk

ck
(6)

and

sn(x) =

n∑
k=0

〈
(1( f (t)))−1( f (t))k

| xn
〉

ck
xk. (7)

In particular, the Sheffer sequence for the pair
(
1, f (t)

)
is called the associated Sheffer sequence and the

Sheffer sequence for the pair (1(t), t) is called the Appell sequence for 1(t) (see, for details, [14]; see also [20]).

The Sheffer sequences {sn(x)}n∈N0 are shown to be quasi-monomial, for details see [2]. The Sheffer
sequences are also studied from algebraic point of view, see for example [4]. According to the monomiality
principle, there exist two operators Φ+ and Φ− playing, respectively, the roles of multiplicative and derivative
operators for a polynomial set {sn(x)}n∈N0 , that is, Φ+ and Φ− satisfy the following identities for all n ∈N0:

Φ+
{sn(x)} = sn+1(x) and Φ−{sn(x)} = n sn−1(x). (8)
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The polynomial set {sn(x)}n∈N0 is then called quasi-monomial. If Φ+ and Φ− have derivative-type
realizations, then the polynomial set {sn(x)}n∈N0 satisfy the following differential equation:

Φ+Φ−{sn(x)} = n sn(x). (9)

Several important results for the Apostol-Bernoulli, -Euler and -Genocchi polynomials are derived
in [8, 21]. We give the following generalized unified form of the Apostol-Bernoulli, Apostol-Euler and
Apostol-Genocchi polynomials (see also [12]):

For α, β ∈ C, a, b ∈ R \ {0} and k ∈ N0, the generalized unified Apostol type polynomials P(α)
n,β(x; k, a, b) are

defined by the following generating function:(
21−ktk

βb ε(t) − ab

)α
εx(t) =

∞∑
n=0

P
(α)
n,β(x; k, a, b)

tn

cn
. (10)

In fact, the following special cases hold:

P
(α)
n,λ(x; 1, 1, 1) := B(α)

n (x;λ), (11)

P
(α)
n,λ(x; 0,−1, 1) := E(α)

n (x;λ), (12)

P
(α)
n, λ2

(
x; 1,−

1
2
, 1

)
:= G(α)

n (x;λ), (13)

where B(α)
n (x;λ), E(α)

n (x;λ) and G(α)
n (x;λ) are the generalized forms of the Apostol-Bernoulli, Apostol-Euler

and Apostol-Genocchi polynomials (see [9–11]).

We also note that

B
(α)
n (x; 1) := B(α)

n (x), E(α)
n (x; 1) := E(α)

n (x) and G
(α)
n (x; 1) := G(α)

n (x), (14)

where
B(α)

n (x), E(α)
n (x) and G(α)

n (x)

are the generalized Bernoulli, Euler and Genocchi polynomials (see [5, 16]). Similarly, we have

B(1)
n (x) := Bn(x), E(1)

n (x) := En(x) and G(1)
n (x) := Gn(x), (15)

where Bn(x), En(x) and Gn(x) are the Bernoulli, Euler and Genocchi polynomials (see [5, 16]).

In this article, the generalized Apostol type-Sheffer sequences are introduced and their quasi-monomial
properties, determinant forms and series and conjugate representation are established via Riordan arrays.
As the special cases of these sequences, the generalized Apostol Bernoulli, Euler and Genocchi-Sheffer
sequences are deduced. The examples of some members belonging to the Sheffer sequences are framed to
give the applications of main results. The numerical results to calculate the zeros and approximate solutions
of these sequences are also given.

2. Generalized Apostol type-Sheffer sequences

The generalized Apostol type-Sheffer sequences are introduced as the combination of generalized Apos-
tol type polynomials and Sheffer sequences via Riordan arrays. For this, we give the following definition:
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Definition 2.1. For the pair
(
1(t), f (t)

)
and for all x, α, β ∈ C; a, b ∈ R \ {0} and k ∈ N0, the generating function

for the generalized Apostol type-Sheffer sequences Ps(α)
n,β(x; k, a, b) is given by

1

1
(

f (t)
)
 21−k( f (t)

)k

βbε( f (t)) − ab


α

εx

(
f (t)

)
=

∞∑
n=0

Ps(α)
n,β(x; k, a, b)

tn

cn
. (16)

The following special cases of Ps(α)
n,β(x; k, a, b) can be deduced as:

Case1: Put β→ λ and k = a = b = 1 and using relation

Ps(α)
n,λ(x; 1, 1, 1) = Bs(α)

n (x;λ) (17)

in Ps(α)
n,β(x; k, a, b), we find the generalized Apostol-Bernoulli-Sheffer sequences Bs(α)

n (x;λ) defined by

1

1
(

f (t)
)  f (t)

λ ε( f (t)) − 1

α εx

(
f (t)

)
=

∞∑
n=0

Bs(α)
n (x;λ)

tn

cn
. (18)

Case2: Put β→ λ and k = a + 1 = b − 1 = 0 and using relation

Ps(α)
n,λ(x; 0,−1, 1) = Es(α)

n (x;λ) (19)

in Ps(α)
n,β(x; k, a, b), we find the generalized Apostol-Euler-Sheffer sequences Es(α)

n (x;λ) defined by

1

1
(

f (t)
)  2

λ ε( f (t)) + 1

α εx

(
f (t)

)
=

∞∑
n=0

Es(α)
n (x;λ)

tn

cn
. (20)

Case3: Put β→ λ
2 , k = 1, a = − 1

2 and b = 1 and using relation

Ps(α)
n, λ2

(
x; 1,−

1
2
, 1

)
= Gs(α)

n (x;λ) (21)

in Ps(α)
n,β(x; k, a, b), we find the generalized Apostol-Genocchi-Sheffer sequences Gs(α)

n (x;λ) defined by

1

1
(

f (t)
)  2 f (t)

λ ε( f (t)) + 1

α εx

(
f (t)

)
=

∞∑
n=0

Gs(α)
n (x;λ)

tn

cn
. (22)

We note that

Bs(α)
n (x; 1) := Bs(α)

n (x), Es(α)
n (x; 1) := Es(α)

n (x) and Gs(α)
n (x; 1) := Gs(α)

n (x), (23)

where
Bs(α)

n (x), Es(α)
n (x) and Gs(α)

n (x)

are the generalized Bernoulli-Sheffer, the generalized Euler-Sheffer and the generalized Genocchi-Sheffer
sequences.

Similarly, we have

Bs(1)
n (x) := Bsn(x), Es(1)

n (x) := Esn(x) and Gs(1)
n (x) := Gsn(x), (24)

where
Bsn(x), Esn(x) and Gsn(x)

are the Bernoulli-Sheffer, the Euler-Sheffer and the Genocchi-Sheffer sequences.
In order to show that the generalized Apostol type-Sheffer sequences are quasi-monomial, we prove the

following results:
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Theorem 2.2. The multiplicative and derivative operators for the generalized Apostol type-Sheffer sequences are
given by

Φ+
Ps =

((
x −
1′(Dx)
1(Dx)

+
αk
Dx
−

αβbε(Dx)
(βbε(Dx) − ab)

) 1
f ′(Dx)

)
, (25)

Φ−
Ps = f (Dx). (26)

Proof. On differentiation of generating equation (2.1) with respect to t and after simplification of the resultant
equation, we obtain

∞∑
n=0

Ps(α)
n+1,β(x; k, a, b)

tn

cn
=

 21−k( f (t)
)k

βb ε( f (t)) − ab


α

1

1
(

f (t)
)εx( f (t)) (27)

x − 1′
(

f (t)
)

1
(

f (t)
) − αk

f (t)
−

αβb ε( f (t))

(βb ε( f (t)) − ab)

 f ′( f (t)), (28)

which on using generating equation (2.1) and the following identity:

f (Dx)

 1

1
(

f (t)
)
 21−k( f (t)

)k

βb ε( f (t)) − ab


α

εx( f (t))

 = t

 1

1
(

f (t)
)
 21−k( f (t)

)k

βb ε( f (t)) − ab


α

εx( f (t))

 (29)

becomes

∞∑
n=0

Ps(α)
n+1,β(x; k, a, b)

tn

cn
=

∞∑
n=0


x − 1′

(
Dx

)
1
(
Dx

) − αk
Dx
−

αβbε(Dx)
(βbε(Dx) − ab)

 f ′(Dx)

 Ps(α)
n,β(x; k, a, b)

tn

cn
. (30)

Equating the coefficients of the same powers of t together with the use of the monomiality equation
(1.8), we get the assertion (2.10).

Also, by using the equation (2.1) in the identity (2.14) and after some simplification, we find that

f (Dx)
∞∑

n=0
Ps(α)

n,β(x; k, a, b)
tn

cn
=

∞∑
n=1

Ps(α)
n−1,β(x; k, a, b)

tn

cn−1
. (31)

Finally, by equating the coefficients of the same powers of t together with the use of the monomiality
equation (1.8), we get the assertion (2.11). Our proof of Theorem 2.1 is thus completed.

Theorem 2.3. The generalized Apostol type-Sheffer sequences satisfy the following differential equation:((
x −
1′(Dx)
1(Dx)

+
αk
Dx
−

αβbε(Dx)
(βbε(Dx) − ab)

) f (Dx)
f ′(Dx)

− n
)
Ps(α)

n,β(x; k, a, b) = 0. (32)

Proof. Use of equations (2.10) and (2.11) in equation (1.9) yields assertion (2.17).

To express the generalized Apostol type-Sheffer sequences in a determinant form, we prove the following
theorem.



M. Riyasat / Filomat 33:18 (2019), 6025–6038 6031

Theorem 2.4. The generalized Apostol type-Sheffer sequences of degree n are given by

Ps(α)
0,β(x; k, a, b) =

1
a0,0

(33)

Ps(α)
n,β(x; k, a, b) =

(−1)n

a0,0 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 P
(α)
1,β(x; k, a, b) P

(α)
2,β(x; k, a, b) · · · P

(α)
n−1,β(x; k, a, b) P

(α)
n,β(x; k, a, b)

a0,0 a1,0 a2,0 · · · an−1,0 an,0

0 a1,1 a2,1 · · · an−1,1 an,1

0 0 a2,2 · · · an−1,2 an,2

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

0 0 0 · · · an−1,n−1 an,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(34)

=
(−1)n

a0,0 a1,1 · · · an,n
det

(
P

(α)
n+1,β(x; k, a, b)
Mn×(n+1)

)
, (35)

where
P

(α)
n+1,β(x; k, a, b) =

(
1,P(α)

1,β(x; k, a, b),P(α)
2,β(x; k, a, b), · · · ,P(α)

n,β(x; k, a, b)
)

and
Mn×(n+1) = (a j−1,i−1)15i5n, 15 j5n+1,

an,k being the (n, k) entry of the Riordan array
(
1(t), f (t)

)
.

Proof. Upon replacing the powers xn (n = 0, 1, 2 . . .) by the polynomials P(α)
n,β(x; k, a, b) (n = 0, 1, 2 . . .) in the

right-hand side and x by P(α)
1,β(x; k, a, b) in left-hand side of equations (1.3) and (1.4) and on appropriately

using the following relation:

Ps(α)
n,β(x; k, a, b) = sn(P(α)

1,β(x; k, a, b)) (36)

in the left-hand side of the resultant equation yields assertions (2.18) and (2.19).

Theorem 2.5. The series and conjugate representations for the generalized Apostol type-Sheffer sequences are given
by

Ps(α)
n,β(x; k, a, b) =

n∑
k=0

bn,k P
(α)
n,β(x; k, a, b), (37)

Ps(α)
n,β(x; k, a, b) =

n∑
k=0

〈
(1( f (t)))−1( f (t))k

| P
(α)
n,β(x; k, a, b)

〉
ck

P
(α)
k,β(x; k, a, b), (38)

where bn,k is the is the (n, k) entry of the Riordan array
(

1
1( f (t))

, f (t)
)

and (Ps(α)
n,β(x; k, a, b))n∈N is Sheffer for the pair(

(1(t), f (t))
)
.

Proof. By replacing the powers xn (n = 1, 2 . . .) by the polynomials P(α)
n,β(x; k, a, b) (n = 1, 2 . . .) in both sides of

equation (1.5) and (1.7) with use of relation (2.21), we get assertions (2.22) and (2.23).
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3. Examples

By choosing particular members of the Sheffer family, we explore some new special members belonging
to the generalized Apostol type-Sheffer family. The corresponding properties are also obtained.

Example 3.1. Taking

1(t) =
1

(1 − t)γ+1 and f (t) = f̄ (t) =
t

t − 1

of the associated Laguerre sequences L(γ)
n (x) [14] in generating function (2.1), we find that the resultant generalized

Apostol-Bernoulli-associated Laguerre sequences BL(α,γ)
n (x;λ) are defined by

(1 − t)γ+1

(
t

(t − 1)(λ ε( t
t−1 ) − 1)

)α
εx

( t
t − 1

)
=

∞∑
n=0

BL(α,γ)
n (x;λ)

tn

cn
. (39)

The multiplicative and derivative operators and differential equation for the generalized Apostol-Bernoulli-
associated Laguerre sequences are given by

Φ+
BL =

(
−

(
x +

(1 −Dx)
γ + 1

+
α

Dx
−

αλ ε(Dx)
(λ ε(Dx) − 1)

)
(Dx − 1)2

)
, Φ−

BL = −
1

(Dx − 1)2 , (40)

(
x +

(1 −Dx)
γ + 1

+
α

Dx
−

αλε(Dx)
(λε(Dx) − 1)

− n
)
BL(α,γ)

n (x;λ) = 0. (41)

Taking

an,k = (−1)k n!
k!

(
n + γ

n − k

)
and then using relations (1.11) in the right-hand side and (2.2) with sn(x) = L(γ)

n (x) in the left-hand side of equations
(2.18) and (2.19), the following determinant form for the BL(α,γ)

n (x;λ) is obtained as:

BL(α,γ)
0 (x;λ) = 1,

BL(α,γ)
n (x;λ) = (−1)

n(n+3)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 B
(α)
1 (x;λ) B

(α)
2 (x;λ) · · · B

(α)
n−1(x;λ) B

(α)
n (x;λ)

1 (γ + 1) (γ + 2)2 · · · (γ + n − 1)n−1 (γ + n)n

0 −1 −2(γ + 2) · · · −(n − 1)(γ + n − 1)n−2 −n(γ + n)n−1

0 0 1 · · ·
(n−1)(n−2)

2 (γ + n − 1)n−3
n(n−1)

2 (γ + n)n−2

. . . · · · . .

. . . · · · . .

0 0 0 · · · (−1)n−1 (−1)n−1n(n + γ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
(42)

The series and conjugate representations for the sequences BL(α,γ)
n (x;λ) are given by

BL(α,γ)
n (x;λ) =

n∑
k=0

(−1)k

k!

(
n + γ

n − k

)
B

(α)
k (x;λ), (43)

BL(α,γ)
n (x;λ) =

n∑
k=0

〈
(1 − t)−γ−1

(
t

t−1

)k
| B

(α)
n (x;λ)

〉
ck

B
(α)
k (x;λ). (44)
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Example 3.2. Taking
1(t) = eνt2/2 and f (t) = f̄ (t) = t

of the Hermite polynomials H(ν)
n (x) of variance ν [14] in generating function (2.1), we find that the resultant generalized

Apostol-Euler-Hermite sequences EH(α,ν)
n (x;λ) are defined by

e−νt2/2

(
2

λ ε(t) + 1

)α
εx(t) =

∞∑
n=0

EH(α,ν)
n (x;λ)

tn

cn
. (45)

The multiplicative and derivative operators and differential equation for the generalized Apostol-Euler-Hermite
sequences EH(α,ν)

n (x;λ) of variance ν are given by

Φ+
EH =

(
x − νDx −

αλε(Dx)
(λε(Dx) + 1)

)
, Φ−

EH = Dx, (46)

(
xDx − νD2

x −
αλε(Dx)

(λε(Dx) + 1)
− n

)
EH(α,ν)

n (x;λ) = 0. (47)

Taking

an,k =

(
n
k

)
1n−k,

where

1k =


0 if k is odd,

k!
(
ν
2

)k/2(
k
2

)
!

if k is even,
(48)

and then using relations (1.12) in the right-hand side and (2.4) with sn(x) = H(ν)
n (x) in the left-hand side of equations

(2.18) and (2.19), the following determinant form for the sequences EH(α,ν)
n (x;λ) is obtained as:

EH(α,ν)
0 (x;λ) = 1,

EH(α,ν)
n (x;λ) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 E
(α)
1 (x;λ) E

(α)
2 (x;λ) · · · E

(α)
n−1(x;λ) E

(α)
n (x;λ)

1 0 1 · · ·
(n−1)!

(
ν
2

)n−1/2(
n−1

2

)
!

n!
(
ν
2

)n/2(
n
2

)
!

0 1 0 · · ·
(n−1

1

) (n−2)!
(
ν
2

)n−2/2(
n−2

2

)
!

(n
1

) (n−1)!
(
ν
2

)n−1/2(
n−1

2

)
!

0 0 1 · · ·
(n−1

2

) (n−3)!
(
ν
2

)n−3/2(
n−3

2

)
!

(n
2

) (n−2)!
(
ν
2

)n−2/2(
n−2

2

)
!

. . . · · · . .

. . . · · · . .
0 0 0 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
(49)

The series and conjugate representations for the sequences EH(α,ν)
n (x;λ) are given by

EH(α,ν)
n (x;λ) =

[ n
2 ]∑

k=0

(−1)kνkn! E(α)
n−2k(x;λ)

2k k! (n − 2k)!
, (50)
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EH(α,ν)
n (x;λ) =

n∑
k=0

〈
e
νt2
2 tk
| E

(α)
n (x;λ)

〉
ck

E
(α)
k (x;λ). (51)

Example 3.3. Taking

1(t) =

(
2

1 +
√

1 − t2

)1/2

, f (t) =
−t

1 +
√

1 − t2
and f̄ (t) =

−2t
1 + t2 ,

of the Legendre polynomials Pn(x) [1] in generating function (2.1), we find that the resultant generalized Apostol-
Genocchi-Legendre sequences GP(α)

n (x;λ) are defined by

1
√

1 + t2
)  −4t

(1 + t2)(λ ε
(
−2t
1+t2

)
+ 1)


α

εx

( −2t
1 + t2

)
=

∞∑
n=0

GP(α)
n (x;λ)

tn

cn
. (52)

The multiplicative and derivative operators and differential equation for the generalized Apostol-Genocchi-
Legendre sequences GP(α)

n (x;λ) are given by

Φ+
GP =

((
x −

(1 +
√

1 −D2
x)3/2

4
√
−Dx(1 −D2

x)
+
α

Dx
−

αλε(Dx)
2(λε(Dx) + 1)

) (
√

1 −D2
x − 2D2

x + 1)

D2
x

√
1 −D2

x

)
, Φ−

GP =
−2Dx

1 + D2
x

(53)

((
x −

(1 +
√

1 −D2
x)3/2

4
√
−Dx(1 −D2

x)
+
α

Dx
−

αλε(Dx)
2(λε(Dx) + 1)

) (−2Dx

√
1 −D2

x + 4D3
x − 2Dx)

(D2
x + D4

x)
√

1 −D2
x

− n
)
GP(α)

n (x;λ) = 0. (54)

Taking

an,k =


0 (n − k is odd)

cn(−1)k (2k+1)
ck 2n (2n+1)

( 1
2 + n

n−k
2

) (n − k is even)

 , (55)

where

cn =
1(
−1/2

n
) and

(
−n
k

)
= (−1)k

(
n + k − 1

k

)
and then using relations (1.13) in the right-hand side and (2.6) with sn(x) = Pn(x) in the left-hand side of equations
(2.18) and (2.19), the following determinant form for the GP(α)

n (x;λ) is obtained as:

GP(α)
0 (x;λ) = 1,

GP(α)
n (x;λ) = (−1)

n(n+3)
2 2

n(n+1)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 G
(α)
1 (x;λ) G

(α)
2 (x;λ) · · · G

(α)
n−1(x;λ) G

(α)
n (x;λ)

1 0 1
3 · · · 0

n! 1
2

(
n− 1

2

)
!

2n
(

n
2

)
! 1

2
3
2 ...

(
n− 1

2

)(
n+1

2

)
!

0 −
1
2 0 · · · 0

0 0 1
4 · · · 0

n(n−1)...3 5
2

(
n− 1

2

)
!

2n
(

n−2
2

)
! 5

2 ...

(
n− 1

2

)(
n+3

2

)
!

. . . · · · . .

. . . · · · . .

0 0 0 · · ·

(
−1
2

)n−1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
(56)
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The series and conjugate representations for the sequences GP(α)
n (x;λ) are given by

GP(α)
n (x;λ) =

[ n
2 ]∑

k=0

(−1)k( 1
2 )n−k2n−2k

G
(α)
n−2k(x)

k! (n − 2k)!
, (57)

where (x)n :=
n−1∏
k=0

(x − k) = x(x − 1)(x − 2) . . . (x − n + 1) being the falling factorial and

GP(α)
n (x;λ) =

n∑
k=0

〈
(1 + t2)−1

(
−2t
1+t2

)k
| G

(α)
n (x;λ)

〉
ck

G
(α)
k (x;λ). (58)

In the next section, we give the numerical results to compute the zeros and approximate solutions for
the generalized hybrid Sheffer sequences.

4. Numerical Results

Recently, the computing environment is making more and more rapid progress. By using numerical
investigations and computer experiments, we find the real zeros and observe the phenomenon of distribu-
tion of the real zeros of some hybrid Sheffer sequences for certain values of index n, which seems to be an
interesting approach.

By taking α = λ = γ = ν = 1 in the generalized Apostol-Bernoulli-associated Laguerre sequences,
generalized Apostol-Euler-Hermite sequences and generalized Apostol-Genocchi-Legendre sequences, we
find

BLn(x) := BL(1,1)
n (x; 1); EHn(x) := EH(1,1)

n (x; 1) and GPn(x) := GP(1)
n (x; 1),

where
BLn(x), EHn(x) and GPn(x)

are the Bernoulli-Laguerre, Euler-Hermite and Genocchi-Legendre sequences.

To investigate the zeros of above sequences, we need the expressions of first few Bernoulli polynomials
Bn(x), Euler polynomials En(x) and Genocchi polynomials Gn(x). These are given in Table 1:

Table 1. Expressions of first six Bn(x), En(x) and Gn(x).

n 0 1 2 3 4 5

Bn(x) 1 x − 1
2 x2

− x + 1
6 x3

−
3
2 x2 + x

2 x4
− 2x3 + x2

−
1

30 x5
−

5
2 x4 + 5

3 x3
−

x
6

En(x) 1 x − 1
2 x2

− x x3
−

3
2 x2 + 1

6 x4
− 2x3 + 2

3 x x5
−

5
2 x4 + 5

3 x2
−

1
2

Gn(x) 0 1 2x − 1 3x2
− 3x 4x3

− 6x2 + 1 5x4
− 10x3 + 5x

From Table 1(III), it is to be noted that the degree of Gn(x) is n − 1. Therefore, Gn(x) is considered in the class of
polynomial sequences which are not Apostol type in the strong sense.

By making use of expressions given in Table 1 with α = λ = γ = ν = 1 in equations (3.5), (3.12) and
(3.19), we find the expressions of Bernoulli-Laguerre, Euler-Hermite and Genocchi-Legendre sequences for
n = 0, 1, 2, 3, 4, 5. These are given in Table 2:
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Table 2. Expressions of first six BLn(x), EHn(x) and GPn(x).

n 0 1 2 3 4 5

BLn (x) 1 −x + 3
2

x2
2 −

7x
2 + 19

12 −
x3
6 + 9

4 x2
−

97x
12 + 22

3
x4
24 −

11x3
12 + 151x2

24 −
x5
120 + 13

48 x4
−

217
72 x3

−
185x
12 + 7799

720 + 56x2
4 −

18899x
720 + 1819

120

EHn(x) 1 x − 1
2 x2

− x − 1 x3
−

3
2 x2

− 3x + 10
6 x4

− 2x3
− 6x2 + 20

3 x + 3 x5
−

5
2 x4

− 10x3

+ 50
3 x2 + 15x + 32

6

GPn (x) 0 1 −x + 1
2

3x2
2 −

3x
2 − 1 −

5x3
2 + 15x2

4 −
3x
2 + 1

8
35x4

8 −
70x3

8 + 15x2
4 + 5x

8 + 3
8

The manual computation of zeros is difficult, so we use “Matlab software” to compute the zeros of BLn(x),
EHn(x) and GPn(x). The zeros of these sequences are given in Table 3.

Table 3. Zeros of BLn(x), EHn(x) and GPn(x)

Degree n BLn (x) EHn (x) GPn (x)

1 1.5000 0.5000 -

2 6.5139, 0.4861 -0.6180, 1.6180 0.5000

3 8.2896, 3.8214, 1.3890 2.4475, -1.4253, 0.4778 1.4574, -0.4574

4 11.4879, 6.2582, 3.0799, 1.1741 3.1379, -2.0836, 1.2989, -0.3533 0.8873, 0.5000, 0.1127

5 14.7958, 8.9308, 5.1342, -2.7385, 3.6502, 2.3150 1.1125 + 0.2318i, 1.1125 - 0.2318i
2.6132, 1.0260 -0.3634 + 0.3137i, -0.3634 - 0.3137i -0.1125 + 0.2318i, -0.1125 - 0.2318i

In order to make the above discussions more clear, we draw the graphs showing shapes with scattered
zeros of the sequences BLn(x), EHn(x) and GPn(x) by making use of corresponding expressions from Table 2.
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Figure 1

Note 1. It is to be noted that in Figure 1 there is no any complex zero and all five real zeros are located on real line Im(x) = 0.
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Figure 2
Note 2. It is to be noted that in Figure 2 out of total two complex zeros only one with positive imaginary part is visible, due to the absence of negative imaginary axis in these graphs.
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Figure 3
Note 3. It is to be noted that in Figure 3 all the four are complex zeros and out of this only two with

positive imaginary part is visible, due to the absence of negative imaginary axis in these graphs.

We note that the real zeros of the sequences BLn(x), EHn(x) and GPn(x) give the numerical results for the
approximate solutions of these sequences. These solutions are given in Table 4.

Table 4. Approximate solutions of BLn(x) = 0, EHn(x) = 0 and GPn(x) = 0, x ∈ R

Degree n Real zeros of BLn(x) Real zeros of EHn (x) Real zeros of GPn (x)

1 1.5000 0.5000 ×

2 6.5139, 0.4861 -0.6180, 1.6180 0.5000

3 8.2896, 3.8214, 1.3890 2.4475, -1.4253, 0.4778 1.4574, -0.4574

4 11.4879, 6.2582, 3.0799, 1.1741 3.1379, -2.0836, 1.2989, -0.3533 0.8873, 0.5000, 0.1127

5 14.7958, 8.9308, 5.1342, -2.7385, 3.6502, 2.3150 ×

2.6132, 1.0260

Remark 4.1. From Table 3, the following general relation is observed: denoting by m the number of
Complex zeros of (BLn(x), EHn(x), GPn(x)), the number of Real zeros of (BLn(x), EHn(x), GPn(x)), i.e. the
zeros lying on the real plane Im (x) = 0 is given by n −m, where n is the degree of polynomial.
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5. Conclusion

A hybrid family of generalized Apostol type-Sheffer sequences is introduced and their properties com-
prising the quasi-monomiality, determinant form and series and conjugate representations are investigated
by making use of Riordan arrays. Several examples are framed in terms of the members of the Sheffer
sequences. The numerical results to calculate the zeros and approximate solutions of these sequences are
given and their graphical representations are shown. With a view to further generalize the hybrid families
associated with Sheffer sequences to their q-analogues and studying their properties via q-Riordan arrays
is a subject of new research work.
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