The Characterization of Graphs with Eigenvalue -1 of Multiplicity $n-4$ or $n-5$

Yuhong Yang ${ }^{\text {a }}$, Qiongxiang Huang ${ }^{\text {a }}$
${ }^{a}$ College of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China

Abstract

Petrović in [M. Petrović, On graphs with exactly one eigenvalue less than -1 , J. Combin. Theory Ser. B 52 (1991) 102-112] determined all connected graphs with exactly one eigenvalue less than -1 and all minimal graphs with exactly two eigenvalues less than -1 . By using these minimal graphs, in this paper, we determine all connected graphs having -1 as an eigenvalue with multiplicity $n-4$ or $n-5$.

1. Introduction

Throughout this paper all graphs are finite, simple and undirected. Let G be a graph. For $v \in V(G)$ and $X \subset V(G)$, let $N_{G}(v)=\{u \in V(G) \mid u$ is adjacent to $v\}$ be the neighborhood of $v, N_{X}(v)=N_{G}(v) \cap X$ be the set of neighbors of v in X and $G[X]$ be the subgraph induced by X. Conventionally, we denote the complete graph, cycle, path and complete bipartite graph by K_{n}, C_{n}, P_{n} and $K_{n_{1}, n_{2}}$, respectively.

Let G be a graph of order n with adjacency matrix $A=\left(a_{i, j}\right)_{n \times n}$, where $a_{i, j}=1$ if the vertex i is adjacent to j, written as $i \sim j$, and $a_{i, j}=0$ otherwise. Clearly, A is real and symmetric, and so all its eigenvalues are real, which are labelled in non-increasing order as $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. These eigenvalues are also called the eigenvalues of G. The multiplicity of λ_{i} is denoted by $m_{G}\left(\lambda_{i}\right)$ (or simply $m\left(\lambda_{i}\right)$), and the nullity of G is defined to be the multiplicity of 0 as an eigenvalue of G, i.e., $\eta(G)=m_{G}(0)$. Denoted by $p_{-1}^{-}(G)$ and $p_{-1}^{+}(G)$ the number of eigenvalues of G which are smaller and greater than -1 , respectively. Thus $n=p_{-1}^{-}(G)+m_{G}(-1)+p_{-1}^{+}(G)$. It means that G has at most six distinct eigenvalues if $m_{G}(-1) \geq n-5$. The join of two graphs G and H, denoted by $G \nabla H$, is a graph obtained from G and H by joining each vertex of G to all vertices of H.

Connected graphs with few eigenvalues have aroused a lot of interests in the past several decades. One of the reason is that such graphs in general have pretty combinatorial properties and a rich structure [15]. This problem was perhaps first raised by Doob [18] in 1970. Over the past two decades, the investigations about this problem led to many results, we refer the reader to [$2,3,7,9,10,12-21,24,27]$ for details.

The graphs with $n-5 \leq \eta(G)=m_{G}(0) \leq n-2$ are explicitly characterized in $[1,5,6,8,25,26]$. The graphs with $n-3 \leq m_{G}(-1) \leq n-1$ are also characterized in [4,22]. In this paper, we also focus on the eigenvalue -1 . Here, it is necessary to summarize the known results related to the eigenvalues -1 .

Given an integer $i \geq 0$, let $\mathcal{G}_{n}\left([-1]^{i}\right)$ denote the set of all connected graphs on n vertices having eigenvalue -1 of multiplicity i. For $i=n-1$, we claim that $G \in \mathcal{G}_{n}\left([-1]^{n-1}\right)$ if and only if $G \cong K_{n}$. Clearly, $K_{n} \in \mathcal{G}_{n}\left([-1]^{n-1}\right)$.

[^0]If $G \in \mathcal{G}_{n}\left([-1]^{n-1}\right)$ and $G \not \equiv K_{n}$, then P_{3} will be an induced subgraph of G, and so $\lambda_{3}\left(P_{3}\right)=-\sqrt{2}>\lambda_{n}(G)=-1$ by Interlacing Theorem, a contradiction. For $i=n-2$, according to the result of Cámara and Haemers [4], there are no graphs in $\mathcal{G}_{n}\left([-1]^{n-2}\right)$. For $i=n-3$, by using a result of Oboudi [22] concerning the distribution of the third largest eigenvalue of graphs, we can easily deduce that $G \in \mathcal{G}_{n}\left([-1]^{n-3}\right)$ if and only if $G \cong\left(K_{a} \cup K_{b}\right) \nabla K_{n-a-b}$ (see Lemma 2.2 below). In this paper, we continue to characterize the graphs in $\mathcal{G}_{n}\left([-1]^{i}\right)$ for large i.

Petrović in [23] characterized all connected graphs with exactly one eigenvalue less than -1 , and also determined all minimal graphs with exactly two eigenvalues less than -1 . By using these minimal graphs, in this paper, we explicitly characterize all graphs in $\mathcal{G}_{n}\left([-1]^{n-4}\right)$ and $\mathcal{G}_{n}\left([-1]^{n-5}\right)$. Concretely, for a connected graph G, we prove that $G \in \mathcal{G}_{n}\left([-1]^{n-4}\right)$ if and only if its canonical graph (defined in next section) is isomorphic to one of $K_{1,3}, P_{4}, C_{4}, P_{5}$ or $C_{6} ; G \in \mathcal{G}_{n}\left([-1]^{n-5}\right)$ if and only if its canonical graph is isomorphic to one of $H_{1}-H_{23}$ which are shown in Figure 2 and Figure 3.

2. Preliminaries

In this section, we will cite some lemmas and introduce some notions and symbols for latter use.
Lemma 2.1 (Interlacing Theorem). Let G be a graph with n vertices and eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ and H an induced subgraph of G with m vertices and eigenvalues $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{m}$. Then $\lambda_{i} \geq \mu_{i} \geq \lambda_{n-m+i}$ where $i=1,2, \ldots, m$.

Oboudi in [22] characterized the graphs with $\lambda_{3}<0$ where he gives a distribution of λ_{3} in the following result.

Lemma 2.2 (Theorem 4.9, [22]). Let G be a graph. Then $\lambda_{3} \in\left\{-\sqrt{2},-1, \frac{1-\sqrt{5}}{2}\right\} \cup(-0.59,-0.5) \cup(-0.496, \infty)$. Moreover, the following holds:
(1) $\lambda_{3}=-\sqrt{2}$ if and only if $G \cong P_{3}$.
(2) $\lambda_{3}=-1$ if and only if $G \cong K_{n}$ or $G \cong K_{s} \cup K_{n-s}$ or $G \cong\left(K_{a} \cup K_{b}\right) \nabla K_{n-a-b}$, where $n, s, a, b>0$ are all integers and $n>a+b$.

Let G be a graph of order n. For any $u, v \in V(G)$, we say that they have the relation ρ, denoted by $u \rho v$, if $u=v$, or $u \sim v$ and $N_{G}(u) \backslash v=N_{G}(v) \backslash u$. Clearly, ρ forms an equivalence relation on $V(G)$. Suppose that $V_{1}, V_{2}, \ldots, V_{k}$ are all distinct ρ-equivalence classes of $V(G)$, and $v_{1}, v_{2}, \ldots, v_{k}$ are the corresponding representatives, i.e. $v_{i} \in V_{i}=\left\{v \in V(G) \mid v \rho v_{i}\right\}$. The canonical graph G_{c} of G is defined as the graph with vertex set $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$, and with an edge connecting V_{i} and V_{j} if $v_{i} \sim v_{j}$ in G. Obviously, $G_{c} \cong G\left[\left\{v_{1}, v_{2}, \ldots\right.\right.$, $\left.\left.v_{k}\right\}\right]$. A graph H is said to be primitive if $N_{H}(v) \backslash u \neq N_{H}(u) \backslash v$ whenever $u \sim v$ in H, and imprimitive otherwise. Obviously, the canonical graph G_{c} itself is primitive. By simple observation, we have

Lemma 2.3. Let H be an induced subgraph of G. Then H is isomorphic to some induced subgraph of G_{c} if H is primitive. Particularly, $H \cong G_{c}$ if they have the same number of vertices.

Proof. Suppose $V(H)=\left\{u_{1}, u_{2}, \ldots, u_{h}\right\} \subseteq V(G)$. We claim that any two adjacent vertices of H cannot have the relation ρ in G. Otherwise, assume that u_{i} and u_{j} are two adjacent vertices which are contained in the same ρ-equivalence class. Then u_{i} and u_{j} have the same neighbors in $V(G) \backslash\left\{u_{i}, u_{j}\right\}$, and so the same neighbors in $V(H) \backslash\left\{u_{i}, u_{j}\right\}$. This implies that H is imprimitive, a contradiction. Thus there are at least h different ρ-equivalence classes, and H is isomorphic to some induced subgraph of G_{c}. This proves the first part of the lemma, and the second part follows immediately.

For a graph H with vertex set $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and complete graphs $K_{n_{i}}(i=1,2, \ldots, k)$, we can construct a graph Γ from H and $K_{n_{i}}$ such that each v_{i} is replaced with $K_{n_{i}}$, and the vertices of $K_{n_{i}}$ join that of $K_{n_{j}}$ if $v_{i} v_{j}$ is an edge of H. As usual, we write $\Gamma=H\left[K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}}\right]$. Such a graph is called the generalized lexicographic product of H (by $K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}}$). Obviously, each graph can be viewed as a generalized lexicographic product of its canonical graph, i.e., $G=G_{c}\left[K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}}\right]$. However the canonical graph of
$\Gamma=H\left[K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}}\right]$ is not necessary to be H. Clearly, the canonical graph of Γ is H if H is primitive. It implies that, to characterize a class of graphs, it suffices to characterize all canonical graphs in this class. The following result is useful.
Lemma 2.4 (Theorem 5, [23]). If G_{c} is a canonical graph of a graph G, then $p_{-1}^{-}(G)=p_{-1}^{-}\left(G_{c}\right)$ and $p_{-1}^{+}(G)=p_{-1}^{+}\left(G_{c}\right)$.
Corollary 2.5. Let $G=G_{c}\left[K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}}\right], n_{1}+n_{2}+\cdots+n_{k}=n$ and $1 \leq i \leq k$. Then $G \in \mathcal{G}_{n}\left([-1]^{n-i}\right)$ if and only if $G_{c} \in \mathcal{G}_{k}\left([-1]^{k-i}\right)$.

Proof. By Lemma 2.4,

$$
\begin{aligned}
m_{G}(-1) & =n-p_{-1}^{-}(G)-p_{-1}^{+}(G) \\
& =n-p_{-1}^{-}\left(G_{c}\right)-p_{-1}^{+}\left(G_{c}\right) \\
& =n-k+m_{G_{c}}(-1)
\end{aligned}
$$

Thus $m_{G}(-1)=n-i$ if and only if $m_{G_{c}}(-1)=k-i$.
Corollary 2.6. A graph $G \in \mathcal{G}_{n}\left([-1]^{n-3}\right)$ if and only if $G \cong\left(K_{a} \cup K_{b}\right) \nabla K_{n-a-b}$, where $n, a, b>0$ are all integers and $n>a+b$.

Proof. Let $G \in \mathcal{G}_{n}\left([-1]^{n-3}\right)$. If $n=3$, we have $G \cong P_{3}=\left(K_{1} \cup K_{1}\right) \nabla K_{1}$. Now suppose $n \geq 4$. By Lemma 2.2, we have $\lambda_{3}(G) \geq-1$. Also, we claim that $\lambda_{n}(G)<-1$, since otherwise G cannot contain P_{3} as its induced subgraph by Interlacing Theorem, i.e., G must be isomorphic to K_{n}, a contradiction. Then we must have $\lambda_{3}(G)=-1$ due to $m_{G}(-1)=n-3$, and so $G \cong\left(K_{a} \cup K_{b}\right) \nabla K_{n-a-b}$ again by Lemma 2.2.

Conversely, suppose $G \cong\left(K_{a} \cup K_{b}\right) \nabla K_{n-a-b}$. It is clear that $P_{3}\left(\in \mathcal{G}_{3}\left([-1]^{0}\right)\right)$ is just the canonical graph of G. Then, by Corollary 2.5 , we may conclude that $G \in \mathcal{G}_{n}\left([-1]^{n-3}\right)$.

Figure 1: On graphs with exactly one eigenvalue less than -1 .
Let $G_{1}-G_{7}$ be the graphs shown in Figure 1, in which ellipses denotes the independent sets; such two ellipses joining with exactly one full line denote a complete bipartite graph; such two ellipses joining with a sequence of $k(k \geq 1)$ dotted parallel lines denote a complete bipartite graph on $k+k=2 k$ vertices with k edges of a perfect matching excluded; such two ellipses joining with a sequence of $k(k \geq 1)$ full parallel lines denote a bipartite graph on $k+k=2 k$ vertices with k edges of a perfect matching.

Let G be a connected graph. By argument above, if $p_{-1}^{-}(G)=0$, then G does not contain P_{3} as an induced graph and so $G=K_{n}$, which means $p_{-1}^{-}(G)=0$ if and only if $G=K_{n}$. The following elegant result characterizes the graph G with $p_{-1}^{-}(G)=1$.

Lemma 2.7 (Theorem 7, [23]). A connected graph $G \neq K_{n}$ has exactly one eigenvalue less than -1 if and only if its canonical graph G_{c} is an induced subgraph of any of the graphs $G_{1}-G_{7}$ in Figure 1 , so G_{c} is an bipartite graph.
Lemma 2.8. Let $G \in \mathcal{G}_{n}\left([-1]^{i}\right)$ have n vertices. If $0 \leq i \leq n-4$ then $\lambda_{3}(G)>-1>\lambda_{n}(G)$.

Proof. First we prove $\lambda_{3}(G)>-1$. On the contrary, let $\lambda_{3}(G) \leq-1$. By Lemma 2.2, we get that

$$
G \cong P_{3}, K_{n} \text { or }\left(K_{a} \cup K_{b}\right) \nabla K_{n-a-b} .
$$

However, $m_{P_{3}}(-1)=0>3-4, m_{K_{n}}(-1)=n-1>n-4$, and $m_{\left(K_{a} \cup K_{b}\right) \nabla K_{n-a-b}}(-1)=n-3>n-4$, which are all contrary to $i \leq n-4$.

Next we show $-1>\lambda_{n}(G)$. Obviously, $G \not \approx K_{n}$ since $\lambda_{3}(G)>-1$. Thus G has an induced path P_{3}, which implies that $-\sqrt{2}=\lambda_{3}\left(P_{3}\right) \geq \lambda_{n}(G)$ by Lemma 2.1. Our result follows.

3. The characterization of $\boldsymbol{G}_{\boldsymbol{n}}\left([-1]^{n-4}\right)$

Lemma 2.2 implies that $G \in \mathcal{G}_{n}\left([-1]^{n-3}\right)$ if and only if $G \cong\left(K_{a} \cup K_{b}\right) \nabla K_{n-a-b}$ if and only if $G_{c} \cong P_{3}$. In this section, we will explicitly characterize the graphs in $\mathcal{G}_{n}\left([-1]^{n-4}\right)$. It suffices to give all canonical graphs of $\mathcal{G}_{n}\left([-1]^{n-4}\right)$.

Theorem 3.1. A graph $G \in \mathcal{G}_{n}\left([-1]^{n-4}\right)$ if and only if its canonical graph G_{c} is isomorphic to one of $K_{1,3}, P_{4}, C_{4}, P_{5}$ or C_{6}.

Proof. By Lemma 2.8, $\lambda_{3}>-1>\lambda_{n}$. Thus the spectrum of G can be written as $\operatorname{Spec}(G)=\left[\lambda_{1}^{1}, \lambda_{2}^{1}, \lambda_{3}^{1},-1^{n-4}, \lambda_{n}^{1}\right]$, where $\lambda_{1}>\lambda_{2} \geq \lambda_{3}>-1, \lambda_{4}=\cdots=\lambda_{n-1}=-1$ and $-1>\lambda_{n}$. In accordance with ρ-partition, we have $G=G_{c}\left[K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}}\right]$. From Lemma 2.4, G_{c} also has exactly three eigenvalues more than -1 and one eigenvalue less than -1 . From Lemma $2.7, G_{c}$ is a bipartite graph and then the spectrum of G_{c} is symmetric about 0 . Thus we may assume that $\operatorname{Spec}\left(G_{c}\right)=\left[\mu_{1}^{1}, \mu_{2}^{1}, \mu_{3}^{1},(-1)^{k-4}, \mu_{k}^{1}\right]$, where $\mu_{1} \geq \mu_{2} \geq \mu_{3}>-1$, $\mu_{4}=\cdots=\mu_{k-1}=-1$ and $-1>\mu_{k}=-\mu_{1}$. Clearly, $k \geq 4$. Additionally, if $k \geq 8$, then $\mu_{4}=-\mu_{k-3}=1$, a contradiction. Next we consider $k=4,5,6,7$.

If $k=4$, then $1>\mu_{2}=-\mu_{3}>-1$. Since $K_{1,3}, P_{4}$ and C_{4} are the only three connected bipartite graphs of 4 vertices, their $\operatorname{spectra} \operatorname{Spec}\left(K_{1,3}\right)=\left[\sqrt{3}, 0^{2},-\sqrt{3}\right], \operatorname{Spec}\left(P_{4}\right)=[1.618,0.618,-0.618,-1.618]$ and $\operatorname{Spec}\left(C_{4}\right)=[2,0,0,-2]$ meet with the requirement. Thus $G_{c} \cong K_{1,3}, P_{4}$ or C_{4}.

If $k=5$, then $\mu_{2}=-\mu_{4}=1$ and $\mu_{3}=0$. We find that P_{5} is the only bipartite graph of 5 vertices whose $\operatorname{spectrum} \operatorname{Spec}\left(P_{5}\right)=[1.73,1,0,-1,-1.73]$ meets with the requirement. Thus $G_{c} \cong P_{5}$.

If $k=6$, then $\mu_{2}=-\mu_{5}=1$ and $\mu_{3}=-\mu_{4}=1$. Similarly, we find that C_{6}, with $\operatorname{Spec}\left(C_{6}\right)=\left[2^{1}, 1^{2},-1^{2},-2^{1}\right]$, is the only bipartite graph of 6 vertices as our required, and so $G_{c} \cong C_{6}$.

If $k=7$, then $\mu_{4}=0$, which contradicts $\mu_{4}=-1$.
Conversely, each canonical graph G_{c}, which is isomorphic to one of $K_{1,3}, P_{4}, C_{4}, P_{5}, C_{6}$, has spectrum of the form $\operatorname{spec}\left(G_{c}\right)=\left[\lambda_{1}^{1}, \lambda_{2}^{1}, \lambda_{3}^{1},(-1)^{k-4}, \lambda_{k}\right]$, where $k=4,5$ or $6, \lambda_{1} \geq \lambda_{2} \geq \lambda_{3}>-1$, and $-1>\lambda_{k}$. Hence $G_{c} \in \mathcal{G}_{k}\left([-1]^{k-4}\right)$. It follows that $G \in \mathcal{G}_{n}\left([-1]^{n-4}\right)$ by Corollary 2.5.

The proof is complete.
By Theorem 3.1 and Corollary 2.5, we have the following result immediately.
Corollary 3.2. A graph $G \in \mathcal{G}_{n}\left([-1]^{n-4}\right)$ if and only if $G=H\left[K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}}\right]$ where H is isomorphic to one of $K_{1,3}, P_{4}, C_{4}, P_{5}, C_{6}$ and $n_{1}+n_{2}+\cdots+n_{k}=n \geq 4$.

It is worth mentioning that Corollary 3.2 gives some classes of graphs with a few eigenvalues. In fact, for $G \in$ $\mathcal{G}_{n}\left([-1]^{n-4}\right)$, we see that G has at most five distinct eigenvalues and $d(G) \leq 4$. Especially, $K_{1,3}\left[K_{n_{1}}, K_{n_{2}}, K_{n_{3}}, K_{n_{4}}\right]$ and $C_{4}\left[K_{n_{1}}, K_{n_{2}}, K_{n_{3}}, K_{n_{4}}\right]$ are two classes of graphs. Each of them has at most five distinct eigenvalues and $d(G)=2$.

4. The characterization of $\boldsymbol{G}_{\boldsymbol{n}}\left([-1]^{n-5}\right)$

Recall that $\mathcal{G}_{n}\left([-1]^{n-5}\right)$ is the set of all connected graphs on n vertices in which each graph has eigenvalue -1 of multiplicity $n-5$, where $n \geq 5$. Clearly, each $G \in \mathcal{G}_{n}\left([-1]^{n-5}\right)$ has at most six distinct eigenvalues. Denote by $\mathcal{G}_{n}^{1}\left([-1]^{n-5}\right)$ the connected graphs with spectra $\left\{\lambda_{1}^{1}, \lambda_{2}^{1}, \lambda_{3}^{1}, \lambda_{4^{\prime}}^{1}-1^{n-5}, \lambda_{n}^{1}\right\}$ where $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq$
$\lambda_{4}>-1>\lambda_{n}$. Similarly, denote by $\mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ the connected graphs with spectra $\left\{\lambda_{1}^{1}, \lambda_{2}^{1}, \lambda_{3}^{1},-1^{n-5}, \lambda_{n-1}^{1}, \lambda_{n}^{1}\right\}$, where $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}>-1>\lambda_{n-1} \geq \lambda_{n}$. By Lemma 2.8, $\mathcal{G}_{n}\left([-1]^{n-5}\right)$ is the disjoint union of $\mathcal{G}_{n}^{1}\left([-1]^{n-5}\right)$ and $\mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$.

Firstly, we characterize the graphs in $\mathcal{G}_{n}^{1}\left([-1]^{n-5}\right)$. By using the software SageMath 8.0, we can find all bipartite graphs on 5-8 vertices such that they have four eigenvalues greater than -1 and one eigenvalue smaller than -1 , then they are $H_{1}-H_{11}$ (see Figure 2), whose spectra are listed in Table 1. From which it is clear that $H_{1}-H_{11} \in \mathcal{G}_{n}^{1}\left([-1]^{n-5}\right)$ are all primitive. We will show that they are exactly all canonical graphs of $\mathcal{G}_{n}^{1}\left([-1]^{n-5}\right)$.

Graph	Spectrum	Graph	Spectrum
H_{1}	$\left[2^{1}, 0^{3},-2^{1}\right]$	H_{7}	$\left[1.93^{1}, 1^{1}, 0.52^{1},-0.52^{1},-1^{1},-1.93^{1}\right]$
H_{2}	$\left[1.85^{1}, 0.77^{1}, 0^{1},-0.77^{1},-1.85^{1}\right]$	H_{8}	$\left[2.41^{1}, 1^{1}, 0.41^{1},-0.41^{1},-1^{1},-2.41^{1}\right]$
H_{3}	$\left[2.14^{1}, 0.66^{1}, 0^{1},-0.66^{1},-2.14^{1}\right]$	H_{9}	$\left[2^{1}, 1^{2}, 0,-1^{2},-2^{1}\right]$
H_{4}	$\left[2.45^{1}, 0^{3},-2.45^{1}\right]$	H_{10}	$\left[2.65^{1}, 1^{2}, 0^{1},-1^{2},-2.65^{1}\right]$
H_{5}	$\left[2.24^{1}, 1^{1}, 0^{2},-1^{1},-2.24\right]$	H_{11}	$\left[3^{1}, 1^{3},-1^{3},-3^{1}\right]$
H_{6}	$\left[2^{1}, 1^{1}, 0^{2},-1^{1},-2^{1}\right]$		

Table 1: The spectra of $H_{1}-H_{11}$.

Figure 2: The canonical graphs of $\mathcal{G}_{n}^{1}\left([-1]^{n-5}\right)$.

Theorem 4.1. A graph $G \in \mathcal{G}_{n}^{1}\left([-1]^{n-5}\right)$ if and only if its canonical graph G_{c} is isomorphic to one of $H_{1}, H_{2}, \ldots, H_{11}$.
Proof. Let $G \in \mathcal{G}_{n}^{1}\left([-1]^{n-5}\right)$. Then $G=G_{c}\left[K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}}\right]$ and $G_{c} \in \mathcal{G}_{k}\left([-1]^{k-5}\right)$ by Corollary 2.5 and so $k \geq 5$. From Lemma 2.4, the canonical graph G_{c} also has four eigenvalues greater than -1 and one eigenvalue less than -1 . Hence the spectrum of G_{c} can be written by $\operatorname{Spec}\left(G_{c}\right)=\left[\mu_{1^{\prime}}^{1}, \mu_{2^{\prime}}^{1}, \mu_{3^{\prime}}^{1} \mu_{4^{\prime}}^{1}(-1)^{k-5}, \mu_{k}^{1}\right]$, where $\mu_{1} \geq \mu_{2} \geq \mu_{3} \geq \mu_{4}>-1, \mu_{5}=\cdots=\mu_{k-1}=-1$ and $-1>\mu_{k}=-\mu_{1}$. From Lemma 2.7, G_{c} is a bipartite graph, and then the spectrum of G_{c} is symmetric about 0 . Thus, if $k \geq 10$, then $\mu_{5}=-\mu_{k-4}=1$, a contradiction. Next we consider $k=5,6,7,8,9$.

If $k=5$, then $1>\mu_{2}=-\mu_{4}>-1$ and $\mu_{3}=0$. From Table 1 it is clear that H_{1}, H_{2}, H_{3} and H_{4} are the only four bipartite graphs on 5 vertices with this property. Hence $G_{c} \cong H_{1}, H_{2}, H_{3}, H_{4}$.

If $k=6$, then $\mu_{2}=-\mu_{5}=1$ and $1>-\mu_{3}=\mu_{4}>-1$. From Table 1 we find that H_{5}, H_{6}, H_{7} and H_{8} are the only four bipartite graphs on 6 vertices satisfying this property. Hence $G_{c} \cong H_{5}, H_{6}, H_{7}$ or H_{8}.

If $k=7$, then $\mu_{2}=-\mu_{6}=1, \mu_{3}=-\mu_{5}=1$ and $\mu_{4}=0$. Similarly, H_{9} and H_{10} in Table 1 are the only two bipartite graphs on 7 vertices we needed. Hence $G_{c} \cong H_{9}$ or H_{10}.

If $k=8$, then $\mu_{2}=-\mu_{7}=1, \mu_{3}=-\mu_{6}=1$ and $\mu_{4}=-\mu_{5}=1$. We have $G_{c} \cong H_{11}$ in Table 1.
If $k=9$, then $\mu_{5}=0$, which is impossible.
Conversely, it is clear from Table 1 that each of $H_{1}-H_{11}$ belongs to $\mathcal{G}_{k}\left([-1]^{k-5}\right)$ where $k=5,6,7$ or 8 . By Corollary 2.5, $G=G_{c}\left[K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{k}}\right] \in \mathcal{G}_{n}^{1}\left([-1]^{n-5}\right)$ for each $G_{c} \cong H_{i}$ and $1 \geq i \geq 11$ where $n=n_{1}+n_{2}+\cdots+n_{k}$.

The proof is complete.
It remains to characterize those graphs in $\mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$. By the software SageMath 8.0, we can find all graphs on 5-7 vertices satisfying the following properties:
(1) they are connected non-bipartite.
(2) they are graphs belonging to $\mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ (that is, $p_{G}^{+}(-1)=3$ and $p_{G}^{-}(-1)=2$).
(3) they are primitive.

Graph	Spectrum	Graph	Spectrum
H_{12}	$\left[2.48^{1}, 0.69^{1}, 0^{1},-1.17^{1},-2^{1}\right]$	H_{18}	$\left[3.78^{1}, 0.71^{1}, 0^{1},-1^{1},-1.49^{1},-2^{1}\right]$
H_{13}	$\left[2.94^{1}, 0.62^{1},-0.46^{1},-1.47^{1},-1.62^{1}\right]$	H_{19}	$\left[4.20^{1}, 1^{1}, 0.55^{1},-1^{2},-1.75^{1},-2^{1}\right]$
H_{14}	$\left[2.69^{1}, 0.33^{1}, 0^{1},-1.27^{1},-1.75^{1}\right]$	H_{20}	$\left[2.81^{1}, 1^{1}, 0.53^{1},-1^{1},-1.34^{1},-2^{1}\right]$
H_{15}	$\left[3.24^{1}, 0^{2},-1.24^{1},-2^{1}\right]$	H_{21}	$\left[3.22^{1}, 1^{1}, 0.11^{1},-1^{1},-1.53^{1},-1.81^{1}\right]$
H_{16}	$\left[2.30^{1}, 0.62^{1}, 0^{1},-1.30^{1},-1.62^{1}\right]$	H_{22}	$\left[3.59^{1}, 0.62^{1}, 0.16^{1},-1^{1},-1.62^{1},-1.75^{1}\right]$
H_{17}	$\left[2^{1}, 0.62^{2},-1.62^{2}\right]$	H_{23}	$\left[3.65^{1}, 1^{2},-1^{2},-1.65^{1},-2^{1}\right]$

Table 2: The spectra of $\mathrm{H}_{12}-\mathrm{H}_{23}$.

H_{18}

Figure 3: The canonical graphs of $\mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$.

All these graphs are $H_{12}-H_{23}$ shown in Figure 3, and their spectra are listed in Table 2. In what follows, we will give a series of lemmas and theorems to show that $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ if and only if G_{c} is isomorphic to one of the graphs $H_{12}-H_{23}$.

One can directly verify the following result by Interlacing Theorem.
Lemma 4.2. Let $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ and $n \geq m \geq 6$. If H is an induced subgraph of G on m vertices with eigenvalues $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{m-1} \geq \mu_{m}$, then $\mu_{4}=\ldots=\mu_{m-2}=-1$.

Lemma 4.3 (Theorem 8, [23]). If a graph G has exactly two eigenvalues less than -1 , then G contains at least one induced graph which is isomorphic to one of $M_{1}-M_{12}$ (see Figure 4) or $H_{12}-H_{17}$ (see Figure 3).

Figure 4: The minimal graphs $M_{1}-M_{12}$.

Lemma 4.4. The graphs $H_{12}-H_{17}$ displayed in Figure 3 are exactly six minimal graphs in $\mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ (it means that any $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ contains at least one induced subgraph which is isomorphic to one of $\left.H_{12}-H_{17}\right)$, where $n \geq 5$.

Proof. Let $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$. Then G contains exactly two eigenvalues less than -1 . By Lemma $4.3, G$ contains at least one induced graph which is isomorphic to one of $M_{1}-M_{12}$ (see Figure 4) or $H_{12}-H_{17}$ (see Figure 3). On the other aspect, let H be any induced subgraph of G, where $n=|V(G)| \geq m=|V(H)| \geq 6$. By Lemma 4.2 we have $\mu_{4}(H)=-1$. However, the fourth largest eigenvalues of the graphs $M_{1}-M_{12}$ are all not equal to -1 (see Figure 4). Hence $M_{1}-M_{12}$ should be eliminated. Indeed, $H_{12}-H_{17}$ are the six minimal graphs belonging to $\mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ (see Table 2).

In terms of Lemma 4.4, we will give a series of lemmas and theorems that exhaust all canonical graphs of $\mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ that contain at least one induced subgraph which is isomorphic to one of $H_{12}-H_{17}$. This leads to the final characterization of the graphs in $\mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ for any $n \geq 5$. First, we give a lemma that is frequently used later on.

Figure 5: $\Gamma_{1}-\Gamma_{16}$ (some connected graphs on 6 vertices with $\lambda_{4}=-1$).

Lemma 4.5. Let $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$. Then the canonical graph G_{c} has 6 vertices if and only if G_{c} is isomorphic to one of H_{18}, H_{20}, H_{21} or H_{22} (shown in Figure 3), in which H_{18} and H_{20} contain induced $H_{12} ; H_{21}$ and H_{22} contain induced $H_{13} ; H_{18}$ contains induced $H_{15} ; H_{22}$ contains induced H_{16}.

Proof. From Figure 3 and Table 2, it is clear that H_{18}, H_{20}, H_{21} and H_{22} are primitive and belong to $\mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ for $n=6$. The sufficiency follows.

Let $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ and its canonical graph G_{c} has 6 vertices. By Lemma 2.4 and Lemma 4.2, we get $\mu_{4}\left(G_{c}\right)=-1$. By Lemma 4.4, G_{c} contains at least one induced graph which is isomorphic to one of $H_{12}-H_{17}$. By using Table A3 in [11] (one can also use software SageMath 8.0 under the restriction of $\mu_{4}\left(G_{c}\right)=-1$), we find that there are only twenty connected graphs on 6 vertices belonging to $\mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$, in which $\Gamma_{1}-\Gamma_{16}$ are shown in Figure 5 and others are H_{18}, H_{20}, H_{21} and H_{22} in Figure 3. From which we choose, according to Lemma 4.4, the primitive graphs that contain one of $H_{12}-H_{17}$ as their induced subgraphs. It is clear from Figure 5 that $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ are generalized lexicographic products of H_{12} (where the vertices satisfying $v \rho v_{i}$ are labelled as hollow dots, the edges connecting v and H_{12} are labelled as dotted lines, and the following is similar $), \Gamma_{i}(i=4,5,6)$ are the products of $H_{13}, \Gamma_{i}(i=7,8,9,10)$ are the products of $H_{14}, \Gamma_{i}(i=11,12)$ are the products of $H_{15}, \Gamma_{i}(i=13,14,15)$ are the products of H_{16}, and Γ_{16} is a product of H_{17}. Hence all the Γ_{i} are imprimitive and will be excluded. The remainders H_{18}, H_{20}, H_{21} and H_{22} are the only primitive graphs containing one of $H_{12}-H_{17}$ as induced subgraph. In fact, H_{18} and H_{20} contains $H_{12} ; H_{21}$ and H_{22} contain H_{13}; H_{18} contains $H_{15} ; H_{22}$ contains H_{16}.

The proof is complete.

Figure 6: Forbidden subgraphs $\mu_{4} \neq-1$.

Lemma 4.6. Let $G_{c} \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ contain an induced subgraph which is isomorphic to H_{12} and $H_{v}=G_{c}\left[V\left(H_{12}\right) \cup\right.$ $\{v\}]$ for $v \in V\left(G_{c}\right) \backslash V\left(H_{12}\right)$. Then $H_{v} \cong H_{18}$ or H_{20} (shown in Figure 3).

Proof. The graph H_{v} has six vertices and $\mu_{4}\left(H_{v}\right)=-1$ by Lemma 4.2. Additionally, H_{v} will be connected since otherwise $H_{v} \cong S_{1}$ (see Figure 6) but $\mu_{4}\left(S_{1}\right)=0$. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of $\mu_{4}\left(G_{c}\right)=-1$), we find that there are only five connected graphs on 6 vertices whose fourth largest eigenvalues equal -1 and each of them contains an induced subgraph which is isomorphic to H_{12}, in which $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ are shown in Figure 5 and others H_{18}, H_{20}. Thus we have $H_{v} \cong \Gamma_{1}$, $\Gamma_{2}, \Gamma_{3}, H_{18}$ or H_{20}. It suffices to eliminate the graphs: $\Gamma_{1}-\Gamma_{3}$.

If $H_{v} \cong \Gamma_{1}$, then $v_{4} \rho v$ in Γ_{1} (see Figure 5). Since G_{c} is primitive, v_{4} and v has no relation ρ in G_{c}, and so $N_{G_{c}}\left(v_{4}\right) \backslash v \neq N_{V\left(G_{c}\right)}(v) \backslash v_{4}$. Since ρ is symmetric, we may assume that G_{c} has another vertex $u \sim v_{4}$ but $u \nsim v$. Thus $H_{u}=G_{c}\left[V\left(H_{12}\right) \cup\{u\}\right] \in\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, H_{18}, H_{20}\right\}$ by above arguments, where we regard u as v in these graphs. Now $H_{v, u}=G_{c}\left[V\left(H_{12}\right) \cup\{v, u\}\right]$ consists of two induced subgraphs which are isomorphic to Γ_{1} and H_{u}, respectively. Clearly, $H_{v, u}$ will be S_{2} or S_{3} if H_{u} takes Γ_{1} (where $H_{v}=H_{u}=\Gamma_{1}$ corresponds to $S_{2} ; H_{u} \cong \Gamma_{1} \cong H_{v}$ corresponds to S_{3}). Similarly, H will be S_{4}, S_{5}, S_{6} and S_{7} if H_{u} takes $\Gamma_{2}, \Gamma_{3}, H_{18}$ and H_{20}, respectively. However, $S_{2}, S_{3}, S_{4}, S_{5}, S_{6}$ and S_{7} are all forbidden induced subgraphs of G_{c} because their fourth largest eigenvalues are not equal to -1 .

If $H_{v} \cong \Gamma_{2}$, then $v_{3} \rho v$ in Γ_{2} (see Figure 5). Similarly, there exists some u with $u \sim v_{3}$ but $u \nsim v$, and then $H_{u}=G_{c}\left[V\left(H_{12}\right) \cup\{u\}\right] \in\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, H_{18}, H_{20}\right\}$. Again we consider $H_{v, u}=G_{c}\left[V\left(H_{12}\right) \cup\{v, u\}\right]$. Clearly, $H_{u} \cong \Gamma_{3}$ or H_{20} cannot appear in $H_{v, u}$ since $u \nsim v_{3}$ in Γ_{3} and H_{20} (but $u \sim v_{3}$ in $H_{v, u}$). Additionally, $\left\{H_{v}, H_{u}\right\} \neq\left\{\Gamma_{1}, \Gamma_{2}\right\}$ as above. Thus $H_{u} \in\left\{\Gamma_{2}, H_{18}\right\}$, and H will be S_{8} and S_{9} if H_{u} takes Γ_{2} and H_{18}, respectively. However, S_{8} and S_{9} are all forbidden induced subgraphs of G_{c}.

If $H_{v} \cong \Gamma_{3}$, then $v_{5} \rho v$ in Γ_{3} (see Figure 5). Similarly, there exists some u with $u \sim v_{5}$ but $u \nsim v$, and then $H_{u}=G_{c}\left[V\left(H_{12}\right) \cup\{u\}\right] \in\left\{\Gamma_{3}, H_{18}, H_{20}\right\}\left(\Gamma_{1}, \Gamma_{2}\right.$ will be abandoned as above $)$. Thus $H=G_{c}\left[V\left(H_{12}\right) \cup\{v, u\}\right]$ will be S_{10} or S_{11} if H_{u} takes $\Gamma_{3} ; H$ will be S_{12}, S_{13} if H_{u} takes H_{18} and H_{20}, respectively. However, S_{10}, S_{11}, S_{12} and S_{13} are all forbidden induced subgraphs of G_{c}.

The proof is complete.

Figure 7: Forbidden subgraphs $\mu_{4} \neq-1$.

Theorem 4.7. A graph $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ contains an induced subgraph which is isomorphic to H_{12} if and only if its canonical graph G_{c} is isomorphic to one of H_{12}, H_{18}, H_{19} or H_{20} (see Figure 3).

Proof. Assume that $G_{c} \cong H_{12}, H_{18}, H_{19}$ or H_{20}. Then G_{c} has an induced subgraph which is isomorphic to H_{12} since each of H_{18}, H_{19} and H_{20} has an induced subgraph which is isomorphic to H_{12}. Consequently, G contains an induced subgraph which is isomorphic to H_{12}.

Conversely, suppose that G contains an induced graph which is isomorphic to H_{12}. Since H_{12} is primitive, by Lemma $2.3 G_{c}$ has induced H_{12}, and $G_{c} \cong H_{12}$ if $\left|V\left(G_{c}\right)\right|=5$. Assume that $\left|V\left(G_{c}\right)\right|>5$. By Lemma 4.6, $H_{v}=G_{c}\left[V\left(H_{12}\right) \cup\{v\}\right] \in\left\{H_{18}, H_{20}\right\}$ for $v \in V\left(G_{c}\right) \backslash V\left(H_{12}\right)$. It is all right if $G_{c} \cong H_{v}$. Otherwise, there exists $u \in V\left(G_{c}\right) \backslash V\left(H_{v}\right)$ such that $H_{u}=G_{c}\left[V\left(H_{12}\right) \cup\{u\}\right] \in\left\{H_{18}, H_{20}\right\}$ again by Lemma 4.6. We will distinguish the following cases.

Case 1. If $H_{v} \cong H_{18} \cong H_{u}$ then $N_{H_{v}}(v)=V\left(H_{12}\right)=N_{H_{u}}(u)$ (see H_{18} in Figure 3). If $v \times u$ then $H=$ $G_{c}\left[V\left(H_{12}\right) \cup\{v, u\}\right] \cong F_{1}$ (see Figure 7), but $\mu_{4}\left(F_{1}\right) \neq-1$. Thus $v \sim u$ and so $v \rho u$ in H. Since G_{c} is primitive,
we have $N_{G_{c}}(v) \backslash u \neq N_{G_{c}}(u) \backslash v$. Thus we may assume that G_{c} has a vertex $w \sim v$ but $w \nsim u$. Again we have $H_{w}=G_{c}\left[V\left(H_{12}\right) \cup\{w\}\right] \in\left\{H_{18}, H_{20}\right\}$ and so $H_{w} \cong H_{20}$ due to $w \propto u$. Thus, $N_{H_{w}}(w)=\left\{v_{1}, v_{2}\right\}$ or $\left\{v_{4}, v_{5}\right\}$. Then $G_{c}\left[V\left(H_{12}\right) \cup\{w, u\}\right] \cong F_{2}$ (see Figure 7), however $\mu_{4}\left(F_{2}\right) \neq-1$, a contradiction.

Case 2. If $H_{v} \cong H_{20} \cong H_{u}$ then $N_{H_{v}}(v), N_{H_{u}}(u)=\left\{v_{1}, v_{2}\right\}$ or $\left\{v_{4}, v_{5}\right\}$ (see H_{20} in Figure 3). We first assume that $N_{H_{v}}(v)=\left\{v_{1}, v_{2}\right\}=N_{H_{u}}(u)$. Then $v \sim u$, since otherwise $G_{c}\left[V\left(H_{12}\right) \cup\{v, u\}\right] \cong F_{3}$ (see Figure 7), but $\mu_{4}\left(F_{3}\right) \neq-1$. Similarly as in Case 1, G_{c} has a vertex $w \sim v$ but $w \nsim u$. Obviously, $H_{w}=G_{c}\left[V\left(H_{12}\right) \cup\{w\}\right] \in\left\{H_{18}, H_{20}\right\}$. If $H_{w} \cong H_{18}$, then $G_{c}\left[V\left(H_{12}\right) \cup\{w, u\}\right] \cong F_{2}$ (see Figure 7), but $\mu_{4}\left(F_{2}\right) \neq-1$. If $H_{w} \cong H_{20}$, then

$$
G_{c}\left[V\left(H_{12}\right) \cup\{w, u\}\right] \cong\left\{\begin{array}{ll}
F_{3}, & \text { if } N_{H_{w}}(w)=\left\{v_{1}, v_{2}\right\} \\
F_{4}, & \text { if } N_{H_{w}}(w)=\left\{v_{4}, v_{5}\right\}
\end{array} \quad \text { (see } F_{1}, F_{2}\right. \text { in Figure 7) }
$$

which are impossible since F_{3} and F_{4} are all forbidden subgraphs of G_{c}.
By symmetry (see H_{20} in Figure 3), the case of $N_{H_{v}}(v)=\left\{v_{4}, v_{5}\right\}=N_{H_{u}}(u)$ is equivalent to that of $N_{H_{v}}(v)=\left\{v_{1}, v_{2}\right\}=N_{H_{u}}(u)$ in above discussion. It remains to consider $N_{H_{v}}(v)=\left\{v_{1}, v_{2}\right\}$ and $N_{H_{u}}(u)=\left\{v_{4}, v_{5}\right\}$. Clearly,

$$
G_{c}\left[V\left(H_{12}\right) \cup\{v, u\}\right] \cong\left\{\begin{array} { l l }
{ F _ { 4 } , } & { \text { if } v \nsim u } \\
{ F _ { 5 } , } & { \text { if } v \sim u }
\end{array} \quad \left(\text { see } F_{4}, F_{5}\right.\right. \text { in Figure 7) }
$$

which are impossible since F_{4} and F_{5} are forbidden subgraphs of G_{c}.
Case 3. If $H_{v} \cong H_{18}$ and $H_{u} \cong H_{20}$ then $G_{c}\left[V\left(H_{12}\right) \cup\{v, u\}\right] \cong G_{c}$. Since otherwise, G_{c} has another vertex $w \neq v, u$ such that $H_{w}=G_{c}\left[V\left(H_{12}\right) \cup\{w\}\right] \cong H_{18}$ or H_{20} by Lemma 4.6. However, the case of $H_{w} \cong H_{18} \cong H_{v}$ is eliminated as in Case 1 and the case of $H_{w} \cong H_{20} \cong H_{u}$ is eliminated as in Case 2. Now, if $v \times u$ then $G_{c}\left[V\left(H_{12}\right) \cup\{v, u\}\right] \cong F_{2}$ (see Figure 7), but $\mu_{4}\left(F_{2}\right) \neq-1$; if $v \sim u$ then $G_{c}=G_{c}\left[V\left(H_{12}\right) \cup\{v, u\}\right] \cong H_{19}$ (see Figure 3), as required.

The proof is complete.

Figure 8: Forbidden subgraphs $\mu_{4} \neq-1$.

Lemma 4.8. Let $G_{c} \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ contain an induced subgraph which is isomorphic to H_{13} and $H_{v}=G_{c}\left[V\left(H_{13}\right) \cup\right.$ $\{v\}]$ for $v \in V\left(G_{c}\right) \backslash V\left(H_{13}\right)$. Then $H_{v} \cong H_{21}$ or H_{22}.

Proof. The graph H_{v} has six vertices and $\mu_{4}\left(H_{v}\right)=-1$ by Lemma 4.2. Additionally, H_{v} will be connected, since otherwise $H_{v} \cong S_{1}^{1}$ (see Figure 8) but $\mu_{4}\left(S_{1}^{1}\right) \approx-0.46$. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of $\mu_{4}\left(G_{c}\right)=-1$), we find that there are five connected graphs on 6 vertices whose fourth largest eigenvalues equal -1 and each of them contains an induced subgraph which is isomorphic to H_{13}, in which Γ_{4}, Γ_{5} and Γ_{6} are shown in Figure 5 and others H_{21}, H_{22}. Thus we have $H_{v} \cong \Gamma_{4}, \Gamma_{5}, \Gamma_{6}, H_{21}$ or H_{22}. It suffices to eliminate the graphs: $\Gamma_{4}-\Gamma_{6}$.

If $H_{v} \cong \Gamma_{4}$, then $v_{1} \rho v$ in Γ_{4} (see Figure 5). Since G_{c} is primitive, we have $N_{G_{c}}\left(v_{1}\right) \backslash v \neq N_{G_{c}}(v) \backslash v_{1}$. Thus we may assume that there exists $u \sim v_{1}$ but $u \nsim v$. We have $H_{u}=G_{c}\left[V\left(H_{13}\right) \cup\{u\}\right] \in\left\{\Gamma_{4}, \Gamma_{5}, \Gamma_{6}, H_{21}, H_{22}\right\}$ by above arguments. Now $H_{v, u}=G_{c}\left[V\left(H_{13}\right) \cup\{v, u\}\right]$ contains $H_{v} \cong \Gamma_{4}$ and H_{u} as its induced subgraphs. From

Figure 5 and Figure 8, clearly, $H_{v, u}$ will be $S_{2}^{1}, S_{3}^{1}, S_{4}^{1}, S_{5}^{1}$ and S_{6}^{1} if H_{u} takes $\Gamma_{4}, \Gamma_{5}, \Gamma_{6}, H_{21}$ and H_{22}, respectively. However, $S_{2}^{1}, S_{3}^{1}, S_{4}^{1}, S_{5}^{1}$ and S_{6}^{1} are all forbidden induced subgraphs of G_{c}.

If $H_{v} \cong \Gamma_{5}$, then $v_{3} \rho v$ in Γ_{5} (see Figure 5). Similarly, there exists some u with $u \sim v_{3}$ but $u \times v$, and then $H_{u}=G_{c}\left[V\left(H_{13}\right) \cup\{u\}\right] \in\left\{\Gamma_{4}, \Gamma_{5}, \Gamma_{6}, H_{21}, H_{22}\right\}$. Thus $H_{v, u}=G_{c}\left[V\left(H_{13}\right) \cup\{v, u\}\right]$ has $H_{v} \cong \Gamma_{5}$ and H_{u} as its induced subgraphs. First $H_{u} \neq H_{21}$ since $u \nsim v_{3}$ in H_{21}. Additionally, $\left\{H_{v}, H_{u}\right\} \neq\left\{\Gamma_{4}, \Gamma_{5}\right\}$ as above. It is clear from Figure 8 that $H_{v, u}$ will be S_{7}^{1} or S_{8}^{1} if H_{u} takes Γ_{5} (where $H_{v}=H_{u}=\Gamma_{5}$ corresponds $S_{7}^{1} ; H_{v}, H_{u} \cong \Gamma_{5}$ corresponds S_{8}^{1}) and $H_{v, u}$ will be S_{9}^{1} and S_{10}^{1} if H_{u} takes Γ_{6} and H_{22}, respectively. However, $S_{7}^{1}, S_{8}^{1}, S_{9}^{1}$, and S_{10}^{1} are all forbidden induced subgraphs of G_{c}.

If $H_{v} \cong \Gamma_{6}$, then $v_{2} \rho v$ in Γ_{6} (see Figure 5). Similarly, there exists some u with $u \sim v_{2}$ but $u \nsim v$, and then $H_{u}=G_{c}\left[V\left(H_{13}\right) \cup\{u\}\right] \in\left\{\Gamma_{4}, \Gamma_{5}, \Gamma_{6}, H_{21}, H_{22}\right\}$. Clearly, $H_{u} \neq H_{22}$ since $u \nsim v_{2}$ in $H_{22} . \Gamma_{4}, \Gamma_{5}$ will be abandoned as above. Thus $H=G_{c}\left[V\left(H_{13}\right) \cup\{v, u\}\right]$ will be S_{11}^{1} and S_{12}^{1} if H_{u} takes Γ_{6} and H_{21}, respectively. However, S_{11}^{1} and S_{12}^{1} are all forbidden induced subgraphs of G_{c}.

The proof is complete.
Theorem 4.9. A graph $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ contains an induced subgraph which is isomorphic to H_{13} if and only if $G_{c} \cong H_{13}, H_{21}, H_{22}$ or H_{23}.

Proof. Assume that $G_{c} \cong H_{13}, H_{21}, H_{22}$ or H_{23}. Obviously, G_{c} contains an induced subgraph which is isomorphic to H_{13} since each of H_{21}, H_{22} and H_{23} has an induced subgraph which is isomorphic to H_{13}. Consequently, G contains an induced subgraph which is isomorphic to H_{13}.

Conversely, assume that G contains an induced subgraph which is isomorphic to H_{13}. Since H_{13} is primitive, from Lemma 2.3 we know that G_{c} also has an induced subgraph isomorphic to H_{13}, and $G_{c} \cong H_{13}$ if $\left|V\left(G_{c}\right)\right|=5$. If $\left|V\left(G_{c}\right)\right| \geq 6$ then, by Lemma $4.8, H_{v}=G_{c}\left[V\left(H_{13}\right) \cup\{v\}\right] \in\left\{H_{21}, H_{22}\right\}$ for each $v \in V\left(G_{c}\right) \backslash V\left(H_{13}\right)$. If $\left|V\left(G_{c}\right)\right|>6$, then G_{c} has another vertex $u \neq v$ such that $H_{u}=G_{c}\left[V\left(H_{13}\right) \cup\{u\}\right] \in\left\{H_{21}, H_{22}\right\}$. We will distinguish the following cases.
Case 1. Assume that $H_{v} \cong H_{21}$ and $H_{u} \cong H_{22}$. We have $N_{H_{v}}(v)=\left\{v_{1}, v_{2}\right\}$ or $\left\{v_{1}, v_{5}\right\}$, and $N_{H_{u}}(u)=\left\{v_{1}, v_{3}, v_{4}\right\}$. Thus

$$
G_{c}\left[V\left(H_{13}\right) \cup\{v, u\}\right] \cong\left\{\begin{array}{ll}
F_{6}, & \text { if } v \sim u \\
F_{7}, & \text { if } v \nsim u
\end{array} \quad \text { (see } F_{6}, F_{7}\right. \text { in Figure 7) }
$$

which are impossible since F_{6} and F_{7} are forbidden subgraphs.
Case 2. Assume that $H_{v} \cong H_{22} \cong H_{u}$. We have $N_{H_{v}}(v)=\left\{v_{1}, v_{3}, v_{4}\right\}=N_{H_{u}}(u)$. If $v \times u$ then $H_{v, u}=$ $G_{c}\left[V\left(H_{13}\right) \cup\{v, u\}\right] \cong F_{8}$ (see Figure 7), but $\mu_{4}\left(F_{8}\right) \neq-1$. Thus $v \sim u$ and so $v \rho u$ in $H_{v, u}$. Since G_{c} is primitive, $N_{G_{c}}(v) \backslash u \neq N_{G_{c}}(u) \backslash v$. Thus we may assume that there exists $w \sim v$ but $w \nsim u$. Again we have $H_{w}=G_{c}\left[V\left(H_{13}\right) \cup\{w\}\right] \in\left\{H_{21}, H_{22}\right\}$ and so $H_{w} \cong H_{21}$ due to $w \times u$. Thus $N_{H_{w}}(w)=\left\{v_{1}, v_{2}\right\}$ or $\left\{v_{1}, v_{5}\right\}$. Then $G_{c}\left[V\left(H_{13}\right) \cup\{w, u\}\right] \cong F_{7}$ (see Figure 7), however $\mu_{4}\left(F_{7}\right) \neq-1$, a contradiction.

Case 3. Assume that $H_{v} \cong H_{21} \cong H_{u}$. Then $N_{H_{v}}(v), N_{H_{u}}(u)=\left\{v_{1}, v_{2}\right\}$ or $\left\{v_{1}, v_{5}\right\}$. By the symmetry of $\left\{v_{1}, v_{5}\right\}$ and $\left\{v_{1}, v_{2}\right\}$ in H_{v} or $H_{u}, N_{H_{v}}(v)=\left\{v_{1}, v_{5}\right\}=N_{H_{u}}(u)$ is equivalent to $N_{H_{v}}(v)=\left\{v_{1}, v_{2}\right\}=N_{H_{u}}(u)$. We only need to consider the following two subcases.

If $N_{H_{v}}(v)=\left\{v_{1}, v_{2}\right\}=N_{H_{u}}(u)$, then $v \sim u$ since otherwise $G_{c}\left[V\left(H_{13}\right) \cup\{v, u\}\right] \cong F_{9}$ (see Figure 7), but $\mu_{4}\left(F_{9}\right) \neq-1$. Similarly as in Case 2, there exists some w with $w \sim v$ and $w \times u$ such that $H_{w}=G_{c}\left[V\left(H_{13}\right) \cup\right.$ $\{w\}] \in\left\{H_{21}, H_{22}\right\}$. If $H_{w} \cong H_{22}$ then we turn to Case 1. If $H_{w} \cong H_{21}$, then

$$
G_{c}\left[V\left(H_{13}\right) \cup\{w, u\}\right] \cong\left\{\begin{array}{ll}
F_{9}, & \text { if } N_{H_{21}}(w)=\left\{v_{1}, v_{2}\right\} \\
F_{10}, & \text { if } N_{H_{21}}(w)=\left\{v_{1}, v_{5}\right\}
\end{array} \quad \text { (see } F_{9}, F_{10}\right. \text { in Figure 7) }
$$

However, F_{9} and F_{10} are forbidden subgraphs of G_{c}, a contradiction.
If $N_{H_{v}}(v)=\left\{v_{1}, v_{2}\right\}$ and $N_{H_{u}}(u)=\left\{v_{1}, v_{5}\right\}$, then $v \sim u$ since otherwise $G_{c}\left[V\left(H_{13}\right) \cup\{v, u\}\right] \cong F_{10}$ (see Figure 7), but $\mu_{4}\left(F_{10}\right) \neq-1$, and so $H_{v, u}=G_{c}\left[V\left(H_{12}\right) \cup\{v, u\}\right] \cong H_{23}$ (see Figure 3). If $G_{c} \cong H_{v, u}$, there is nothing to do. Otherwise, G_{c} has another vertex $w \neq v, u$ such that $H_{w}=G_{c}\left[V\left(H_{13}\right) \cup\{w\}\right] \in\left\{H_{21}, H_{22}\right\}$ by Lemma 4.8. First let $H_{w} \cong H_{21}$. Then $N_{H_{w}}(w)=\left\{v_{1}, v_{2}\right\}$ or $\left\{v_{1}, v_{5}\right\}$. If the former occurs then $N_{H_{w}}(w)=\left\{v_{1}, v_{2}\right\}=N_{H_{v}}(v)$; if
the later occurs then $N_{H_{w}}(w)=\left\{v_{1}, v_{5}\right\}=N_{H_{u}}(u)$. The both are impossible by the above arguments. Next let $H_{w} \cong H_{22}$. Then we turn to Case 1 since $H_{v} \cong H_{21}$.

The proof is complete.

Figure 9: Forbidden subgraphs $\mu_{4} \neq-1$.

Theorem 4.10. A graph $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ contains an induced subgraph which is isomorphic to H_{14} if and only if its canonical graph $G_{c} \cong H_{14}$ (see in Figure 3).

Proof. The sufficiency is obvious. We show the necessity. Since H_{14} is primitive and G contains an induced subgraph which is isomorphic to H_{14}, by Lemma 2.3, G_{c} also has an induced subgraph which is isomorphic to H_{14} and $G_{c} \cong H_{14}$ if $\left|V\left(G_{c}\right)\right|=5$. For $\left|V\left(G_{c}\right)\right| \geq 6$, let $H_{v}=G_{c}\left[V\left(H_{14}\right) \cup\{v\}\right]$ for $v \in V\left(G_{c}\right) \backslash V\left(H_{14}\right)$. Thus $\mu_{4}\left(H_{v}\right)=-1$ by Lemma 4.2. Additionally, H_{v} will be connected, since otherwise $H_{v} \cong S_{1}^{2}$ (see Figure 9) but $\mu_{4}\left(S_{1}^{2}\right)=0$. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of $\mu_{4}\left(G_{c}\right)=-1$), we find that $\Gamma_{7}-\Gamma_{10}$, shown in Figure 5, are the only four connected graphs of 6 vertices whose fourth largest eigenvalue is equal to -1 and each of them contains an induced subgraph which is isomorphic to H_{14}. Thus we have $H_{v} \in\left\{\Gamma_{7}, \Gamma_{8}, \Gamma_{9}, \Gamma_{10}\right\}$. Clearly H_{v} is imprimitive (in fact, $v_{3} \rho v$ in $\Gamma_{7}, v_{2} \rho v$ in $\Gamma_{8}, v_{1} \rho v$ in $\Gamma_{9}, v_{5} \rho v$ in Γ_{10} (see Figure 5)). However, since G_{c} is primitive, H_{v} must be a proper induced subgraph of G_{c}. There exists $u \neq v$ such that $H_{u}=G_{c}\left[V\left(H_{14}\right) \cup\{u\}\right] \in\left\{\Gamma_{7}, \Gamma_{8}, \Gamma_{9}, \Gamma_{10}\right\}$ for $u \in V\left(G_{c}\right) \backslash V\left(H_{v}\right)$ by the above arguments. Now $H_{v, u}=G_{c}\left[V\left(H_{14}\right) \cup\{v, u\}\right]$ contains two induced subgraphs $H_{u}, H_{v} \in\left\{\Gamma_{7}, \Gamma_{8}, \Gamma_{9}, \Gamma_{10}\right\}$. On the other hand, since $v_{2} \rho v$ in Γ_{8}, we may take $u \sim v_{2}$ and $u \nsim v$. Thus $H_{v, u}$ can not contain two induced subgraphs isomorphic to Γ_{8} or Γ_{10} simultaneously because $u \nsim v_{2}$ in Γ_{10}. Similarly, $H_{v, u}$ can not contain two induced subgraphs isomorphic to Γ_{9} or Γ_{10} simultaneously because $v_{1} \rho v$ in Γ_{9} but $v_{1}+u$ in Γ_{10}. Furthermore, from Figure $9, H_{v, u}$ will be $S_{2}^{2}, S_{3}^{2}, S_{4}^{2}, S_{5}^{2}, S_{6}^{2}, S_{7}^{2}, S_{8}^{2}$ and S_{9}^{2} if $\left\{H_{v}, H_{u}\right\}$ equals $\left\{\Gamma_{7}, \Gamma_{7}\right\},\left\{\Gamma_{7}, \Gamma_{8}\right\},\left\{\Gamma_{7}, \Gamma_{9}\right\},\left\{\Gamma_{7}, \Gamma_{10}\right\}$, $\left\{\Gamma_{8}, \Gamma_{8}\right\},\left\{\Gamma_{8}, \Gamma_{9}\right\},\left\{\Gamma_{9}, \Gamma_{9}\right\}$ and $\left\{\Gamma_{10}, \Gamma_{10}\right\}$, respectively. However, $S_{2}^{2}, S_{3}^{2}, S_{4}^{2}, S_{5}^{2}, S_{6}^{2}, S_{7}^{2}, S_{8}^{2}$ and S_{9}^{2} are all forbidden induced subgraphs of G_{c}.

The proof is complete.

Figure 10: Forbidden subgraphs $\mu_{4} \neq-1$.

Lemma 4.11. Let $G_{c} \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ contain an induced subgraph which is isomorphic to H_{15} and $H_{v}=G_{c}\left[V\left(H_{15}\right) \cup\right.$ $\{v\}]$ for $v \in V\left(G_{c}\right) \backslash V\left(H_{15}\right)$. Then $H_{v} \cong H_{18}$.

Proof. The graph H_{v} has six vertices and $\mu_{4}\left(H_{v}\right)=-1$ by Lemma 4.2. Additionally, H_{v} will be connected, since otherwise $H_{v} \cong S_{1}^{3}$ (see Figure 10) but $\mu_{4}\left(S_{1}^{3}\right)=0$. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of $\mu_{4}\left(G_{c}\right)=-1$), we find that Γ_{11}, Γ_{12} and H_{18} are only three connected graphs on 6 vertices whose fourth largest equals -1 and contain an induced subgraph which is isomorphic to H_{15}. Thus $H_{v} \in\left\{\Gamma_{11}, \Gamma_{12}, H_{18}\right\}$. It suffices to eliminate the graphs Γ_{11}, Γ_{12}.

If $H_{v} \cong \Gamma_{11}$, then $v_{1} \rho v$ in Γ_{11} (see Figure 5). Since G_{c} is primitive, we may assume that there exists another vertex $u \sim v_{1}$ but $u \nsim v$. Let $H_{u}=G_{c}\left[V\left(H_{15}\right) \cup\{u\}\right]$. We have $H_{u} \in\left\{\Gamma_{11}, \Gamma_{12}, H_{18}\right\}$ as above. Thus $H_{v, u}=G_{c}\left[V\left(H_{15}\right) \cup\{v, u\}\right]$ consists of Γ_{11} and H_{u}. From Figure 5 and Figure 10, clearly, $H_{v, u}$ will be S_{2}^{3}, S_{3}^{3} and S_{4}^{3} if H_{u} takes Γ_{11}, Γ_{12} and H_{18}, respectively. However, S_{2}^{3}, S_{3}^{3} and S_{4}^{3} are all forbidden induced subgraphs of G_{c}.

If $H_{v} \cong \Gamma_{12}$, then $v_{5} \rho v$ in Γ_{12} (see Figure 5). Similarly as above, G_{c} has a vertex $u \sim v_{5}$ but $u \times v$ such that $H_{u}=G_{c}\left[V\left(H_{15}\right) \cup\{u\}\right] \in\left\{\Gamma_{11}, \Gamma_{12}, H_{18}\right\}$. Additionally, $\left\{H_{v}, H_{u}\right\} \neq\left\{\Gamma_{11}, \Gamma_{12}\right\}$ as above. Now $H_{v, u}=$ $G_{c}\left[V\left(H_{15}\right) \cup\{v, u\}\right]$ contain induced subgraphs which are isomorphic to H_{v} or H_{u}. Clearly, $H_{v, u}$ will be S_{5}^{3} and S_{6}^{3} if H_{u} takes $\Gamma_{12}\left(H_{v}=H_{u}=\Gamma_{12}\right.$ corresponds $S_{5}^{3} ; H_{v}, H_{u} \cong \Gamma_{12}$ corresponds $\left.S_{6}^{3}\right) ; H_{v, u}$ will be S_{7}^{3} if H_{u} takes H_{18}, respectively. However, S_{5}^{3}, S_{6}^{3} and S_{7}^{3} are all forbidden induced subgraphs.

The proof is complete.
Theorem 4.12. A graph $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ contains an induced subgraph which is isomorphic to H_{15} if and only if its canonical graph $G_{c} \cong H_{15}, H_{18}$ or H_{19}.

Proof. Assume that $G_{c} \cong H_{15}, H_{18}$ or H_{19}. Since each of H_{18} and H_{19} has an induced subgraph which is isomorphic to H_{15}, G_{c} also has the induced subgraph which is isomorphic to H_{15}, and so has G.

Conversely, assume that G contains an induced subgraph which is isomorphic to H_{15}. By Lemma 2.3, G_{c} also has an induced subgraph isomorphic to H_{15}, and $G_{c} \cong H_{15}$ if $\left|V\left(G_{c}\right)\right|=5$. If $\left|V\left(G_{c}\right)\right| \geq 6$ then $H_{v}=G_{c}\left[V\left(H_{15}\right) \cup\{v\}\right] \cong H_{18}$ for each $v \in V\left(G_{c}\right) \backslash V\left(H_{15}\right)$ by Lemma 4.11. If G_{c} has exactly 6 vertices then $G_{c} \cong H_{v} \cong H_{18}$ as desired. Otherwise, G_{c} has another vertex $u \neq v$ such that $H_{u}=G_{c}\left[V\left(H_{15}\right) \cup\{u\}\right] \cong H_{18}$ again by Lemma 4.11. Thus, $H_{v, u}=G_{c}\left[V\left(H_{15}\right) \cup\{v, u\}\right]$ contains induced H_{v}, H_{u} which are isomorphic to H_{18}. Comparing H_{18}, clearly $N_{H_{v}}(v), N_{H_{u}}(u)=\left\{v_{1}, v_{3}, v_{4}\right\},\left\{v_{1}, v_{2}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{3}\right\}$, or $\left\{v_{1}, v_{4}, v_{5}\right\}$. By the symmetry of H_{15}, we only need to distinguish the following cases.

Case 1. If $N_{H_{v}}(v)=\left\{v_{1}, v_{2}, v_{5}\right\}$ and $N_{H_{u}}(u)=\left\{v_{1}, v_{3}, v_{4}\right\}$, then

$$
G_{c}\left[V\left(H_{15}\right) \cup\{v, u\}\right] \cong\left\{\begin{array}{ll}
F_{11}, & \text { if } v \sim u \\
F_{12}, & \text { if } v \nsim u
\end{array} \text { (see } F_{11}, F_{12}\right. \text { in Figure 7) }
$$

However, F_{11} and F_{12} are forbidden subgraphs of G_{c}, a contradiction.
Case 2. If $N_{H_{v}}(v)=\left\{v_{1}, v_{2}, v_{5}\right\}=N_{H_{u}}(u)$, then $u \sim v$, since otherwise $H_{v, u}=G_{c}\left[V\left(H_{15}\right) \cup\{v, u\}\right] \cong F_{13}$ (see Figure 7), but $\mu_{4}\left(F_{13}\right) \neq-1$. Thus $u \rho v$ in $H_{v, u}$, and so $H_{v, u}$ is a proper subgraph of G_{c}. There exists $w \in V\left(G_{c}\right)$ such that $w \sim v$ but $w \nsim u$. Again by Lemma 4.11, $H_{w}=G_{c}\left[V\left(H_{15}\right) \cup\{w\}\right] \cong H_{18}$. Similarly, $N_{H_{w}}(w)=\left\{v_{1}, v_{3}, v_{4}\right\}$, $\left\{v_{1}, v_{2}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{3}\right\}$, or $\left\{v_{1}, v_{4}, v_{5}\right\}$. Now we consider $H_{w, v}=G_{c}\left[V\left(H_{15}\right) \cup\{w, v\}\right]$. Regarding $w=u$ we know that $N_{H_{w}}(w)=\left\{v_{1}, v_{3}, v_{4}\right\}$ should be eliminated because of the reason in Case 1. If $N_{H_{w}}(w)=\left\{v_{1}, v_{2}, v_{3}\right\}$ or $\left\{v_{1}, v_{4}, v_{5}\right\}$ then $H_{v, w} \cong F_{14}$ (see Figure 7), but $\mu_{4}\left(F_{14}\right) \neq-1$. At last, $N_{H_{w}}(w)=\left\{v_{1}, v_{2}, v_{5}\right\}=N_{H_{v}}(v)=N_{H_{u}}(u)$. It means $w \sim u$ by arguments above. It contradicts the selection of $w \nsim u$.

Case 3. If $N_{H_{v}}(v)=\left\{v_{1}, v_{2}, v_{5}\right\}$ and $N_{H_{u}}(u)=\left\{v_{1}, v_{2}, v_{3}\right\}$, then

$$
H_{v, u}=G_{c}\left[V\left(H_{15}\right) \cup\{v, u\}\right] \cong\left\{\begin{array}{ll}
F_{14}, & \text { if } v \sim u \\
H_{19}, & \text { if } v \times u
\end{array}\right. \text { (see Figure 3) }
$$

Since F_{14} is a forbidden subgraph, we have finished the argument if $H_{v, u} \cong G_{c}$. Otherwise, $H_{v, u}$ is a proper subgraph of G_{c}. There exists a vertex $w \neq v, u$ such that $H_{w}=G_{c}\left[V\left(H_{15}\right) \cup\{w\}\right] \cong H_{18}$ by Lemma 4.11. Similarly, $N_{H_{w}}(w)=\left\{v_{1}, v_{2}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{3}, v_{4}\right\}$ or $\left\{v_{1}, v_{4}, v_{5}\right\}$. However, the case of $N_{H_{v}}(v)=$
$\left\{v_{1}, v_{2}, v_{5}\right\}=N_{H_{w v}}(w)$ (similarly, $N_{H_{u}}(u)=\left\{v_{1}, v_{2}, v_{3}\right\}=N_{H_{w}}(w)$) should be eliminated as in Case 2; the case of $N_{H_{v}}(v)=\left\{v_{1}, v_{2}, v_{5}\right\}$ and $N_{H_{w}}(w)=\left\{v_{1}, v_{3}, v_{4}\right\}$ (similarly, $N_{H_{u}}(u)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left.N_{H_{w}}(w)=\left\{v_{1}, v_{4}, v_{5}\right\}\right)$ should be eliminated as in Case 1. It is a contradiction.

Case 4. $N_{H_{v}}(v)=\left\{v_{1}, v_{2}, v_{5}\right\}$ and $N_{H_{u}}(u)=\left\{v_{1}, v_{4}, v_{5}\right\}$. The two graphs corresponding to $H_{v, u}=G_{c}\left[V\left(H_{15}\right) \cup\right.$ $\{v, u\}]$ will be isomorphic in the Cases of 3 and 4 . Thus the Case 3 is equivalent to the Case 4 .

The proof is complete.

Figure 11: Forbidden subgraphs $\mu_{4} \neq-1$.

Lemma 4.13. Let $G_{c} \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ contain an induced subgraph which is isomorphic to H_{16} and $H_{v}=G_{c}\left[V\left(H_{16}\right) \cup\right.$ $\{v\}]$ for $v \in V\left(G_{c}\right) \backslash V\left(H_{16}\right)$. Then $H_{v} \cong H_{22}$.

Proof. Obviously, the graph H_{v} has six vertices and $\mu_{4}\left(H_{v}\right)=-1$ by Lemma 4.2. Additionally, H_{v} will be connected, since otherwise $H_{v} \cong S_{1}^{4}$ (see Figure 11) but $\mu_{4}\left(S_{1}^{4}\right)=0$. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of $\mu_{4}\left(G_{c}\right)=-1$), we find that $\Gamma_{13}, \Gamma_{14}, \Gamma_{15}$ and H_{22} are only four connected graphs on 6 vertices whose fourth largest eigenvalue equal -1 and each of them contains an induced subgraph isomorphic to H_{16}. Thus we have $H_{v} \in\left\{\Gamma_{13}, \Gamma_{14}, \Gamma_{15}, H_{22}\right\}$. It suffices to eliminate the graphs: $\Gamma_{13}-\Gamma_{15}$.

If $H_{v} \cong \Gamma_{13}$, then $v_{4} \rho v$ in Γ_{13} (see Figure 5). Thus Γ_{13} is a proper subgraph of G_{c}, and we may assume that there exists $u \sim v_{4}$ but $u \times v$ such that $H_{u}=G_{c}\left[V\left(H_{16}\right) \cup\{u\}\right] \in\left\{\Gamma_{13}, \Gamma_{14}, \Gamma_{15}, H_{22}\right\}$ as above. Now $H_{v, u}=G_{c}\left[V\left(H_{16}\right) \cup\{v, u\}\right]$ consists of induced subgraphs isomorphic to Γ_{13} and H_{u}. From Figure 11, obviously, $H_{v, u}$ will be S_{2}^{4} or S_{3}^{4} if H_{u} takes Γ_{13} (where $H_{v}=H_{u}=\Gamma_{13}$ corresponds $S_{2}^{4} ; H_{v}, H_{u} \cong \Gamma_{13}$ corresponds S_{3}^{4}), and $H_{v, u}$ will be S_{4}^{4}, S_{5}^{4} and S_{6}^{4} if H_{u} takes Γ_{14}, Γ_{15} and H_{22}, respectively. However, $S_{2}^{4}, S_{3}^{4}, S_{4}^{4}, S_{5}^{4}$ and S_{6}^{4} are all forbidden induced subgraphs of G_{c}.

If $H_{v} \cong \Gamma_{14}$, then $v_{3} \rho v$ in Γ_{14} (see Figure 5). Similarly as above, G_{c} has another vertex $u \sim v_{3}$ but $u \nsim v$ such that $H_{u}=G_{c}\left[V\left(H_{16}\right) \cup\{u\}\right] \in\left\{\Gamma_{13}, \Gamma_{14}, \Gamma_{15}, H_{22}\right\}$. Additionally, $\left\{H_{v}, H_{u}\right\} \neq\left\{\Gamma_{13}, \Gamma_{14}\right\}$ as above. Now $H_{v, u}=G_{c}\left[V\left(H_{16}\right) \cup\{v, u\}\right]$ contains induced subgraphs isomorphic to Γ_{14} and H_{u}. Since $u \times v_{3}$ in Γ_{15}, $H_{u} \not \equiv \Gamma_{15}$. Clearly, $H_{v, u}$ will be S_{7}^{4} and S_{8}^{4} if H_{u} takes Γ_{14} and H_{22}, respectively. However, S_{7}^{4} and S_{8}^{4} are all forbidden induced subgraphs of G_{c}.

If $H_{v} \cong \Gamma_{15}$, then $v_{5} \rho v$ in Γ_{15} (see Figure 5). Similarly, G_{c} has another vertex $u \sim v_{5}$ but $u \nsim v$ such that $H_{u}=G_{c}\left[V\left(H_{16}\right) \cup\{u\}\right] \in\left\{\Gamma_{15}, H_{22}\right\}\left(\Gamma_{13}, \Gamma_{14}\right.$ will be abandoned as above $)$. Thus $H_{v, u}=G_{c}\left[V\left(H_{16}\right) \cup\{v, u\}\right]$ will be S_{9}^{4} and S_{10}^{4} if H_{u} takes H_{15} and H_{22}, respectively. However, S_{9}^{4} and S_{10}^{4} are all forbidden induced subgraphs of G_{c}.

The proof is complete.
Theorem 4.14. A graph $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ contains an induced subgraph which is isomorphic to H_{16} if and only if its canonical graph $G_{c} \cong H_{16}$ or H_{22}.

Proof. Assume that $G_{c} \cong H_{16}$ or H_{22}. Since H_{22} has an induced subgraph isomorphic to H_{16}, G_{c} has the induced subgraph isomorphic to H_{16}, and so has G.

Conversely, assume that G contains an induced subgraph which is isomorphic to H_{16}. By Lemma 2.3, G_{c} has induced subgraph isomorphic to H_{16}, and $G_{c} \cong H_{16}$ if $\left|V\left(G_{c}\right)\right|=5$. If $\left|V\left(G_{c}\right)\right| \geq 6$ then $H_{v}=$ $G_{c}\left[V\left(H_{16}\right) \cup\{v\}\right] \cong H_{22}$ for each $v \in V\left(G_{c}\right) \backslash V\left(H_{16}\right)$ by Lemma 4.13. If G_{c} has exactly 6 vertices then $G_{c} \cong H_{v} \cong H_{22}$ as desired. Otherwise, G_{c} has another vertex $u \neq v$ such that $H_{u}=G_{c}\left[V\left(H_{16}\right) \cup\{u\}\right] \cong H_{22}$ again by Lemma 4.11. Thus $H_{v, u}=G_{c}\left[V\left(H_{16}\right) \cup\{v, u\}\right]$ contains induced subgraphs H_{v} and H_{u}. From Figure 3, we see that $N_{H_{v}}(v)=V\left(H_{16}\right)=N_{H_{u}}(u)$. If $v \nsim u$ then $H_{v, u} \cong F_{15}$ (see Figure 7), but $\mu_{4}\left(F_{15}\right) \neq-1$. Thus $v \sim u$ and $v \rho u$ in $H_{v, u}$. Since G_{c} is a primitive, there exists another vertex $w \neq u, v$. Again, $H_{w}=G_{c}\left[V\left(H_{16}\right) \cup\{w\}\right] \cong H_{22}$. Now $N_{H_{w}}(w)=V\left(H_{16}\right)=N_{H_{v}}(v)=N_{H_{u}}(u)$. We have $w \sim u$ by arguments above, however $w \times u$ by our choice. It implies that such u and w do not exist.

The proof is complete.

Figure 12: Forbidden subgraphs $\mu_{4} \neq-1$.

Theorem 4.15. A graph $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$ contains an induced subgraph which is isomorphic to H_{17} if and only if its canonical graph $G_{c} \cong H_{17}$.

Proof. The sufficiency is obvious. For the necessity, let G contain an induced subgraph isomorphic to H_{17}. By Lemma 2.3, G_{c} has an induced subgraph isomorphic to H_{17}, and $G_{c} \cong H_{17}$ if $\left|V\left(G_{c}\right)\right|=5$. If $\left|V\left(G_{c}\right)\right| \geq 6$, then $H_{v}=G_{c}\left[V\left(H_{17}\right) \cup\{v\}\right]$ for each $v \in V\left(G_{c}\right) \backslash V\left(H_{17}\right)$, and thus $\mu_{4}\left(H_{v}\right)=-1$ by Lemma 4.2. Additionally, H_{v} will be connected, since otherwise $H_{v} \cong S_{1}^{5}$ (see Figure 12) but $\mu_{4}\left(S_{1}^{5}\right)=0$. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of $\mu_{4}\left(G_{c}\right)=-1$), we find that Γ_{16}, shown in Figure 5, is the only connected graph of 6 vertices whose fourth largest eigenvalue equals -1 and contains an induced subgraphs isomorphic to H_{17}. Thus we have $H_{v} \cong \Gamma_{16}$. Obviously, Γ_{16} is imprimitive (in fact, $v_{1} \rho v$ in Γ_{16} (see Figure 5)). However, since G_{c} is primitive, H_{v} should be a proper subgraph of G_{c}. There exists $u \in V\left(G_{c}\right) \backslash V\left(H_{v}\right)$ such that $H_{u}=G_{c}\left[V\left(H_{17}\right) \cup\{u\}\right] \cong \Gamma_{16}$ by the arguments above. Now the subgraph $H_{v, u}=G_{c}\left[V\left(H_{17}\right) \cup\{v, u\}\right]$ contains two induced subgraphs H_{u}, H_{v} which are all isomorphic to Γ_{16}. Furthermore, $H_{v, u}$ will be S_{2}^{5} or S_{3}^{5} if H_{u} takes Γ_{16} (in fact, $H_{v}=H_{u} \cong \Gamma_{16}$ corresponds $S_{2}^{5} ; H_{v}, H_{u} \cong \Gamma_{16}$ corresponds S_{3}^{5}). However, S_{2}^{5} and S_{3}^{5} are the forbidden induced subgraphs of G_{c}.

The proof is complete.
Finally, we obtain our main result below.
Theorem 4.16. A graph $G \in \mathcal{G}_{n}\left([-1]^{n-5}\right)$ if and only if its canonical graph G_{c} is isomorphic to H_{i}, for $1 \geq i \geq 23$ (see $H_{1}-H_{23}$ in Figure 2 and Figure 3).

Proof. By definition we know that $\mathcal{G}_{n}\left([-1]^{n-5}\right)=\mathcal{G}_{n}^{1}\left([-1]^{n-5}\right) \cup \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$.
The Theorem 4.1 completely characterize $\mathcal{G}_{n}^{1}\left([-1]^{n-5}\right)$, i.e., $G \in \mathcal{G}_{n}^{1}\left([-1]^{n-5}\right)$ if and only if its canonical graph G_{c} is isomorphic to one of $H_{1}-H_{11}$.

By Lemma 4.4 we know that $H_{12}-H_{17}$ are exactly six minimal graphs in $\mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$, i.e, G must contain at least one induced subgraph which is isomorphic to one of $H_{12}-H_{17}$ if $G \in \mathcal{G}_{n}^{2}\left([-1]^{n-5}\right)$. Thus, by Theorems 4.7-4.15, we know that G contains an induced subgraph isomorphic to one of $H_{12}-H_{17}$ if and only if its canonical graph is isomorphic to one of $H_{12}-H_{23}$.

The proof is complete.
Acknowledgement We would like to thank the referees and the editors for very careful reading and for helpful comments, which helped us to improve the manuscript.

References

[1] B. Borovićanin, I. Gutman, Nullity of Graphs, in D. Cvetković, I. Gutman (Eds.), Applications of Graph Spectra, Mathematical Institute, Belgrade, 2009, pp. 107-122.
[2] W. G. Bridges, R. A. Mena, Multiplicative cones - a family of three eigenvalue graphs, Aequ. Math. 22 (1981) 208-214.
[3] D. de Caen, E. R. van Dam, E. Spence, A nonregular analogue of conference graphs, J. Combin. Theory Ser. A 88 (1999) 194-204.
[4] M. Cámara, W. H. Haemers, Spectral characterizations of almost complete graphs, Discrete Appl. Math. 176 (2014) 19-23.
[5] G. J. Chang, L. H. Huang, H. G. Yeh, A characterization of graphs with rank 4, Linear Algebra Appl. 434 (2011) 1793-1798.
[6] G. J. Chang, L. H. Huang, H. G. Yeh, A characterization of graphs with rank 5, Linear Algebra Appl. 436 (2012) 4241-4250.
[7] X. M. Cheng, A. L. Gavrilyuk, G. R. W. Greaves, J.H. Koolen, Biregular graphs with three eigenvalues, Europ. J. Combin. 56 (2016) 57-80.
[8] B. Cheng, B. Liu, On the nullity of graphs, Electron. J. Linear Algebra 16 (2007) 60-67.
[9] S. M. Cioabă, W. H. Haemers, J. R. Vermette, W. Wong, The graphs with all but two eigenvalues equal to ± 1, J. Algebraic Combin. 41(3) (2015) 887-897.
[10] S. M. Cioabă, W. H. Haemers, J. R. Vermette, The graphs with all but two eigenvalues equal to -2 or 0, Des. Codes Cryptogr. 84(1-2) (2017) 153-163.
[11] D. Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, Cambridge University Press, Cambridge, 2010.
[12] E. R. van Dam, Regular graphs with four eigenvalues, Linear Algebra Appl. 226-228 (1995) 139-163.
[13] E. R. van Dam, Nonregular graphs with three eigenvalues, J. Combin. Theory Ser. B 73 (1998) 101-118.
[14] E. R. van Dam, J.H. Koolen, Z.J. Xia, Graphs with many valencies and few eigenvalues, Electron. J. Linear Algebra 28 (2015) 12-24.
[15] E. R. van Dam, E. Spence, Small regular graphs with four eigenvalues, Discrete Math. 189 (1998) 233-257.
[16] E. R. van Dam, E. Spence, Combinatorial designs with two singular values I: uniform multiplicative designs, J. Comb. Theory Ser. A 107 (2004) 127-142.
[17] E. R. van Dam, E. Spence, Combinatorial designs with two singular values II. Partial geometric designs, Linear Algebra Appl. 396 (2005) 303-316.
[18] M. Doob, Graphs with a small number of distinct eigenvalues, Ann. New York Acad. Sci. 175 (1970) 104-110.
[19] X. Y. Huang, Q. X. Huang, On regular graphs with four distinct eigenvalues, Linear Algebra Appl. 512 (2017) 219-233.
[20] L.S. de Lima, A. Mohammadian, C.S. Oliveira, The non-bipartite graphs with all but two eigenvalues in [$-1,1$], Linear Multilinear Algebra 65(3) (2017) 526-544.
[21] M. Muzychuk, M. Klin, On graphs with three eigenvalues, Discrete Math. 189 (1998) 191-207.
[22] M. R. Oboudi, On the third largest eigenvalue of graphs, Linear Algebra Appl. 503 (2016) 164-179.
[23] M. Petrović, On graphs with exactly one eigenvalue less than -1, J. Combin. Theory Ser. B 52 (1991) 102-112.
[24] P. Rowlinson, On graphs with just three distinct eigenvalues, Linear Algebra Appl. 507 (2016) 462-473.
[25] I. Sciriha, On the construction of graphs of nullity one, Discrete Math. 181(1-3) (1998) 193-211.
[26] I. Sciriha, A characterization of singular graphs, Electron. J. Linear Algebra 16 (2007) 451-462.
[27] S. S. Shrikhande, Bhagwandas, Duals of incomplete block designs, J. Indian. Stat. Assoc. 3 (1965) 30-37.
[28] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New York, 1986.
[29] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications 18 (1967) 145-174.
[30] P. Erdös, S. Shelah, Separability properties of almost-disjoint families of sets, Israel Journal of Mathematics 12 (1972) $207-214$.

[^0]: 2010 Mathematics Subject Classification. 05C50
 Keywords. Canonical graph; Primitive graph; Eigenvalue; Multiplicity
 Received: 05 February 2018; Revised: 24 December 2018; Accepted: 31 January 2019
 Communicated by Francesco Belardo
 Research supported by the National Natural Science Foundation of China (Grant nos. 11971274, 11671344, 11531011)
 Email address: huangqx@xju.edu.cn (Qiongxiang Huang)

