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The Characterization of Graphs with Eigenvalue −1
of Multiplicity n − 4 or n − 5
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Abstract. Petrović in [M. Petrović, On graphs with exactly one eigenvalue less than −1, J. Combin. Theory
Ser. B 52 (1991) 102–112] determined all connected graphs with exactly one eigenvalue less than −1 and all
minimal graphs with exactly two eigenvalues less than −1. By using these minimal graphs, in this paper,
we determine all connected graphs having −1 as an eigenvalue with multiplicity n − 4 or n − 5.

1. Introduction

Throughout this paper all graphs are finite, simple and undirected. Let G be a graph. For v ∈ V(G) and
X ⊂ V(G), let NG(v) = {u ∈ V(G) | u is adjacent to v} be the neighborhood of v, NX(v) = NG(v) ∩ X be the set
of neighbors of v in X and G[X] be the subgraph induced by X. Conventionally, we denote the complete
graph, cycle, path and complete bipartite graph by Kn, Cn, Pn and Kn1,n2 , respectively.

Let G be a graph of order n with adjacency matrix A = (ai, j)n×n, where ai, j = 1 if the vertex i is adjacent
to j, written as i ∼ j, and ai, j = 0 otherwise. Clearly, A is real and symmetric, and so all its eigenvalues are
real, which are labelled in non-increasing order as λ1 ≥ λ2 ≥ · · · ≥ λn. These eigenvalues are also called the
eigenvalues of G. The multiplicity of λi is denoted by mG(λi) (or simply m(λi)), and the nullity of G is defined
to be the multiplicity of 0 as an eigenvalue of G, i.e., η(G) = mG(0). Denoted by p−

−1(G) and p+
−1(G) the number

of eigenvalues of G which are smaller and greater than −1, respectively. Thus n = p−
−1(G) + mG(−1) + p+

−1(G).
It means that G has at most six distinct eigenvalues if mG(−1) ≥ n − 5. The join of two graphs G and H ,
denoted by G∇H, is a graph obtained from G and H by joining each vertex of G to all vertices of H.

Connected graphs with few eigenvalues have aroused a lot of interests in the past several decades. One
of the reason is that such graphs in general have pretty combinatorial properties and a rich structure [15].
This problem was perhaps first raised by Doob [18] in 1970. Over the past two decades, the investigations
about this problem led to many results, we refer the reader to [2, 3, 7, 9, 10, 12–21, 24, 27] for details.

The graphs with n−5 ≤ η(G) = mG(0) ≤ n−2 are explicitly characterized in [1, 5, 6, 8, 25, 26]. The graphs
with n − 3 ≤ mG(−1) ≤ n − 1 are also characterized in [4, 22]. In this paper, we also focus on the eigenvalue
−1. Here, it is necessary to summarize the known results related to the eigenvalues −1.

Given an integer i ≥ 0, letGn([−1]i) denote the set of all connected graphs on n vertices having eigenvalue
−1 of multiplicity i. For i = n−1, we claim that G ∈ Gn([−1]n−1) if and only if G � Kn. Clearly, Kn ∈ Gn([−1]n−1).
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If G ∈ Gn([−1]n−1) and G � Kn, then P3 will be an induced subgraph of G, and so λ3(P3) = −
√

2 > λn(G) = −1
by Interlacing Theorem, a contradiction. For i = n − 2, according to the result of Cámara and Haemers
[4], there are no graphs in Gn([−1]n−2). For i = n − 3, by using a result of Oboudi [22] concerning the
distribution of the third largest eigenvalue of graphs, we can easily deduce that G ∈ Gn([−1]n−3) if and only
if G � (Ka ∪ Kb)∇Kn−a−b (see Lemma 2.2 below). In this paper, we continue to characterize the graphs in
Gn([−1]i) for large i.

Petrović in [23] characterized all connected graphs with exactly one eigenvalue less than −1, and also
determined all minimal graphs with exactly two eigenvalues less than−1. By using these minimal graphs, in
this paper, we explicitly characterize all graphs in Gn([−1]n−4) and Gn([−1]n−5). Concretely, for a connected
graph G, we prove that G ∈ Gn([−1]n−4) if and only if its canonical graph (defined in next section) is
isomorphic to one of K1,3, P4, C4, P5 or C6; G ∈ Gn([−1]n−5) if and only if its canonical graph is isomorphic
to one of H1–H23 which are shown in Figure 2 and Figure 3.

2. Preliminaries

In this section, we will cite some lemmas and introduce some notions and symbols for latter use.

Lemma 2.1 (Interlacing Theorem). Let G be a graph with n vertices and eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and
H an induced subgraph of G with m vertices and eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µm. Then λi ≥ µi ≥ λn−m+i where
i = 1, 2, . . . ,m.

Oboudi in [22] characterized the graphs with λ3 < 0 where he gives a distribution of λ3 in the following
result.

Lemma 2.2 (Theorem 4.9, [22]). Let G be a graph. Then λ3 ∈ {−
√

2,−1, 1−
√

5
2 } ∪ (−0.59,−0.5) ∪ (−0.496,∞).

Moreover, the following holds:

(1) λ3 = −
√

2 if and only if G � P3.
(2) λ3 = −1 if and only if G � Kn or G � Ks ∪ Kn−s or G � (Ka ∪ Kb)∇Kn−a−b, where n, s, a, b > 0 are all integers

and n > a + b.

Let G be a graph of order n. For any u, v ∈ V(G), we say that they have the relation ρ, denoted by
uρv, if u = v, or u ∼ v and NG(u)\v = NG(v)\u. Clearly, ρ forms an equivalence relation on V(G). Suppose
that V1,V2, . . . ,Vk are all distinct ρ-equivalence classes of V(G), and v1, v2, . . . , vk are the corresponding
representatives, i.e. vi ∈ Vi = {v ∈ V(G) | vρvi}. The canonical graph Gc of G is defined as the graph with
vertex set {V1,V2, . . . ,Vk}, and with an edge connecting Vi and V j if vi ∼ v j in G. Obviously, Gc � G[{v1, v2, . . . ,
vk}]. A graph H is said to be primitive if NH(v)\u , NH(u)\v whenever u ∼ v in H, and imprimitive otherwise.
Obviously, the canonical graph Gc itself is primitive. By simple observation, we have

Lemma 2.3. Let H be an induced subgraph of G. Then H is isomorphic to some induced subgraph of Gc if H is
primitive. Particularly, H � Gc if they have the same number of vertices.

Proof. Suppose V(H) = {u1,u2, . . . ,uh} ⊆ V(G). We claim that any two adjacent vertices of H cannot have
the relation ρ in G. Otherwise, assume that ui and u j are two adjacent vertices which are contained in
the same ρ-equivalence class. Then ui and u j have the same neighbors in V(G)\{ui,u j}, and so the same
neighbors in V(H)\{ui,u j}. This implies that H is imprimitive, a contradiction. Thus there are at least h
different ρ-equivalence classes, and H is isomorphic to some induced subgraph of Gc. This proves the first
part of the lemma, and the second part follows immediately.

For a graph H with vertex set V(H) = {v1, v2, . . . , vk} and complete graphs Kni (i = 1, 2, . . . , k), we can
construct a graph Γ from H and Kni such that each vi is replaced with Kni , and the vertices of Kni join that of
Kn j if viv j is an edge of H. As usual, we write Γ = H[Kn1 ,Kn2 , . . . ,Knk ]. Such a graph is called the generalized
lexicographic product of H (by Kn1 ,Kn2 , . . . ,Knk ). Obviously, each graph can be viewed as a generalized
lexicographic product of its canonical graph, i.e., G = Gc[Kn1 ,Kn2 , . . . ,Knk ]. However the canonical graph of
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Γ = H[Kn1 ,Kn2 , . . . ,Knk ] is not necessary to be H. Clearly, the canonical graph of Γ is H if H is primitive. It
implies that, to characterize a class of graphs, it suffices to characterize all canonical graphs in this class.
The following result is useful.

Lemma 2.4 (Theorem 5, [23]). If Gc is a canonical graph of a graph G, then p−
−1(G) = p−

−1(Gc) and p+
−1(G) = p+

−1(Gc).

Corollary 2.5. Let G = Gc[Kn1 ,Kn2 , . . . ,Knk ], n1 + n2 + · · · + nk = n and 1 ≤ i ≤ k. Then G ∈ Gn([−1]n−i) if and
only if Gc ∈ Gk([−1]k−i).

Proof. By Lemma 2.4,
mG(−1) = n − p−

−1(G) − p+
−1(G)

= n − p−
−1(Gc) − p+

−1(Gc)
= n − k + mGc (−1)

Thus mG(−1) = n − i if and only if mGc (−1) = k − i.

Corollary 2.6. A graph G ∈ Gn([−1]n−3) if and only if G � (Ka ∪ Kb)∇Kn−a−b, where n, a, b > 0 are all integers and
n > a + b.

Proof. Let G ∈ Gn([−1]n−3). If n = 3, we have G � P3 = (K1 ∪ K1)∇K1. Now suppose n ≥ 4. By Lemma 2.2,
we have λ3(G) ≥ −1. Also, we claim that λn(G) < −1, since otherwise G cannot contain P3 as its induced
subgraph by Interlacing Theorem, i.e., G must be isomorphic to Kn, a contradiction. Then we must have
λ3(G) = −1 due to mG(−1) = n − 3, and so G � (Ka ∪ Kb)∇Kn−a−b again by Lemma 2.2.

Conversely, suppose G � (Ka ∪ Kb)∇Kn−a−b. It is clear that P3 (∈ G3([−1]0)) is just the canonical graph of
G. Then, by Corollary 2.5, we may conclude that G ∈ Gn([−1]n−3).

�� �� �� �� �� �� �� ���� ��r p p p r r p p p r r p p p r r r r r r r rr
�� ��r p p p r
�� �� �� ��r p p p r r p p p r�� ��r p p p r

G1

�� �� �� ��r p p p r r r r
G2

�� �� �� ��r r r r p p p r�� ��r p p p r
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G4

�� ��r r r r r�� ��r r r r r
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�� �� �� ��r r r rr r r �� ��r r r r
G5

Figure 1: On graphs with exactly one eigenvalue less than −1.

Let G1–G7 be the graphs shown in Figure 1, in which ellipses denotes the independent sets; such two
ellipses joining with exactly one full line denote a complete bipartite graph; such two ellipses joining with
a sequence of k (k ≥ 1) dotted parallel lines denote a complete bipartite graph on k + k = 2k vertices with
k edges of a perfect matching excluded; such two ellipses joining with a sequence of k (k ≥ 1) full parallel
lines denote a bipartite graph on k + k = 2k vertices with k edges of a perfect matching.

Let G be a connected graph. By argument above, if p−
−1(G) = 0, then G does not contain P3 as an

induced graph and so G = Kn, which means p−
−1(G) = 0 if and only if G = Kn. The following elegant result

characterizes the graph G with p−
−1(G) = 1.

Lemma 2.7 (Theorem 7, [23]). A connected graph G , Kn has exactly one eigenvalue less than −1 if and only if its
canonical graph Gc is an induced subgraph of any of the graphs G1 − G7 in Figure 1, so Gc is an bipartite graph.

Lemma 2.8. Let G ∈ Gn([−1]i) have n vertices. If 0 ≤ i ≤ n − 4 then λ3(G) > −1 > λn(G).
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Proof. First we prove λ3(G) > −1. On the contrary, let λ3(G) ≤ −1. By Lemma 2.2, we get that

G � P3, Kn or (Ka ∪ Kb)∇Kn−a−b.

However, mP3 (−1) = 0 > 3 − 4, mKn (−1) = n − 1 > n − 4, and m(Ka∪Kb)∇Kn−a−b (−1) = n − 3 > n − 4, which are all
contrary to i ≤ n − 4.

Next we show −1 > λn(G). Obviously, G � Kn since λ3(G) > −1. Thus G has an induced path P3, which
implies that −

√
2 = λ3(P3) ≥ λn(G) by Lemma 2.1. Our result follows.

3. The characterization of Gn([−1]n−4)

Lemma 2.2 implies that G ∈ Gn([−1]n−3) if and only if G � (Ka ∪Kb)∇Kn−a−b if and only if Gc � P3. In this
section, we will explicitly characterize the graphs in Gn([−1]n−4). It suffices to give all canonical graphs of
Gn([−1]n−4).

Theorem 3.1. A graph G ∈ Gn([−1]n−4) if and only if its canonical graph Gc is isomorphic to one of K1,3, P4, C4, P5
or C6.

Proof. By Lemma 2.8,λ3 > −1 > λn. Thus the spectrum of G can be written as Spec(G) = [λ1
1, λ

1
2, λ

1
3,−1n−4, λ1

n],
where λ1 > λ2 ≥ λ3 > −1, λ4 = · · · = λn−1 = −1 and −1 > λn. In accordance with ρ-partition, we have
G = Gc[Kn1 ,Kn2 , . . . ,Knk ]. From Lemma 2.4, Gc also has exactly three eigenvalues more than −1 and
one eigenvalue less than −1. From Lemma 2.7, Gc is a bipartite graph and then the spectrum of Gc is
symmetric about 0. Thus we may assume that Spec(Gc) = [µ1

1, µ
1
2, µ

1
3, (−1)k−4, µ1

k], where µ1 ≥ µ2 ≥ µ3 > −1,
µ4 = · · · = µk−1 = −1 and −1 > µk = −µ1. Clearly, k ≥ 4. Additionally, if k ≥ 8, then µ4 = −µk−3 = 1, a
contradiction. Next we consider k = 4, 5, 6, 7.

If k = 4, then 1 > µ2 = −µ3 > −1. Since K1,3, P4 and C4 are the only three connected bipartite
graphs of 4 vertices, their spectra Spec(K1,3) = [

√
3, 02,−

√
3], Spec(P4) = [1.618, 0.618,−0.618,−1.618] and

Spec(C4) = [2, 0, 0,−2] meet with the requirement. Thus Gc � K1,3, P4 or C4.
If k = 5, then µ2 = −µ4 = 1 and µ3 = 0. We find that P5 is the only bipartite graph of 5 vertices whose

spectrum Spec(P5) = [1.73, 1, 0,−1,−1.73] meets with the requirement. Thus Gc � P5.
If k = 6, then µ2 = −µ5 = 1 and µ3 = −µ4 = 1. Similarly, we find that C6, with Spec(C6) = [21, 12,−12,−21],

is the only bipartite graph of 6 vertices as our required, and so Gc � C6.
If k = 7, then µ4 = 0, which contradicts µ4 = −1.
Conversely, each canonical graph Gc, which is isomorphic to one of K1,3, P4, C4, P5, C6, has spectrum

of the form Spec(Gc) = [λ1
1, λ

1
2, λ

1
3, (−1)k−4, λk], where k = 4, 5 or 6, λ1 ≥ λ2 ≥ λ3 > −1, and −1 > λk. Hence

Gc ∈ Gk([−1]k−4). It follows that G ∈ Gn([−1]n−4) by Corollary 2.5.
The proof is complete.

By Theorem 3.1 and Corollary 2.5, we have the following result immediately.

Corollary 3.2. A graph G ∈ Gn([−1]n−4) if and only if G = H[Kn1 ,Kn2 , . . . ,Knk ] where H is isomorphic to one of
K1,3, P4, C4, P5, C6 and n1 + n2 + · · · + nk = n ≥ 4.

It is worth mentioning that Corollary 3.2 gives some classes of graphs with a few eigenvalues. In fact, for G ∈
Gn([−1]n−4), we see that G has at most five distinct eigenvalues and d(G) ≤ 4. Especially, K1,3[Kn1 ,Kn2 ,Kn3 ,Kn4 ]
and C4[Kn1 ,Kn2 , Kn3 ,Kn4 ] are two classes of graphs. Each of them has at most five distinct eigenvalues and
d(G) = 2.

4. The characterization of Gn([−1]n−5)

Recall thatGn([−1]n−5) is the set of all connected graphs on n vertices in which each graph has eigenvalue
−1 of multiplicity n − 5, where n ≥ 5. Clearly, each G ∈ Gn([−1]n−5) has at most six distinct eigenvalues.
Denote by G1

n([−1]n−5) the connected graphs with spectra {λ1
1, λ

1
2, λ

1
3, λ

1
4,−1n−5, λ1

n} where λ1 ≥ λ2 ≥ λ3 ≥
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λ4 > −1 > λn. Similarly, denote byG2
n([−1]n−5) the connected graphs with spectra {λ1

1, λ
1
2, λ

1
3,−1n−5, λ1

n−1, λ
1
n},

where λ1 ≥ λ2 ≥ λ3 > −1 > λn−1 ≥ λn. By Lemma 2.8, Gn([−1]n−5) is the disjoint union of G1
n([−1]n−5) and

G
2
n([−1]n−5).

Firstly, we characterize the graphs in G1
n([−1]n−5). By using the software SageMath 8.0, we can find all

bipartite graphs on 5–8 vertices such that they have four eigenvalues greater than −1 and one eigenvalue
smaller than −1, then they are H1–H11 (see Figure 2), whose spectra are listed in Table 1. From which it is
clear that H1–H11 ∈ G

1
n([−1]n−5) are all primitive. We will show that they are exactly all canonical graphs of

G
1
n([−1]n−5).

Graph Spectrum Graph Spectrum

H1 [21, 03,−21] H7 [1.931, 11, 0.521,−0.521,−11,−1.931]
H2 [1.851, 0.771, 01,−0.771,−1.851] H8 [2.411, 11, 0.411,−0.411,−11,−2.411]
H3 [2.141, 0.661, 01,−0.661,−2.141] H9 [21, 12, 0,−12,−21]
H4 [2.451, 03,−2.451] H10 [2.651, 12, 01,−12,−2.651]
H5 [2.241, 11, 02,−11,−2.24] H11 [31, 13,−13,−31]
H6 [21, 11, 02,−11,−21]

Table 1: The spectra of H1–H11.
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Figure 2: The canonical graphs of G1
n([−1]n−5).

Theorem 4.1. A graph G ∈ G1
n([−1]n−5) if and only if its canonical graph Gc is isomorphic to one of H1,H2, . . . ,H11.

Proof. Let G ∈ G1
n([−1]n−5). Then G = Gc[Kn1 ,Kn2 , . . . ,Knk ] and Gc ∈ Gk([−1]k−5) by Corollary 2.5 and so k ≥ 5.

From Lemma 2.4, the canonical graph Gc also has four eigenvalues greater than −1 and one eigenvalue
less than −1. Hence the spectrum of Gc can be written by Spec(Gc) = [µ1

1, µ
1
2, µ

1
3, µ

1
4, (−1)k−5, µ1

k], where
µ1 ≥ µ2 ≥ µ3 ≥ µ4 > −1, µ5 = · · · = µk−1 = −1 and −1 > µk = −µ1. From Lemma 2.7, Gc is a bipartite graph,
and then the spectrum of Gc is symmetric about 0. Thus, if k ≥ 10, then µ5 = −µk−4 = 1, a contradiction.
Next we consider k = 5, 6, 7, 8, 9.

If k = 5, then 1 > µ2 = −µ4 > −1 and µ3 = 0. From Table 1 it is clear that H1,H2,H3 and H4 are the only
four bipartite graphs on 5 vertices with this property. Hence Gc � H1, H2, H3, H4.

If k = 6, then µ2 = −µ5 = 1 and 1 > −µ3 = µ4 > −1. From Table 1 we find that H5,H6,H7 and H8 are the
only four bipartite graphs on 6 vertices satisfying this property. Hence Gc � H5, H6, H7 or H8.

If k = 7, then µ2 = −µ6 = 1, µ3 = −µ5 = 1 and µ4 = 0. Similarly, H9 and H10 in Table 1 are the only two
bipartite graphs on 7 vertices we needed. Hence Gc � H9 or H10.

If k = 8, then µ2 = −µ7 = 1, µ3 = −µ6 = 1 and µ4 = −µ5 = 1. We have Gc � H11 in Table 1.
If k = 9, then µ5 = 0, which is impossible.
Conversely, it is clear from Table 1 that each of H1–H11 belongs to Gk([−1]k−5) where k = 5, 6, 7 or 8. By

Corollary 2.5, G = Gc[Kn1 ,Kn2 , . . . ,Knk ] ∈ G
1
n([−1]n−5) for each Gc � Hi and 1 ≥ i ≥ 11 where n = n1+n2+· · ·+nk.

The proof is complete.

It remains to characterize those graphs in G2
n([−1]n−5). By the software SageMath 8.0, we can find all

graphs on 5–7 vertices satisfying the following properties:

(1) they are connected non-bipartite.
(2) they are graphs belonging to G2

n([−1]n−5) (that is, p+
G(−1) = 3 and p−G(−1) = 2).

(3) they are primitive.
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Graph Spectrum Graph Spectrum

H12 [2.481, 0.691, 01,−1.171,−21] H18 [3.781, 0.711, 01,−11,−1.491,−21]
H13 [2.941, 0.621,−0.461,−1.471,−1.621] H19 [4.201, 11, 0.551,−12,−1.751,−21]
H14 [2.691, 0.331, 01,−1.271,−1.751] H20 [2.811, 11, 0.531,−11,−1.341,−21]
H15 [3.241, 02,−1.241,−21] H21 [3.221, 11, 0.111,−11,−1.531,−1.811]
H16 [2.301, 0.621, 01,−1.301,−1.621] H22 [3.591, 0.621, 0.161,−11,−1.621,−1.751]
H17 [21, 0.622,−1.622] H23 [3.651, 12,−12,−1.651,−21]

Table 2: The spectra of H12–H23.
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Figure 3: The canonical graphs of G2
n([−1]n−5).

All these graphs are H12–H23 shown in Figure 3, and their spectra are listed in Table 2. In what follows, we
will give a series of lemmas and theorems to show that G ∈ G2

n([−1]n−5) if and only if Gc is isomorphic to
one of the graphs H12–H23.

One can directly verify the following result by Interlacing Theorem.

Lemma 4.2. Let G ∈ G2
n([−1]n−5) and n ≥ m ≥ 6. If H is an induced subgraph of G on m vertices with eigenvalues

µ1 ≥ µ2 ≥ . . . ≥ µm−1 ≥ µm, then µ4 = . . . = µm−2 = −1.

Lemma 4.3 (Theorem 8, [23]). If a graph G has exactly two eigenvalues less than −1, then G contains at least one
induced graph which is isomorphic to one of M1–M12 (see Figure 4) or H12–H17 (see Figure 3).
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µ4 ≈ −0.45
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Figure 4: The minimal graphs M1–M12.

Lemma 4.4. The graphs H12–H17 displayed in Figure 3 are exactly six minimal graphs inG2
n([−1]n−5) (it means that

any G ∈ G2
n([−1]n−5) contains at least one induced subgraph which is isomorphic to one of H12–H17), where n ≥ 5.

Proof. Let G ∈ G2
n([−1]n−5). Then G contains exactly two eigenvalues less than−1. By Lemma 4.3, G contains

at least one induced graph which is isomorphic to one of M1–M12 (see Figure 4) or H12–H17 (see Figure 3).
On the other aspect, let H be any induced subgraph of G, where n = |V(G)| ≥ m = |V(H)| ≥ 6. By Lemma 4.2
we have µ4(H) = −1. However, the fourth largest eigenvalues of the graphs M1–M12 are all not equal to −1
(see Figure 4). Hence M1–M12 should be eliminated. Indeed, H12–H17 are the six minimal graphs belonging
to G2

n([−1]n−5) (see Table 2).
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In terms of Lemma 4.4, we will give a series of lemmas and theorems that exhaust all canonical graphs of
G

2
n([−1]n−5) that contain at least one induced subgraph which is isomorphic to one of H12–H17. This leads to

the final characterization of the graphs inG2
n([−1]n−5) for any n ≥ 5. First, we give a lemma that is frequently

used later on.
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Figure 5: Γ1–Γ16 (some connected graphs on 6 vertices with λ4 = −1).

Lemma 4.5. Let G ∈ G2
n([−1]n−5). Then the canonical graph Gc has 6 vertices if and only if Gc is isomorphic to

one of H18, H20, H21 or H22 (shown in Figure 3), in which H18 and H20 contain induced H12; H21 and H22 contain
induced H13; H18 contains induced H15; H22 contains induced H16.

Proof. From Figure 3 and Table 2, it is clear that H18, H20, H21 and H22 are primitive and belong toG2
n([−1]n−5)

for n = 6. The sufficiency follows.
Let G ∈ G2

n([−1]n−5) and its canonical graph Gc has 6 vertices. By Lemma 2.4 and Lemma 4.2, we get
µ4(Gc) = −1. By Lemma 4.4, Gc contains at least one induced graph which is isomorphic to one of H12–H17.
By using Table A3 in [11] (one can also use software SageMath 8.0 under the restriction of µ4(Gc) = −1), we
find that there are only twenty connected graphs on 6 vertices belonging to G2

n([−1]n−5), in which Γ1–Γ16 are
shown in Figure 5 and others are H18, H20, H21 and H22 in Figure 3. From which we choose, according to
Lemma 4.4, the primitive graphs that contain one of H12–H17 as their induced subgraphs. It is clear from
Figure 5 that Γ1,Γ2,Γ3 are generalized lexicographic products of H12 (where the vertices satisfying vρvi are
labelled as hollow dots, the edges connecting v and H12 are labelled as dotted lines, and the following is
similar), Γi (i = 4, 5, 6) are the products of H13, Γi (i = 7, 8, 9, 10) are the products of H14, Γi (i = 11, 12) are
the products of H15, Γi (i = 13, 14, 15) are the products of H16, and Γ16 is a product of H17. Hence all the Γi
are imprimitive and will be excluded. The remainders H18,H20,H21 and H22 are the only primitive graphs
containing one of H12–H17 as induced subgraph. In fact, H18 and H20 contains H12; H21 and H22 contain H13;
H18 contains H15; H22 contains H16.

The proof is complete.
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Figure 6: Forbidden subgraphs µ4 , −1.

Lemma 4.6. Let Gc ∈ G
2
n([−1]n−5) contain an induced subgraph which is isomorphic to H12 and Hv = Gc[V(H12)∪

{v}] for v ∈ V(Gc)\V(H12). Then Hv � H18 or H20 (shown in Figure 3).
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Proof. The graph Hv has six vertices and µ4(Hv) = −1 by Lemma 4.2. Additionally, Hv will be connected
since otherwise Hv � S1 (see Figure 6) but µ4(S1) = 0. By using the Table A3 in [11] (also can using software
SageMath 8.0 under the restriction of µ4(Gc) = −1), we find that there are only five connected graphs on 6
vertices whose fourth largest eigenvalues equal −1 and each of them contains an induced subgraph which
is isomorphic to H12, in which Γ1,Γ2,Γ3 are shown in Figure 5 and others H18, H20. Thus we have Hv � Γ1,
Γ2, Γ3, H18 or H20. It suffices to eliminate the graphs: Γ1–Γ3.

If Hv � Γ1, then v4ρv in Γ1 (see Figure 5). Since Gc is primitive, v4 and v has no relation ρ in Gc, and
so NGc (v4)\v , NV(Gc)(v)\v4. Since ρ is symmetric, we may assume that Gc has another vertex u ∼ v4 but
u / v. Thus Hu = Gc[V(H12) ∪ {u}] ∈ {Γ1,Γ2,Γ3,H18,H20} by above arguments, where we regard u as v in
these graphs. Now Hv,u = Gc[V(H12) ∪ {v,u}] consists of two induced subgraphs which are isomorphic
to Γ1 and Hu, respectively. Clearly, Hv,u will be S2 or S3 if Hu takes Γ1 (where Hv = Hu = Γ1 corresponds
to S2; Hu � Γ1 � Hv corresponds to S3). Similarly, H will be S4,S5,S6 and S7 if Hu takes Γ2,Γ3,H18 and
H20, respectively. However, S2,S3,S4,S5,S6 and S7 are all forbidden induced subgraphs of Gc because their
fourth largest eigenvalues are not equal to −1.

If Hv � Γ2, then v3ρv in Γ2 (see Figure 5). Similarly, there exists some u with u ∼ v3 but u / v, and then
Hu = Gc[V(H12) ∪ {u}] ∈ {Γ1,Γ2,Γ3,H18,H20}. Again we consider Hv,u = Gc[V(H12) ∪ {v,u}]. Clearly, Hu � Γ3
or H20 cannot appear in Hv,u since u / v3 in Γ3 and H20 (but u ∼ v3 in Hv,u). Additionally, {Hv,Hu} , {Γ1,Γ2}

as above. Thus Hu ∈ {Γ2,H18}, and H will be S8 and S9 if Hu takes Γ2 and H18, respectively. However, S8 and
S9 are all forbidden induced subgraphs of Gc.

If Hv � Γ3, then v5ρv in Γ3 (see Figure 5). Similarly, there exists some u with u ∼ v5 but u / v, and then
Hu = Gc[V(H12) ∪ {u}] ∈ {Γ3,H18,H20} (Γ1,Γ2 will be abandoned as above). Thus H = Gc[V(H12) ∪ {v,u}] will
be S10 or S11 if Hu takes Γ3; H will be S12,S13 if Hu takes H18 and H20, respectively. However, S10,S11,S12 and
S13 are all forbidden induced subgraphs of Gc.

The proof is complete.
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Figure 7: Forbidden subgraphs µ4 , −1.

Theorem 4.7. A graph G ∈ G2
n([−1]n−5) contains an induced subgraph which is isomorphic to H12 if and only if its

canonical graph Gc is isomorphic to one of H12, H18, H19 or H20 (see Figure 3).

Proof. Assume that Gc � H12, H18, H19 or H20. Then Gc has an induced subgraph which is isomorphic to
H12 since each of H18,H19 and H20 has an induced subgraph which is isomorphic to H12. Consequently, G
contains an induced subgraph which is isomorphic to H12.

Conversely, suppose that G contains an induced graph which is isomorphic to H12. Since H12 is primitive,
by Lemma 2.3 Gc has induced H12, and Gc � H12 if |V(Gc)| = 5. Assume that |V(Gc)| > 5. By Lemma 4.6,
Hv = Gc[V(H12) ∪ {v}] ∈ {H18,H20} for v ∈ V(Gc)\V(H12). It is all right if Gc � Hv. Otherwise, there exists
u ∈ V(Gc)\V(Hv) such that Hu = Gc[V(H12) ∪ {u}] ∈ {H18,H20} again by Lemma 4.6. We will distinguish the
following cases.

Case 1. If Hv � H18 � Hu then NHv (v) = V(H12) = NHu (u) (see H18 in Figure 3). If v / u then H =
Gc[V(H12) ∪ {v,u}] � F1 (see Figure 7), but µ4(F1) , −1. Thus v ∼ u and so vρu in H. Since Gc is primitive,
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we have NGc (v)\u , NGc (u)\v. Thus we may assume that Gc has a vertex w ∼ v but w / u. Again we have
Hw = Gc[V(H12) ∪ {w}] ∈ {H18,H20} and so Hw � H20 due to w / u. Thus, NHw (w) = {v1, v2} or {v4, v5}. Then
Gc[V(H12) ∪ {w,u}] � F2 (see Figure 7), however µ4(F2) , −1, a contradiction.

Case 2. If Hv � H20 � Hu then NHv (v),NHu (u) = {v1, v2} or {v4, v5} (see H20 in Figure 3). We first assume that
NHv (v) = {v1, v2} = NHu (u). Then v ∼ u, since otherwise Gc[V(H12)∪{v,u}] � F3 (see Figure 7), butµ4(F3) , −1.
Similarly as in Case 1, Gc has a vertex w ∼ v but w / u. Obviously, Hw = Gc[V(H12) ∪ {w}] ∈ {H18,H20}. If
Hw � H18, then Gc[V(H12) ∪ {w,u}] � F2 (see Figure 7), but µ4(F2) , −1. If Hw � H20, then

Gc[V(H12) ∪ {w,u}] �
{

F3, if NHw (w) = {v1, v2}

F4, if NHw (w) = {v4, v5}
(see F1,F2 in Figure 7)

which are impossible since F3 and F4 are all forbidden subgraphs of Gc.
By symmetry (see H20 in Figure 3), the case of NHv (v) = {v4, v5} = NHu (u) is equivalent to that of

NHv (v) = {v1, v2} = NHu (u) in above discussion. It remains to consider NHv (v) = {v1, v2} and NHu (u) = {v4, v5}.
Clearly,

Gc[V(H12) ∪ {v,u}] �
{

F4, if v / u
F5, if v ∼ u (see F4,F5 in Figure 7)

which are impossible since F4 and F5 are forbidden subgraphs of Gc.

Case 3. If Hv � H18 and Hu � H20 then Gc[V(H12) ∪ {v,u}] � Gc. Since otherwise, Gc has another vertex
w , v,u such that Hw = Gc[V(H12) ∪ {w}] � H18 or H20 by Lemma 4.6. However, the case of Hw � H18 � Hv
is eliminated as in Case 1 and the case of Hw � H20 � Hu is eliminated as in Case 2. Now, if v / u then
Gc[V(H12) ∪ {v,u}] � F2 (see Figure 7), but µ4(F2) , −1; if v ∼ u then Gc = Gc[V(H12) ∪ {v,u}] � H19 (see
Figure 3), as required.

The proof is complete.
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Figure 8: Forbidden subgraphs µ4 , −1.

Lemma 4.8. Let Gc ∈ G
2
n([−1]n−5) contain an induced subgraph which is isomorphic to H13 and Hv = Gc[V(H13)∪

{v}] for v ∈ V(Gc)\V(H13). Then Hv � H21 or H22.

Proof. The graph Hv has six vertices and µ4(Hv) = −1 by Lemma 4.2. Additionally, Hv will be connected,
since otherwise Hv � S1

1 (see Figure 8) but µ4(S1
1) ≈ −0.46. By using the Table A3 in [11] (also can using

software SageMath 8.0 under the restriction of µ4(Gc) = −1), we find that there are five connected graphs
on 6 vertices whose fourth largest eigenvalues equal −1 and each of them contains an induced subgraph
which is isomorphic to H13, in which Γ4,Γ5 and Γ6 are shown in Figure 5 and others H21, H22. Thus we have
Hv � Γ4, Γ5, Γ6, H21 or H22. It suffices to eliminate the graphs: Γ4–Γ6.

If Hv � Γ4, then v1ρv in Γ4 (see Figure 5). Since Gc is primitive, we have NGc (v1)\v , NGc (v)\v1. Thus
we may assume that there exists u ∼ v1 but u / v. We have Hu = Gc[V(H13) ∪ {u}] ∈ {Γ4,Γ5,Γ6,H21,H22} by
above arguments. Now Hv,u = Gc[V(H13) ∪ {v,u}] contains Hv � Γ4 and Hu as its induced subgraphs. From
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Figure 5 and Figure 8, clearly, Hv,u will be S1
2,S

1
3,S

1
4,S

1
5 and S1

6 if Hu takes Γ4,Γ5,Γ6, H21 and H22, respectively.
However, S1

2,S
1
3,S

1
4,S

1
5 and S1

6 are all forbidden induced subgraphs of Gc.
If Hv � Γ5, then v3ρv in Γ5 (see Figure 5). Similarly, there exists some u with u ∼ v3 but u / v, and

then Hu = Gc[V(H13) ∪ {u}] ∈ {Γ4,Γ5,Γ6,H21,H22}. Thus Hv,u = Gc[V(H13) ∪ {v,u}] has Hv � Γ5 and Hu as its
induced subgraphs. First Hu , H21 since u / v3 in H21. Additionally, {Hv,Hu} , {Γ4,Γ5} as above. It is clear
from Figure 8 that Hv,u will be S1

7 or S1
8 if Hu takes Γ5 (where Hv = Hu = Γ5 corresponds S1

7; Hv,Hu � Γ5

corresponds S1
8) and Hv,u will be S1

9 and S1
10 if Hu takes Γ6 and H22, respectively. However, S1

7,S
1
8, S1

9, and S1
10

are all forbidden induced subgraphs of Gc.
If Hv � Γ6, then v2ρv in Γ6 (see Figure 5). Similarly, there exists some u with u ∼ v2 but u / v, and then

Hu = Gc[V(H13) ∪ {u}] ∈ {Γ4,Γ5,Γ6,H21,H22}. Clearly, Hu , H22 since u / v2 in H22. Γ4,Γ5 will be abandoned
as above. Thus H = Gc[V(H13)∪ {v,u}] will be S1

11 and S1
12 if Hu takes Γ6 and H21, respectively. However, S1

11
and S1

12 are all forbidden induced subgraphs of Gc.
The proof is complete.

Theorem 4.9. A graph G ∈ G2
n([−1]n−5) contains an induced subgraph which is isomorphic to H13 if and only if

Gc � H13, H21, H22 or H23.

Proof. Assume that Gc � H13, H21, H22 or H23. Obviously, Gc contains an induced subgraph which is
isomorphic to H13 since each of H21,H22 and H23 has an induced subgraph which is isomorphic to H13.
Consequently, G contains an induced subgraph which is isomorphic to H13.

Conversely, assume that G contains an induced subgraph which is isomorphic to H13. Since H13 is
primitive, from Lemma 2.3 we know that Gc also has an induced subgraph isomorphic to H13, and Gc � H13
if |V(Gc)| = 5. If |V(Gc)| ≥ 6 then, by Lemma 4.8, Hv = Gc[V(H13)∪{v}] ∈ {H21,H22} for each v ∈ V(Gc)\V(H13).
If |V(Gc)| > 6, then Gc has another vertex u , v such that Hu = Gc[V(H13) ∪ {u}] ∈ {H21,H22}. We will
distinguish the following cases.

Case 1. Assume that Hv � H21 and Hu � H22. We have NHv (v) = {v1, v2} or {v1, v5}, and NHu (u) = {v1, v3, v4}.
Thus

Gc[V(H13) ∪ {v,u}] �
{

F6, if v ∼ u
F7, if v / u (see F6,F7 in Figure 7)

which are impossible since F6 and F7 are forbidden subgraphs.

Case 2. Assume that Hv � H22 � Hu. We have NHv (v) = {v1, v3, v4} = NHu (u). If v / u then Hv,u =
Gc[V(H13) ∪ {v,u}] � F8 (see Figure 7), but µ4(F8) , −1. Thus v ∼ u and so vρu in Hv,u. Since Gc is
primitive, NGc (v)\u , NGc (u)\v. Thus we may assume that there exists w ∼ v but w / u. Again we have
Hw = Gc[V(H13) ∪ {w}] ∈ {H21,H22} and so Hw � H21 due to w / u. Thus NHw (w) = {v1, v2} or {v1, v5}. Then
Gc[V(H13) ∪ {w,u}] � F7 (see Figure 7), however µ4(F7) , −1, a contradiction.

Case 3. Assume that Hv � H21 � Hu. Then NHv (v),NHu (u) = {v1, v2} or {v1, v5}. By the symmetry of {v1, v5}

and {v1, v2} in Hv or Hu, NHv (v) = {v1, v5} = NHu (u) is equivalent to NHv (v) = {v1, v2} = NHu (u). We only need
to consider the following two subcases.

If NHv (v) = {v1, v2} = NHu (u), then v ∼ u since otherwise Gc[V(H13) ∪ {v,u}] � F9 (see Figure 7), but
µ4(F9) , −1. Similarly as in Case 2, there exists some w with w ∼ v and w / u such that Hw = Gc[V(H13) ∪
{w}] ∈ {H21,H22}. If Hw � H22 then we turn to Case 1. If Hw � H21, then

Gc[V(H13) ∪ {w,u}] �
{

F9, if NH21 (w) = {v1, v2}

F10, if NH21 (w) = {v1, v5}
(see F9,F10 in Figure 7)

However, F9 and F10 are forbidden subgraphs of Gc, a contradiction.
If NHv (v) = {v1, v2} and NHu (u) = {v1, v5}, then v ∼ u since otherwise Gc[V(H13) ∪ {v,u}] � F10 (see Figure

7), but µ4(F10) , −1, and so Hv,u = Gc[V(H12) ∪ {v,u}] � H23 (see Figure 3). If Gc � Hv,u, there is nothing to
do. Otherwise, Gc has another vertex w , v,u such that Hw = Gc[V(H13) ∪ {w}] ∈ {H21,H22} by Lemma 4.8.
First let Hw � H21. Then NHw (w) = {v1, v2} or {v1, v5}. If the former occurs then NHw (w) = {v1, v2} = NHv (v); if
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the later occurs then NHw (w) = {v1, v5} = NHu (u). The both are impossible by the above arguments. Next let
Hw � H22. Then we turn to Case 1 since Hv � H21.

The proof is complete.
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Figure 9: Forbidden subgraphs µ4 , −1.

Theorem 4.10. A graph G ∈ G2
n([−1]n−5) contains an induced subgraph which is isomorphic to H14 if and only if

its canonical graph Gc � H14 (see in Figure 3).

Proof. The sufficiency is obvious. We show the necessity. Since H14 is primitive and G contains an induced
subgraph which is isomorphic to H14, by Lemma 2.3, Gc also has an induced subgraph which is isomorphic
to H14 and Gc � H14 if |V(Gc)| = 5. For |V(Gc)| ≥ 6, let Hv = Gc[V(H14) ∪ {v}] for v ∈ V(Gc)\V(H14). Thus
µ4(Hv) = −1 by Lemma 4.2. Additionally, Hv will be connected, since otherwise Hv � S2

1 (see Figure 9) but
µ4(S2

1) = 0. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of
µ4(Gc) = −1), we find that Γ7–Γ10, shown in Figure 5, are the only four connected graphs of 6 vertices whose
fourth largest eigenvalue is equal to−1 and each of them contains an induced subgraph which is isomorphic
to H14. Thus we have Hv ∈ {Γ7,Γ8,Γ9,Γ10}. Clearly Hv is imprimitive (in fact, v3ρv in Γ7, v2ρv in Γ8, v1ρv
in Γ9, v5ρv in Γ10(see Figure 5)). However, since Gc is primitive, Hv must be a proper induced subgraph of
Gc. There exists u , v such that Hu = Gc[V(H14) ∪ {u}] ∈ {Γ7,Γ8,Γ9,Γ10} for u ∈ V(Gc)\V(Hv) by the above
arguments. Now Hv,u = Gc[V(H14) ∪ {v,u}] contains two induced subgraphs Hu,Hv ∈ {Γ7,Γ8,Γ9,Γ10}. On
the other hand, since v2ρv in Γ8, we may take u ∼ v2 and u / v. Thus Hv,u can not contain two induced
subgraphs isomorphic to Γ8 or Γ10 simultaneously because u / v2 in Γ10. Similarly, Hv,u can not contain two
induced subgraphs isomorphic to Γ9 or Γ10 simultaneously because v1ρv in Γ9 but v1 / u in Γ10. Furthermore,
from Figure 9, Hv,u will be S2

2,S
2
3,S

2
4, S2

5, S2
6, S2

7, S2
8 and S2

9 if {Hv,Hu} equals {Γ7,Γ7}, {Γ7,Γ8}, {Γ7,Γ9}, {Γ7,Γ10},
{Γ8,Γ8}, {Γ8,Γ9}, {Γ9,Γ9} and {Γ10,Γ10}, respectively. However, S2

2,S
2
3,S

2
4, S2

5, S2
6, S2

7, S2
8 and S2

9 are all forbidden
induced subgraphs of Gc.

The proof is complete.
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Figure 10: Forbidden subgraphs µ4 , −1.

Lemma 4.11. Let Gc ∈ G
2
n([−1]n−5) contain an induced subgraph which is isomorphic to H15 and Hv = Gc[V(H15)∪

{v}] for v ∈ V(Gc)\V(H15). Then Hv � H18.
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Proof. The graph Hv has six vertices and µ4(Hv) = −1 by Lemma 4.2. Additionally, Hv will be connected,
since otherwise Hv � S3

1 (see Figure 10) but µ4(S3
1) = 0. By using the Table A3 in [11] (also can using software

SageMath 8.0 under the restriction of µ4(Gc) = −1), we find that Γ11,Γ12 and H18 are only three connected
graphs on 6 vertices whose fourth largest equals −1 and contain an induced subgraph which is isomorphic
to H15. Thus Hv ∈ {Γ11,Γ12,H18}. It suffices to eliminate the graphs Γ11,Γ12.

If Hv � Γ11, then v1ρv in Γ11 (see Figure 5). Since Gc is primitive, we may assume that there exists
another vertex u ∼ v1 but u / v. Let Hu = Gc[V(H15) ∪ {u}]. We have Hu ∈ {Γ11,Γ12,H18} as above. Thus
Hv,u = Gc[V(H15)∪ {v,u}] consists of Γ11 and Hu. From Figure 5 and Figure 10, clearly, Hv,u will be S3

2,S
3
3 and

S3
4 if Hu takes Γ11,Γ12 and H18, respectively. However, S3

2,S
3
3 and S3

4 are all forbidden induced subgraphs of
Gc.

If Hv � Γ12, then v5ρv in Γ12 (see Figure 5). Similarly as above, Gc has a vertex u ∼ v5 but u / v
such that Hu = Gc[V(H15) ∪ {u}] ∈ {Γ11,Γ12,H18}. Additionally, {Hv,Hu} , {Γ11,Γ12} as above. Now Hv,u =
Gc[V(H15) ∪ {v,u}] contain induced subgraphs which are isomorphic to Hv or Hu. Clearly, Hv,u will be S3

5
and S3

6 if Hu takes Γ12 (Hv = Hu = Γ12 corresponds S3
5; Hv,Hu � Γ12 corresponds S3

6); Hv,u will be S3
7 if Hu

takes H18, respectively. However, S3
5,S

3
6 and S3

7 are all forbidden induced subgraphs.
The proof is complete.

Theorem 4.12. A graph G ∈ G2
n([−1]n−5) contains an induced subgraph which is isomorphic to H15 if and only if

its canonical graph Gc � H15, H18 or H19.

Proof. Assume that Gc � H15, H18 or H19. Since each of H18 and H19 has an induced subgraph which is
isomorphic to H15, Gc also has the induced subgraph which is isomorphic to H15, and so has G.

Conversely, assume that G contains an induced subgraph which is isomorphic to H15. By Lemma 2.3,
Gc also has an induced subgraph isomorphic to H15, and Gc � H15 if |V(Gc)| = 5. If |V(Gc)| ≥ 6 then
Hv = Gc[V(H15) ∪ {v}] � H18 for each v ∈ V(Gc)\V(H15) by Lemma 4.11. If Gc has exactly 6 vertices then
Gc � Hv � H18 as desired. Otherwise, Gc has another vertex u , v such that Hu = Gc[V(H15) ∪ {u}] � H18
again by Lemma 4.11. Thus, Hv,u = Gc[V(H15)∪{v,u}] contains induced Hv,Hu which are isomorphic to H18.
Comparing H18, clearly NHv (v),NHu (u) = {v1, v3, v4}, {v1, v2, v5}, {v1, v2, v3}, or {v1, v4, v5}. By the symmetry of
H15, we only need to distinguish the following cases.

Case 1. If NHv (v) = {v1, v2, v5} and NHu (u) = {v1, v3, v4}, then

Gc[V(H15) ∪ {v,u}] �
{

F11, if v ∼ u
F12, if v / u (see F11,F12 in Figure 7)

However, F11 and F12 are forbidden subgraphs of Gc, a contradiction.

Case 2. If NHv (v) = {v1, v2, v5} = NHu (u), then u ∼ v, since otherwise Hv,u = Gc[V(H15)∪{v,u}] � F13 (see Figure
7), but µ4(F13) , −1. Thus uρv in Hv,u, and so Hv,u is a proper subgraph of Gc. There exists w ∈ V(Gc) such
that w ∼ v but w / u. Again by Lemma 4.11, Hw = Gc[V(H15) ∪ {w}] � H18. Similarly, NHw (w) = {v1, v3, v4},
{v1, v2, v5}, {v1, v2, v3}, or {v1, v4, v5}. Now we consider Hw,v = Gc[V(H15)∪ {w, v}]. Regarding w = u we know
that NHw (w) = {v1, v3, v4} should be eliminated because of the reason in Case 1. If NHw (w) = {v1, v2, v3} or
{v1, v4, v5} then Hv,w � F14 (see Figure 7), but µ4(F14) , −1. At last, NHw (w) = {v1, v2, v5} = NHv (v) = NHu (u). It
means w ∼ u by arguments above. It contradicts the selection of w / u.

Case 3. If NHv (v) = {v1, v2, v5} and NHu (u) = {v1, v2, v3}, then

Hv,u = Gc[V(H15) ∪ {v,u}] �
{

F14, if v ∼ u
H19, if v / u (see Figure 3)

Since F14 is a forbidden subgraph, we have finished the argument if Hv,u � Gc. Otherwise, Hv,u is a
proper subgraph of Gc. There exists a vertex w , v,u such that Hw = Gc[V(H15) ∪ {w}] � H18 by Lemma
4.11. Similarly, NHw (w) = {v1, v2, v5}, {v1, v2, v3}, {v1, v3, v4} or {v1, v4, v5}. However, the case of NHv (v) =
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{v1, v2, v5} = NHw (w) (similarly, NHu (u) = {v1, v2, v3} = NHw (w)) should be eliminated as in Case 2; the case of
NHv (v) = {v1, v2, v5} and NHw (w) = {v1, v3, v4} (similarly, NHu (u) = {v1, v2, v3} and NHw (w) = {v1, v4, v5}) should
be eliminated as in Case 1. It is a contradiction.

Case 4. NHv (v) = {v1, v2, v5} and NHu (u) = {v1, v4, v5}. The two graphs corresponding to Hv,u = Gc[V(H15) ∪
{v,u}] will be isomorphic in the Cases of 3 and 4. Thus the Case 3 is equivalent to the Case 4.

The proof is complete.
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Figure 11: Forbidden subgraphs µ4 , −1.

Lemma 4.13. Let Gc ∈ G
2
n([−1]n−5) contain an induced subgraph which is isomorphic to H16 and Hv = Gc[V(H16)∪

{v}] for v ∈ V(Gc)\V(H16). Then Hv � H22.

Proof. Obviously, the graph Hv has six vertices and µ4(Hv) = −1 by Lemma 4.2. Additionally, Hv will be
connected, since otherwise Hv � S4

1 (see Figure 11) but µ4(S4
1) = 0. By using the Table A3 in [11] (also can

using software SageMath 8.0 under the restriction of µ4(Gc) = −1), we find that Γ13,Γ14,Γ15 and H22 are only
four connected graphs on 6 vertices whose fourth largest eigenvalue equal −1 and each of them contains
an induced subgraph isomorphic to H16. Thus we have Hv ∈ {Γ13,Γ14,Γ15,H22}. It suffices to eliminate the
graphs: Γ13–Γ15.

If Hv � Γ13, then v4ρv in Γ13 (see Figure 5). Thus Γ13 is a proper subgraph of Gc, and we may assume
that there exists u ∼ v4 but u / v such that Hu = Gc[V(H16) ∪ {u}] ∈ {Γ13,Γ14,Γ15,H22} as above. Now
Hv,u = Gc[V(H16)∪{v,u}] consists of induced subgraphs isomorphic to Γ13 and Hu. From Figure 11, obviously,
Hv,u will be S4

2 or S4
3 if Hu takes Γ13 (where Hv = Hu = Γ13 corresponds S4

2; Hv,Hu � Γ13 corresponds S4
3),

and Hv,u will be S4
4,S

4
5 and S4

6 if Hu takes Γ14,Γ15 and H22, respectively. However, S4
2,S

4
3,S

4
4,S

4
5 and S4

6 are all
forbidden induced subgraphs of Gc.

If Hv � Γ14, then v3ρv in Γ14 (see Figure 5). Similarly as above, Gc has another vertex u ∼ v3 but u / v
such that Hu = Gc[V(H16) ∪ {u}] ∈ {Γ13,Γ14,Γ15,H22}. Additionally, {Hv,Hu} , {Γ13,Γ14} as above. Now
Hv,u = Gc[V(H16) ∪ {v,u}] contains induced subgraphs isomorphic to Γ14 and Hu. Since u / v3 in Γ15,
Hu � Γ15. Clearly, Hv,u will be S4

7 and S4
8 if Hu takes Γ14 and H22, respectively. However, S4

7 and S4
8 are all

forbidden induced subgraphs of Gc.
If Hv � Γ15, then v5ρv in Γ15 (see Figure 5). Similarly, Gc has another vertex u ∼ v5 but u / v such that

Hu = Gc[V(H16) ∪ {u}] ∈ {Γ15,H22} (Γ13,Γ14 will be abandoned as above). Thus Hv,u = Gc[V(H16) ∪ {v,u}]
will be S4

9 and S4
10 if Hu takes H15 and H22, respectively. However, S4

9 and S4
10 are all forbidden induced

subgraphs of Gc.
The proof is complete.

Theorem 4.14. A graph G ∈ G2
n([−1]n−5) contains an induced subgraph which is isomorphic to H16 if and only if

its canonical graph Gc � H16 or H22 .

Proof. Assume that Gc � H16 or H22. Since H22 has an induced subgraph isomorphic to H16, Gc has the
induced subgraph isomorphic to H16, and so has G.
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Conversely, assume that G contains an induced subgraph which is isomorphic to H16. By Lemma
2.3, Gc has induced subgraph isomorphic to H16, and Gc � H16 if |V(Gc)| = 5. If |V(Gc)| ≥ 6 then Hv =
Gc[V(H16) ∪ {v}] � H22 for each v ∈ V(Gc)\V(H16) by Lemma 4.13. If Gc has exactly 6 vertices then
Gc � Hv � H22 as desired. Otherwise, Gc has another vertex u , v such that Hu = Gc[V(H16) ∪ {u}] � H22
again by Lemma 4.11. Thus Hv,u = Gc[V(H16)∪{v,u}] contains induced subgraphs Hv and Hu. From Figure 3,
we see that NHv (v) = V(H16) = NHu (u). If v / u then Hv,u � F15 (see Figure 7), butµ4(F15) , −1. Thus v ∼ u and
vρu in Hv,u. Since Gc is a primitive, there exists another vertex w , u, v. Again, Hw = Gc[V(H16)∪{w}] � H22.
Now NHw (w) = V(H16) = NHv (v) = NHu (u). We have w ∼ u by arguments above, however w / u by our
choice. It implies that such u and w do not exist.

The proof is complete.
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Figure 12: Forbidden subgraphs µ4 , −1.

Theorem 4.15. A graph G ∈ G2
n([−1]n−5) contains an induced subgraph which is isomorphic to H17 if and only if

its canonical graph Gc � H17.

Proof. The sufficiency is obvious. For the necessity, let G contain an induced subgraph isomorphic to H17.
By Lemma 2.3, Gc has an induced subgraph isomorphic to H17, and Gc � H17 if |V(Gc)| = 5. If |V(Gc)| ≥ 6,
then Hv = Gc[V(H17) ∪ {v}] for each v ∈ V(Gc)\V(H17), and thus µ4(Hv) = −1 by Lemma 4.2. Additionally,
Hv will be connected, since otherwise Hv � S5

1 (see Figure 12) but µ4(S5
1) = 0. By using the Table A3 in

[11] (also can using software SageMath 8.0 under the restriction of µ4(Gc) = −1), we find that Γ16, shown in
Figure 5, is the only connected graph of 6 vertices whose fourth largest eigenvalue equals −1 and contains
an induced subgraphs isomorphic to H17. Thus we have Hv � Γ16. Obviously, Γ16 is imprimitive (in
fact, v1ρv in Γ16 (see Figure 5)). However, since Gc is primitive, Hv should be a proper subgraph of Gc.
There exists u ∈ V(Gc)\V(Hv) such that Hu = Gc[V(H17) ∪ {u}] � Γ16 by the arguments above. Now the
subgraph Hv,u = Gc[V(H17) ∪ {v,u}] contains two induced subgraphs Hu,Hv which are all isomorphic to
Γ16. Furthermore, Hv,u will be S5

2 or S5
3 if Hu takes Γ16 (in fact, Hv = Hu � Γ16 corresponds S5

2; Hv,Hu � Γ16

corresponds S5
3). However, S5

2 and S5
3 are the forbidden induced subgraphs of Gc.

The proof is complete.

Finally, we obtain our main result below.

Theorem 4.16. A graph G ∈ Gn([−1]n−5) if and only if its canonical graph Gc is isomorphic to Hi, for 1 ≥ i ≥ 23(see
H1–H23 in Figure 2 and Figure 3 ).

Proof. By definition we know that Gn([−1]n−5) = G1
n([−1]n−5) ∪ G2

n([−1]n−5).
The Theorem 4.1 completely characterize G1

n([−1]n−5), i.e., G ∈ G1
n([−1]n−5) if and only if its canonical

graph Gc is isomorphic to one of H1–H11.
By Lemma 4.4 we know that H12–H17 are exactly six minimal graphs in G2

n([−1]n−5), i.e, G must contain
at least one induced subgraph which is isomorphic to one of H12–H17 if G ∈ G2

n([−1]n−5). Thus, by Theorems
4.7–4.15, we know that G contains an induced subgraph isomorphic to one of H12–H17 if and only if its
canonical graph is isomorphic to one of H12–H23.

The proof is complete.
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