Filomat 33:18 (2019), 5919-5933 https://doi.org/10.2298/FIL1918919Y

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Characterization of Graphs with Eigenvalue –1 of Multiplicity n - 4 or n - 5

Yuhong Yang^a, Qiongxiang Huang^a

^aCollege of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China

Abstract. Petrović in [M. Petrović, On graphs with exactly one eigenvalue less than -1, J. Combin. Theory Ser. B 52 (1991) 102–112] determined all connected graphs with exactly one eigenvalue less than -1 and all minimal graphs with exactly two eigenvalues less than -1. By using these minimal graphs, in this paper, we determine all connected graphs having -1 as an eigenvalue with multiplicity n - 4 or n - 5.

1. Introduction

Throughout this paper all graphs are finite, simple and undirected. Let G be a graph. For $v \in V(G)$ and $X \subset V(G)$, let $N_G(v) = \{u \in V(G) \mid u \text{ is adjacent to } v\}$ be the neighborhood of $v, N_X(v) = N_G(v) \cap X$ be the set of neighbors of v in X and G[X] be the subgraph induced by X. Conventionally, we denote the complete graph, cycle, path and complete bipartite graph by K_n , C_n , P_n and K_{n_1,n_2} , respectively.

Let *G* be a graph of order *n* with adjacency matrix $A = (a_{i,j})_{n \times n}$, where $a_{i,j} = 1$ if the vertex *i* is adjacent to j, written as $i \sim j$, and $a_{i,i} = 0$ otherwise. Clearly, A is real and symmetric, and so all its eigenvalues are real, which are labelled in non-increasing order as $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. These eigenvalues are also called the *eigenvalues* of *G*. The multiplicity of λ_i is denoted by $m_G(\lambda_i)$ (or simply $m(\lambda_i)$), and the *nullity* of *G* is defined to be the multiplicity of 0 as an eigenvalue of G, i.e., $\eta(G) = m_G(0)$. Denoted by $p_{-1}^-(G)$ and $p_{-1}^+(G)$ the number of eigenvalues of *G* which are smaller and greater than -1, respectively. Thus $n = p_{-1}^{-}(G) + m_{G}(-1) + p_{-1}^{+}(G)$. It means that *G* has at most six distinct eigenvalues if $m_G(-1) \ge n - 5$. The join of two graphs *G* and *H*, denoted by $G\nabla H$, is a graph obtained from G and H by joining each vertex of G to all vertices of H.

Connected graphs with few eigenvalues have aroused a lot of interests in the past several decades. One of the reason is that such graphs in general have pretty combinatorial properties and a rich structure [15]. This problem was perhaps first raised by Doob [18] in 1970. Over the past two decades, the investigations about this problem led to many results, we refer the reader to [2, 3, 7, 9, 10, 12–21, 24, 27] for details.

The graphs with $n-5 \le \eta(G) = m_G(0) \le n-2$ are explicitly characterized in [1, 5, 6, 8, 25, 26]. The graphs with $n-3 \le m_G(-1) \le n-1$ are also characterized in [4, 22]. In this paper, we also focus on the eigenvalue -1. Here, it is necessary to summarize the known results related to the eigenvalues -1.

Given an integer $i \ge 0$, let $\mathcal{G}_n([-1]^i)$ denote the set of all connected graphs on *n* vertices having eigenvalue -1 of multiplicity *i*. For i = n-1, we claim that $G \in \mathcal{G}_n([-1]^{n-1})$ if and only if $G \cong K_n$. Clearly, $K_n \in \mathcal{G}_n([-1]^{n-1})$.

²⁰¹⁰ Mathematics Subject Classification. 05C50

Keywords. Canonical graph; Primitive graph; Eigenvalue; Multiplicity Received: 05 February 2018; Revised: 24 December 2018; Accepted: 31 January 2019

Communicated by Francesco Belardo

Research supported by the National Natural Science Foundation of China (Grant nos. 11971274, 11671344, 11531011) Email address: huangqx@xju.edu.cn (Qiongxiang Huang)

If $G \in \mathcal{G}_n([-1]^{n-1})$ and $G \not\cong K_n$, then P_3 will be an induced subgraph of G, and so $\lambda_3(P_3) = -\sqrt{2} > \lambda_n(G) = -1$ by Interlacing Theorem, a contradiction. For i = n - 2, according to the result of Cámara and Haemers [4], there are no graphs in $\mathcal{G}_n([-1]^{n-2})$. For i = n - 3, by using a result of Oboudi [22] concerning the distribution of the third largest eigenvalue of graphs, we can easily deduce that $G \in \mathcal{G}_n([-1]^{n-3})$ if and only if $G \cong (K_a \cup K_b) \nabla K_{n-a-b}$ (see Lemma 2.2 below). In this paper, we continue to characterize the graphs in $\mathcal{G}_n([-1]^i)$ for large *i*.

Petrović in [23] characterized all connected graphs with exactly one eigenvalue less than -1, and also determined all minimal graphs with exactly two eigenvalues less than -1. By using these minimal graphs, in this paper, we explicitly characterize all graphs in $\mathcal{G}_n([-1]^{n-4})$ and $\mathcal{G}_n([-1]^{n-5})$. Concretely, for a connected graph G, we prove that $G \in \mathcal{G}_n([-1]^{n-4})$ if and only if its canonical graph (defined in next section) is isomorphic to one of $K_{1,3}$, P_4 , C_4 , P_5 or C_6 ; $G \in \mathcal{G}_n([-1]^{n-5})$ if and only if its canonical graph is isomorphic to one of H_1 – H_{23} which are shown in Figure 2 and Figure 3.

2. Preliminaries

In this section, we will cite some lemmas and introduce some notions and symbols for latter use.

Lemma 2.1 (Interlacing Theorem). Let G be a graph with n vertices and eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ and H an induced subgraph of G with m vertices and eigenvalues $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_m$. Then $\lambda_i \ge \mu_i \ge \lambda_{n-m+i}$ where $i = 1, 2, \dots, m$.

Oboudi in [22] characterized the graphs with $\lambda_3 < 0$ where he gives a distribution of λ_3 in the following result.

Lemma 2.2 (Theorem 4.9, [22]). Let G be a graph. Then $\lambda_3 \in \{-\sqrt{2}, -1, \frac{1-\sqrt{5}}{2}\} \cup (-0.59, -0.5) \cup (-0.496, \infty)$. *Moreover, the following holds:*

- (1) $\lambda_3 = -\sqrt{2}$ if and only if $G \cong P_3$.
- (2) $\lambda_3 = -1$ if and only if $G \cong K_n$ or $G \cong K_s \cup K_{n-s}$ or $G \cong (K_a \cup K_b) \nabla K_{n-a-b}$, where n, s, a, b > 0 are all integers and n > a + b.

Let *G* be a graph of order *n*. For any $u, v \in V(G)$, we say that they have the relation ρ , denoted by $u\rho v$, if u = v, or $u \sim v$ and $N_G(u) \setminus v = N_G(v) \setminus u$. Clearly, ρ forms an equivalence relation on V(G). Suppose that V_1, V_2, \ldots, V_k are all distinct ρ -equivalence classes of V(G), and v_1, v_2, \ldots, v_k are the corresponding representatives, i.e. $v_i \in V_i = \{v \in V(G) \mid v\rho v_i\}$. The *canonical graph* G_c of *G* is defined as the graph with vertex set $\{V_1, V_2, \ldots, V_k\}$, and with an edge connecting V_i and V_j if $v_i \sim v_j$ in *G*. Obviously, $G_c \cong G[\{v_1, v_2, \ldots, v_k\}]$. A graph *H* is said to be *primitive* if $N_H(v) \setminus u \neq N_H(u) \setminus v$ whenever $u \sim v$ in *H*, and *imprimitive* otherwise. Obviously, the canonical graph G_c itself is primitive. By simple observation, we have

Lemma 2.3. Let *H* be an induced subgraph of *G*. Then *H* is isomorphic to some induced subgraph of G_c if *H* is primitive. Particularly, $H \cong G_c$ if they have the same number of vertices.

Proof. Suppose $V(H) = \{u_1, u_2, ..., u_h\} \subseteq V(G)$. We claim that any two adjacent vertices of H cannot have the relation ρ in G. Otherwise, assume that u_i and u_j are two adjacent vertices which are contained in the same ρ -equivalence class. Then u_i and u_j have the same neighbors in $V(G) \setminus \{u_i, u_j\}$, and so the same neighbors in $V(H) \setminus \{u_i, u_j\}$. This implies that H is imprimitive, a contradiction. Thus there are at least h different ρ -equivalence classes, and H is isomorphic to some induced subgraph of G_c . This proves the first part of the lemma, and the second part follows immediately. \Box

For a graph *H* with vertex set $V(H) = \{v_1, v_2, ..., v_k\}$ and complete graphs $K_{n_i}(i = 1, 2, ..., k)$, we can construct a graph Γ from *H* and K_{n_i} such that each v_i is replaced with K_{n_i} , and the vertices of K_{n_i} join that of K_{n_j} if $v_i v_j$ is an edge of *H*. As usual, we write $\Gamma = H[K_{n_1}, K_{n_2}, ..., K_{n_k}]$. Such a graph is called the *generalized lexicographic product* of *H* (by $K_{n_1}, K_{n_2}, ..., K_{n_k}$). Obviously, each graph can be viewed as a generalized lexicographic product of its canonical graph, i.e., $G = G_c[K_{n_1}, K_{n_2}, ..., K_{n_k}]$. However the canonical graph of

 $\Gamma = H[K_{n_1}, K_{n_2}, \dots, K_{n_k}]$ is not necessary to be *H*. Clearly, the canonical graph of Γ is *H* if *H* is primitive. It implies that, to characterize a class of graphs, it suffices to characterize all canonical graphs in this class. The following result is useful.

Lemma 2.4 (Theorem 5, [23]). If G_c is a canonical graph of a graph G, then $p_{-1}^-(G) = p_{-1}^-(G_c)$ and $p_{-1}^+(G) = p_{-1}^+(G_c)$.

Corollary 2.5. Let $G = G_c[K_{n_1}, K_{n_2}, ..., K_{n_k}]$, $n_1 + n_2 + \cdots + n_k = n$ and $1 \le i \le k$. Then $G \in \mathcal{G}_n([-1]^{n-i})$ if and only if $G_c \in \mathcal{G}_k([-1]^{k-i})$.

Proof. By Lemma 2.4,

$$m_G(-1) = n - p_{-1}^-(G) - p_{-1}^+(G) = n - p_{-1}^-(G_c) - p_{-1}^+(G_c) = n - k + m_{G_c}(-1)$$

Thus $m_G(-1) = n - i$ if and only if $m_{G_c}(-1) = k - i$.

Corollary 2.6. A graph $G \in \mathcal{G}_n([-1]^{n-3})$ if and only if $G \cong (K_a \cup K_b) \nabla K_{n-a-b}$, where n, a, b > 0 are all integers and n > a + b.

Proof. Let $G \in \mathcal{G}_n([-1]^{n-3})$. If n = 3, we have $G \cong P_3 = (K_1 \cup K_1)\nabla K_1$. Now suppose $n \ge 4$. By Lemma 2.2, we have $\lambda_3(G) \ge -1$. Also, we claim that $\lambda_n(G) < -1$, since otherwise G cannot contain P_3 as its induced subgraph by Interlacing Theorem, i.e., G must be isomorphic to K_n , a contradiction. Then we must have $\lambda_3(G) = -1$ due to $m_G(-1) = n - 3$, and so $G \cong (K_a \cup K_b)\nabla K_{n-a-b}$ again by Lemma 2.2.

Conversely, suppose $G \cong (K_a \cup K_b) \nabla K_{n-a-b}$. It is clear that $P_3 (\in \mathcal{G}_3([-1]^0))$ is just the canonical graph of *G*. Then, by Corollary 2.5, we may conclude that $G \in \mathcal{G}_n([-1]^{n-3})$. \Box

Figure 1: On graphs with exactly one eigenvalue less than -1.

Let G_1 – G_7 be the graphs shown in Figure 1, in which ellipses denotes the independent sets; such two ellipses joining with exactly one full line denote a complete bipartite graph; such two ellipses joining with a sequence of k ($k \ge 1$) dotted parallel lines denote a complete bipartite graph on k + k = 2k vertices with k edges of a perfect matching excluded; such two ellipses joining with a sequence of k ($k \ge 1$) full parallel lines denote a bipartite graph on k + k = 2k vertices with k edges of a perfect matching excluded; such two ellipses joining with a sequence of k ($k \ge 1$) full parallel lines denote a bipartite graph on k + k = 2k vertices with k edges of a perfect matching.

Let *G* be a connected graph. By argument above, if $p_{-1}^-(G) = 0$, then *G* does not contain P_3 as an induced graph and so $G = K_n$, which means $p_{-1}^-(G) = 0$ if and only if $G = K_n$. The following elegant result characterizes the graph *G* with $p_{-1}^-(G) = 1$.

Lemma 2.7 (Theorem 7, [23]). A connected graph $G \neq K_n$ has exactly one eigenvalue less than -1 if and only if its canonical graph G_c is an induced subgraph of any of the graphs $G_1 - G_7$ in Figure 1, so G_c is an bipartite graph.

Lemma 2.8. Let $G \in \mathcal{G}_n([-1]^i)$ have n vertices. If $0 \le i \le n - 4$ then $\lambda_3(G) > -1 > \lambda_n(G)$.

Proof. First we prove $\lambda_3(G) > -1$. On the contrary, let $\lambda_3(G) \leq -1$. By Lemma 2.2, we get that

$$G \cong P_3$$
, K_n or $(K_a \cup K_b) \nabla K_{n-a-b}$.

However, $m_{P_3}(-1) = 0 > 3 - 4$, $m_{K_n}(-1) = n - 1 > n - 4$, and $m_{(K_a \cup K_b) \nabla K_{n-a-b}}(-1) = n - 3 > n - 4$, which are all contrary to $i \le n - 4$.

Next we show $-1 > \lambda_n(G)$. Obviously, $G \not\cong K_n$ since $\lambda_3(G) > -1$. Thus *G* has an induced path P_3 , which implies that $-\sqrt{2} = \lambda_3(P_3) \ge \lambda_n(G)$ by Lemma 2.1. Our result follows. \Box

3. The characterization of $\mathcal{G}_n([-1]^{n-4})$

Lemma 2.2 implies that $G \in \mathcal{G}_n([-1]^{n-3})$ if and only if $G \cong (K_a \cup K_b) \nabla K_{n-a-b}$ if and only if $G_c \cong P_3$. In this section, we will explicitly characterize the graphs in $\mathcal{G}_n([-1]^{n-4})$. It suffices to give all canonical graphs of $\mathcal{G}_n([-1]^{n-4})$.

Theorem 3.1. A graph $G \in \mathcal{G}_n([-1]^{n-4})$ if and only if its canonical graph G_c is isomorphic to one of $K_{1,3}$, P_4 , C_4 , P_5 or C_6 .

Proof. By Lemma 2.8, $\lambda_3 > -1 > \lambda_n$. Thus the spectrum of *G* can be written as $Spec(G) = [\lambda_1^1, \lambda_2^1, \lambda_3^1, -1^{n-4}, \lambda_n^1]$, where $\lambda_1 > \lambda_2 \ge \lambda_3 > -1$, $\lambda_4 = \cdots = \lambda_{n-1} = -1$ and $-1 > \lambda_n$. In accordance with ρ -partition, we have $G = G_c[K_{n_1}, K_{n_2}, \dots, K_{n_k}]$. From Lemma 2.4, G_c also has exactly three eigenvalues more than -1 and one eigenvalue less than -1. From Lemma 2.7, G_c is a bipartite graph and then the spectrum of G_c is symmetric about 0. Thus we may assume that $Spec(G_c) = [\mu_1^1, \mu_2^1, \mu_3^1, (-1)^{k-4}, \mu_k^1]$, where $\mu_1 \ge \mu_2 \ge \mu_3 > -1$, $\mu_4 = \cdots = \mu_{k-1} = -1$ and $-1 > \mu_k = -\mu_1$. Clearly, $k \ge 4$. Additionally, if $k \ge 8$, then $\mu_4 = -\mu_{k-3} = 1$, a contradiction. Next we consider k = 4, 5, 6, 7.

If k = 4, then $1 > \mu_2 = -\mu_3 > -1$. Since $K_{1,3}$, P_4 and C_4 are the only three connected bipartite graphs of 4 vertices, their spectra $Spec(K_{1,3}) = [\sqrt{3}, 0^2, -\sqrt{3}]$, $Spec(P_4) = [1.618, 0.618, -0.618, -1.618]$ and $Spec(C_4) = [2, 0, 0, -2]$ meet with the requirement. Thus $G_c \cong K_{1,3}$, P_4 or C_4 .

If k = 5, then $\mu_2 = -\mu_4 = 1$ and $\mu_3 = 0$. We find that P_5 is the only bipartite graph of 5 vertices whose spectrum $Spec(P_5) = [1.73, 1, 0, -1, -1.73]$ meets with the requirement. Thus $G_c \cong P_5$.

If k = 6, then $\mu_2 = -\mu_5 = 1$ and $\mu_3 = -\mu_4 = 1$. Similarly, we find that C_6 , with $Spec(C_6) = [2^1, 1^2, -1^2, -2^1]$, is the only bipartite graph of 6 vertices as our required, and so $G_c \cong C_6$.

If k = 7, then $\mu_4 = 0$, which contradicts $\mu_4 = -1$.

Conversely, each canonical graph G_c , which is isomorphic to one of $K_{1,3}$, P_4 , C_4 , P_5 , C_6 , has spectrum of the form $Spec(G_c) = [\lambda_1^1, \lambda_2^1, \lambda_3^1, (-1)^{k-4}, \lambda_k]$, where k = 4, 5 or $6, \lambda_1 \ge \lambda_2 \ge \lambda_3 > -1$, and $-1 > \lambda_k$. Hence $G_c \in \mathcal{G}_k([-1]^{k-4})$. It follows that $G \in \mathcal{G}_n([-1]^{n-4})$ by Corollary 2.5.

The proof is complete. \Box

By Theorem 3.1 and Corollary 2.5, we have the following result immediately.

Corollary 3.2. A graph $G \in \mathcal{G}_n([-1]^{n-4})$ if and only if $G = H[K_{n_1}, K_{n_2}, ..., K_{n_k}]$ where *H* is isomorphic to one of $K_{1,3}, P_4, C_4, P_5, C_6$ and $n_1 + n_2 + \cdots + n_k = n \ge 4$.

It is worth mentioning that Corollary 3.2 gives some classes of graphs with a few eigenvalues. In fact, for $G \in \mathcal{G}_n([-1]^{n-4})$, we see that *G* has at most five distinct eigenvalues and $d(G) \le 4$. Especially, $K_{1,3}[K_{n_1}, K_{n_2}, K_{n_3}, K_{n_4}]$ and $C_4[K_{n_1}, K_{n_2}, K_{n_3}, K_{n_4}]$ are two classes of graphs. Each of them has at most five distinct eigenvalues and d(G) = 2.

4. The characterization of $\mathcal{G}_n([-1]^{n-5})$

Recall that $\mathcal{G}_n([-1]^{n-5})$ is the set of all connected graphs on *n* vertices in which each graph has eigenvalue -1 of multiplicity n - 5, where $n \ge 5$. Clearly, each $G \in \mathcal{G}_n([-1]^{n-5})$ has at most six distinct eigenvalues. Denote by $\mathcal{G}_n^1([-1]^{n-5})$ the connected graphs with spectra $\{\lambda_1^1, \lambda_2^1, \lambda_3^1, \lambda_4^1, -1^{n-5}, \lambda_n^1\}$ where $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge$

 $\lambda_4 > -1 > \lambda_n$. Similarly, denote by $\mathcal{G}_n^2([-1]^{n-5})$ the connected graphs with spectra $\{\lambda_1^1, \lambda_2^1, \lambda_3^1, -1^{n-5}, \lambda_{n-1}^1, \lambda_n^1\}$, where $\lambda_1 \ge \lambda_2 \ge \lambda_3 > -1 > \lambda_{n-1} \ge \lambda_n$. By Lemma 2.8, $\mathcal{G}_n([-1]^{n-5})$ is the disjoint union of $\mathcal{G}_n^1([-1]^{n-5})$ and $\mathcal{G}_n^2([-1]^{n-5})$.

Firstly, we characterize the graphs in $\mathcal{G}_n^1([-1]^{n-5})$. By using the software SageMath 8.0, we can find all bipartite graphs on 5–8 vertices such that they have four eigenvalues greater than –1 and one eigenvalue smaller than –1, then they are H_1 – H_{11} (see Figure 2), whose spectra are listed in Table 1. From which it is clear that H_1 – $H_{11} \in \mathcal{G}_n^1([-1]^{n-5})$ are all primitive. We will show that they are exactly all canonical graphs of $\mathcal{G}_n^1([-1]^{n-5})$.

Graph Spectrum	Graph	Spectrum
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{vmatrix} H_7 \\ H_8 \\ H_9 \\ H_{10} \\ H_{11} \end{vmatrix} $	$ \begin{bmatrix} 1.93^1, 1^1, 0.52^1, -0.52^1, -1^1, -1.93^1 \\ [2.41^1, 1^1, 0.41^1, -0.41^1, -1^1, -2.41^1] \\ [2^1, 1^2, 0, -1^2, -2^1] \\ [2.65^1, 1^2, 0^1, -1^2, -2.65^1] \\ [3^1, 1^3, -1^3, -3^1] \end{bmatrix} $

Table 1: The spectra of H_1 – H_{11} .

Figure 2: The canonical graphs of $\mathcal{G}_n^1([-1]^{n-5})$.

Theorem 4.1. A graph $G \in \mathcal{G}_n^1([-1]^{n-5})$ if and only if its canonical graph G_c is isomorphic to one of H_1, H_2, \ldots, H_{11} .

Proof. Let $G \in \mathcal{G}_n^1([-1]^{n-5})$. Then $G = G_c[K_{n_1}, K_{n_2}, \ldots, K_{n_k}]$ and $G_c \in \mathcal{G}_k([-1]^{k-5})$ by Corollary 2.5 and so $k \ge 5$. From Lemma 2.4, the canonical graph G_c also has four eigenvalues greater than -1 and one eigenvalue less than -1. Hence the spectrum of G_c can be written by $Spec(G_c) = [\mu_1^1, \mu_2^1, \mu_3^1, \mu_4^1, (-1)^{k-5}, \mu_k^1]$, where $\mu_1 \ge \mu_2 \ge \mu_3 \ge \mu_4 > -1$, $\mu_5 = \cdots = \mu_{k-1} = -1$ and $-1 > \mu_k = -\mu_1$. From Lemma 2.7, G_c is a bipartite graph, and then the spectrum of G_c is symmetric about 0. Thus, if $k \ge 10$, then $\mu_5 = -\mu_{k-4} = 1$, a contradiction. Next we consider k = 5, 6, 7, 8, 9.

If k = 5, then $1 > \mu_2 = -\mu_4 > -1$ and $\mu_3 = 0$. From Table 1 it is clear that H_1, H_2, H_3 and H_4 are the only four bipartite graphs on 5 vertices with this property. Hence $G_c \cong H_1, H_2, H_3, H_4$.

If k = 6, then $\mu_2 = -\mu_5 = 1$ and $1 > -\mu_3 = \mu_4 > -1$. From Table 1 we find that H_5, H_6, H_7 and H_8 are the only four bipartite graphs on 6 vertices satisfying this property. Hence $G_c \cong H_5, H_6, H_7$ or H_8 .

If k = 7, then $\mu_2 = -\mu_6 = 1$, $\mu_3 = -\mu_5 = 1$ and $\mu_4 = 0$. Similarly, H_9 and H_{10} in Table 1 are the only two bipartite graphs on 7 vertices we needed. Hence $G_c \cong H_9$ or H_{10} .

If k = 8, then $\mu_2 = -\mu_7 = 1$, $\mu_3 = -\mu_6 = 1$ and $\mu_4 = -\mu_5 = 1$. We have $G_c \cong H_{11}$ in Table 1.

If k = 9, then $\mu_5 = 0$, which is impossible.

Conversely, it is clear from Table 1 that each of H_1-H_{11} belongs to $\mathcal{G}_k([-1]^{k-5})$ where k = 5, 6, 7 or 8. By Corollary 2.5, $G = G_c[K_{n_1}, K_{n_2}, \dots, K_{n_k}] \in \mathcal{G}_n^1([-1]^{n-5})$ for each $G_c \cong H_i$ and $1 \ge i \ge 11$ where $n = n_1+n_2+\dots+n_k$. The proof is complete. \Box

It remains to characterize those graphs in $\mathcal{G}_n^2([-1]^{n-5})$. By the software SageMath 8.0, we can find all graphs on 5–7 vertices satisfying the following properties:

- (1) they are connected non-bipartite.
- (2) they are graphs belonging to $G_n^2([-1]^{n-5})$ (that is, $p_C^+(-1) = 3$ and $p_C^-(-1) = 2$).
- (3) they are primitive.

Y. Yang, Q. Huang / Filomat 33:18 (2019), 5919-5933

Graph	Spectrum Graph Spectrum		
$\begin{array}{c c} H_{12} \\ H_{13} \\ H_{14} \\ H_{15} \\ H_{16} \\ H_{17} \end{array}$	$\begin{array}{l} [2.48^1, 0.69^1, 0^1, -1.17^1, -2^1] \\ [2.94^1, 0.62^1, -0.46^1, -1.47^1, -1.62^1] \\ [2.69^1, 0.33^1, 0^1, -1.27^1, -1.75^1] \\ [3.24^1, 0^2, -1.24^1, -2^1] \\ [2.30^1, 0.62^1, 0^1, -1.30^1, -1.62^1] \\ [2^1, 0.62^2, -1.62^2] \end{array}$	$ \begin{array}{c c} H_{18} \\ H_{19} \\ H_{20} \\ H_{21} \\ H_{22} \\ H_{23} \end{array} $	$ \begin{bmatrix} 3.78^1, 0.71^1, 0^1, -1^1, -1.49^1, -2^1 \\ [4.20^1, 1^1, 0.55^1, -1^2, -1.75^1, -2^1] \\ [2.81^1, 1^1, 0.53^1, -1^1, -1.34^1, -2^1] \\ [3.22^1, 1^1, 0.11^1, -1^1, -1.53^1, -1.81^1] \\ [3.59^1, 0.62^1, 0.16^1, -1^1, -1.62^1, -1.75^1] \\ [3.65^1, 1^2, -1^2, -1.65^1, -2^1] \end{bmatrix} $

Table 2: The spectra of H_{12} – H_{23} .

Figure 3: The canonical graphs of $\mathcal{G}_n^2([-1]^{n-5})$.

All these graphs are $H_{12}-H_{23}$ shown in Figure 3, and their spectra are listed in Table 2. In what follows, we will give a series of lemmas and theorems to show that $G \in \mathcal{G}_n^2([-1]^{n-5})$ if and only if G_c is isomorphic to one of the graphs $H_{12}-H_{23}$.

One can directly verify the following result by Interlacing Theorem.

Lemma 4.2. Let $G \in \mathcal{G}_n^2([-1]^{n-5})$ and $n \ge m \ge 6$. If H is an induced subgraph of G on m vertices with eigenvalues $\mu_1 \ge \mu_2 \ge \ldots \ge \mu_{m-1} \ge \mu_m$, then $\mu_4 = \ldots = \mu_{m-2} = -1$.

Lemma 4.3 (Theorem 8, [23]). If a graph G has exactly two eigenvalues less than -1, then G contains at least one induced graph which is isomorphic to one of M_1-M_{12} (see Figure 4) or $H_{12}-H_{17}$ (see Figure 3).

Figure 4: The minimal graphs M_1 – M_{12} .

Lemma 4.4. The graphs $H_{12}-H_{17}$ displayed in Figure 3 are exactly six minimal graphs in $\mathcal{G}_n^2([-1]^{n-5})$ (it means that any $G \in \mathcal{G}_n^2([-1]^{n-5})$ contains at least one induced subgraph which is isomorphic to one of $H_{12}-H_{17}$), where $n \ge 5$.

Proof. Let $G \in \mathcal{G}_n^2([-1]^{n-5})$. Then *G* contains exactly two eigenvalues less than −1. By Lemma 4.3, *G* contains at least one induced graph which is isomorphic to one of M_1 – M_{12} (see Figure 4) or H_{12} – H_{17} (see Figure 3). On the other aspect, let *H* be any induced subgraph of *G*, where $n = |V(G)| \ge m = |V(H)| \ge 6$. By Lemma 4.2 we have $\mu_4(H) = -1$. However, the fourth largest eigenvalues of the graphs M_1 – M_{12} are all not equal to −1 (see Figure 4). Hence M_1 – M_{12} should be eliminated. Indeed, H_{12} – H_{17} are the six minimal graphs belonging to $\mathcal{G}_n^2([-1]^{n-5})$ (see Table 2). \Box

In terms of Lemma 4.4, we will give a series of lemmas and theorems that exhaust all canonical graphs of $\mathcal{G}_n^2([-1]^{n-5})$ that contain at least one induced subgraph which is isomorphic to one of $H_{12}-H_{17}$. This leads to the final characterization of the graphs in $\mathcal{G}_n^2([-1]^{n-5})$ for any $n \ge 5$. First, we give a lemma that is frequently used later on.

Figure 5: $\Gamma_1 - \Gamma_{16}$ (some connected graphs on 6 vertices with $\lambda_4 = -1$).

Lemma 4.5. Let $G \in \mathcal{G}_n^2([-1]^{n-5})$. Then the canonical graph G_c has 6 vertices if and only if G_c is isomorphic to one of H_{18} , H_{20} , H_{21} or H_{22} (shown in Figure 3), in which H_{18} and H_{20} contain induced H_{12} ; H_{21} and H_{22} contain induced H_{13} ; H_{18} contains induced H_{15} ; H_{22} contains induced H_{16} .

Proof. From Figure 3 and Table 2, it is clear that H_{18} , H_{20} , H_{21} and H_{22} are primitive and belong to $\mathcal{G}_n^2([-1]^{n-5})$ for n = 6. The sufficiency follows.

Let $G \in \mathcal{G}_n^2([-1]^{n-5})$ and its canonical graph G_c has 6 vertices. By Lemma 2.4 and Lemma 4.2, we get $\mu_4(G_c) = -1$. By Lemma 4.4, G_c contains at least one induced graph which is isomorphic to one of $H_{12}-H_{17}$. By using Table A3 in [11] (one can also use software SageMath 8.0 under the restriction of $\mu_4(G_c) = -1$), we find that there are only twenty connected graphs on 6 vertices belonging to $\mathcal{G}_n^2([-1]^{n-5})$, in which $\Gamma_1-\Gamma_{16}$ are shown in Figure 5 and others are H_{18} , H_{20} , H_{21} and H_{22} in Figure 3. From which we choose, according to Lemma 4.4, the primitive graphs that contain one of $H_{12}-H_{17}$ as their induced subgraphs. It is clear from Figure 5 that $\Gamma_1, \Gamma_2, \Gamma_3$ are generalized lexicographic products of H_{12} (where the vertices satisfying $v\rho v_i$ are labelled as hollow dots, the edges connecting v and H_{12} are labelled as dotted lines, and the following is similar), Γ_i (i = 4, 5, 6) are the products of H_{13} , Γ_i (i = 7, 8, 9, 10) are the products of H_{14} , Γ_i (i = 11, 12) are the products of H_{15} , Γ_i (i = 13, 14, 15) are the products of H_{16} , and Γ_{16} is a product of H_{17} . Hence all the Γ_i are imprimitive and will be excluded. The remainders H_{18}, H_{20}, H_{21} and H_{22} are the only primitive graphs containing one of $H_{12}-H_{17}$ as induced subgraph. In fact, H_{18} and H_{20} contains H_{12} ; H_{21} and H_{22} contain H_{13} ; H_{18} contains H_{15} ; H_{22} contains H_{16} .

The proof is complete. \Box

Figure 6: Forbidden subgraphs $\mu_4 \neq -1$.

Lemma 4.6. Let $G_c \in \mathcal{G}_n^2([-1]^{n-5})$ contain an induced subgraph which is isomorphic to H_{12} and $H_v = G_c[V(H_{12}) \cup \{v\}]$ for $v \in V(G_c) \setminus V(H_{12})$. Then $H_v \cong H_{18}$ or H_{20} (shown in Figure 3).

Proof. The graph H_v has six vertices and $\mu_4(H_v) = -1$ by Lemma 4.2. Additionally, H_v will be connected since otherwise $H_v \cong S_1$ (see Figure 6) but $\mu_4(S_1) = 0$. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of $\mu_4(G_c) = -1$), we find that there are only five connected graphs on 6 vertices whose fourth largest eigenvalues equal -1 and each of them contains an induced subgraph which is isomorphic to H_{12} , in which $\Gamma_1, \Gamma_2, \Gamma_3$ are shown in Figure 5 and others H_{18}, H_{20} . Thus we have $H_v \cong \Gamma_1$, $\Gamma_2, \Gamma_3, H_{18}$ or H_{20} . It suffices to eliminate the graphs: $\Gamma_1 - \Gamma_3$.

If $H_v \cong \Gamma_1$, then $v_4\rho v$ in Γ_1 (see Figure 5). Since G_c is primitive, v_4 and v has no relation ρ in G_c , and so $N_{G_c}(v_4) \setminus v \neq N_{V(G_c)}(v) \setminus v_4$. Since ρ is symmetric, we may assume that G_c has another vertex $u \sim v_4$ but $u \neq v$. Thus $H_u = G_c[V(H_{12}) \cup \{u\}] \in \{\Gamma_1, \Gamma_2, \Gamma_3, H_{18}, H_{20}\}$ by above arguments, where we regard u as v in these graphs. Now $H_{v,u} = G_c[V(H_{12}) \cup \{v, u\}]$ consists of two induced subgraphs which are isomorphic to Γ_1 and H_u , respectively. Clearly, $H_{v,u}$ will be S_2 or S_3 if H_u takes Γ_1 (where $H_v = H_u = \Gamma_1$ corresponds to S_2 ; $H_u \cong \Gamma_1 \cong H_v$ corresponds to S_3). Similarly, H will be S_4 , S_5 , S_6 and S_7 if H_u takes Γ_2 , Γ_3 , H_{18} and H_{20} , respectively. However, S_2 , S_3 , S_4 , S_5 , S_6 and S_7 are all forbidden induced subgraphs of G_c because their fourth largest eigenvalues are not equal to -1.

If $H_v \cong \Gamma_2$, then $v_3\rho v$ in Γ_2 (see Figure 5). Similarly, there exists some u with $u \sim v_3$ but $u \neq v$, and then $H_u = G_c[V(H_{12}) \cup \{u\}] \in \{\Gamma_1, \Gamma_2, \Gamma_3, H_{18}, H_{20}\}$. Again we consider $H_{v,u} = G_c[V(H_{12}) \cup \{v, u\}]$. Clearly, $H_u \cong \Gamma_3$ or H_{20} cannot appear in $H_{v,u}$ since $u \neq v_3$ in Γ_3 and H_{20} (but $u \sim v_3$ in $H_{v,u}$). Additionally, $\{H_v, H_u\} \neq \{\Gamma_1, \Gamma_2\}$ as above. Thus $H_u \in \{\Gamma_2, H_{18}\}$, and H will be S_8 and S_9 if H_u takes Γ_2 and H_{18} , respectively. However, S_8 and S_9 are all forbidden induced subgraphs of G_c .

If $H_v \cong \Gamma_3$, then $v_5\rho v$ in Γ_3 (see Figure 5). Similarly, there exists some u with $u \sim v_5$ but $u \neq v$, and then $H_u = G_c[V(H_{12}) \cup \{u\}] \in \{\Gamma_3, H_{18}, H_{20}\}$ (Γ_1, Γ_2 will be abandoned as above). Thus $H = G_c[V(H_{12}) \cup \{v, u\}]$ will be S_{10} or S_{11} if H_u takes Γ_3 ; H will be S_{12}, S_{13} if H_u takes H_{18} and H_{20} , respectively. However, S_{10}, S_{11}, S_{12} and S_{13} are all forbidden induced subgraphs of G_c .

The proof is complete. \Box

Figure 7: Forbidden subgraphs $\mu_4 \neq -1$.

Theorem 4.7. A graph $G \in \mathcal{G}_n^2([-1]^{n-5})$ contains an induced subgraph which is isomorphic to H_{12} if and only if its canonical graph G_c is isomorphic to one of H_{12} , H_{18} , H_{19} or H_{20} (see Figure 3).

Proof. Assume that $G_c \cong H_{12}$, H_{18} , H_{19} or H_{20} . Then G_c has an induced subgraph which is isomorphic to H_{12} since each of H_{18} , H_{19} and H_{20} has an induced subgraph which is isomorphic to H_{12} . Consequently, G contains an induced subgraph which is isomorphic to H_{12} .

Conversely, suppose that *G* contains an induced graph which is isomorphic to H_{12} . Since H_{12} is primitive, by Lemma 2.3 G_c has induced H_{12} , and $G_c \cong H_{12}$ if $|V(G_c)| = 5$. Assume that $|V(G_c)| > 5$. By Lemma 4.6, $H_v = G_c[V(H_{12}) \cup \{v\}] \in \{H_{18}, H_{20}\}$ for $v \in V(G_c) \setminus V(H_{12})$. It is all right if $G_c \cong H_v$. Otherwise, there exists $u \in V(G_c) \setminus V(H_v)$ such that $H_u = G_c[V(H_{12}) \cup \{u\}] \in \{H_{18}, H_{20}\}$ again by Lemma 4.6. We will distinguish the following cases.

Case 1. If $H_v \cong H_{18} \cong H_u$ then $N_{H_v}(v) = V(H_{12}) = N_{H_u}(u)$ (see H_{18} in Figure 3). If $v \nleftrightarrow u$ then $H = G_c[V(H_{12}) \cup \{v, u\}] \cong F_1$ (see Figure 7), but $\mu_4(F_1) \neq -1$. Thus $v \sim u$ and so $v\rho u$ in H. Since G_c is primitive,

we have $N_{G_c}(v) \setminus u \neq N_{G_c}(u) \setminus v$. Thus we may assume that G_c has a vertex $w \sim v$ but $w \neq u$. Again we have $H_w = G_c[V(H_{12}) \cup \{w\}] \in \{H_{18}, H_{20}\}$ and so $H_w \cong H_{20}$ due to $w \neq u$. Thus, $N_{H_w}(w) = \{v_1, v_2\}$ or $\{v_4, v_5\}$. Then $G_c[V(H_{12}) \cup \{w, u\}] \cong F_2$ (see Figure 7), however $\mu_4(F_2) \neq -1$, a contradiction.

Case 2. If $H_v \cong H_{20} \cong H_u$ then $N_{H_v}(v)$, $N_{H_u}(u) = \{v_1, v_2\}$ or $\{v_4, v_5\}$ (see H_{20} in Figure 3). We first assume that $N_{H_v}(v) = \{v_1, v_2\} = N_{H_u}(u)$. Then $v \sim u$, since otherwise $G_c[V(H_{12}) \cup \{v, u\}] \cong F_3$ (see Figure 7), but $\mu_4(F_3) \neq -1$. Similarly as in Case 1, G_c has a vertex $w \sim v$ but $w \neq u$. Obviously, $H_w = G_c[V(H_{12}) \cup \{w\}] \in \{H_{18}, H_{20}\}$. If $H_w \cong H_{18}$, then $G_c[V(H_{12}) \cup \{w, u\}] \cong F_2$ (see Figure 7), but $\mu_4(F_2) \neq -1$. If $H_w \cong H_{20}$, then

$$G_{c}[V(H_{12}) \cup \{w, u\}] \cong \begin{cases} F_{3}, & \text{if } N_{H_{w}}(w) = \{v_{1}, v_{2}\} \\ F_{4}, & \text{if } N_{H_{w}}(w) = \{v_{4}, v_{5}\} \end{cases} \text{ (see } F_{1}, F_{2} \text{ in Figure 7)}$$

which are impossible since F_3 and F_4 are all forbidden subgraphs of G_c .

By symmetry (see H_{20} in Figure 3), the case of $N_{H_v}(v) = \{v_4, v_5\} = N_{H_u}(u)$ is equivalent to that of $N_{H_v}(v) = \{v_1, v_2\} = N_{H_u}(u)$ in above discussion. It remains to consider $N_{H_v}(v) = \{v_1, v_2\}$ and $N_{H_u}(u) = \{v_4, v_5\}$. Clearly,

$$G_c[V(H_{12}) \cup \{v, u\}] \cong \begin{cases} F_4, & \text{if } v \neq u \\ F_5, & \text{if } v \sim u \end{cases} \text{ (see } F_4, F_5 \text{ in Figure 7)}$$

which are impossible since F_4 and F_5 are forbidden subgraphs of G_c .

Case 3. If $H_v \cong H_{18}$ and $H_u \cong H_{20}$ then $G_c[V(H_{12}) \cup \{v, u\}] \cong G_c$. Since otherwise, G_c has another vertex $w \neq v, u$ such that $H_w = G_c[V(H_{12}) \cup \{w\}] \cong H_{18}$ or H_{20} by Lemma 4.6. However, the case of $H_w \cong H_{18} \cong H_v$ is eliminated as in Case 1 and the case of $H_w \cong H_{20} \cong H_u$ is eliminated as in Case 2. Now, if $v \neq u$ then $G_c[V(H_{12}) \cup \{v, u\}] \cong F_2$ (see Figure 7), but $\mu_4(F_2) \neq -1$; if $v \sim u$ then $G_c = G_c[V(H_{12}) \cup \{v, u\}] \cong H_{19}$ (see Figure 3), as required.

The proof is complete. \Box

Figure 8: Forbidden subgraphs $\mu_4 \neq -1$.

Lemma 4.8. Let $G_c \in \mathcal{G}_n^2([-1]^{n-5})$ contain an induced subgraph which is isomorphic to H_{13} and $H_v = G_c[V(H_{13}) \cup \{v\}]$ for $v \in V(G_c) \setminus V(H_{13})$. Then $H_v \cong H_{21}$ or H_{22} .

Proof. The graph H_v has six vertices and $\mu_4(H_v) = -1$ by Lemma 4.2. Additionally, H_v will be connected, since otherwise $H_v \cong S_1^1$ (see Figure 8) but $\mu_4(S_1^1) \approx -0.46$. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of $\mu_4(G_c) = -1$), we find that there are five connected graphs on 6 vertices whose fourth largest eigenvalues equal -1 and each of them contains an induced subgraph which is isomorphic to H_{13} , in which Γ_4 , Γ_5 and Γ_6 are shown in Figure 5 and others H_{21} , H_{22} . Thus we have $H_v \cong \Gamma_4$, Γ_5 , Γ_6 , H_{21} or H_{22} . It suffices to eliminate the graphs: $\Gamma_4 - \Gamma_6$.

If $H_v \cong \Gamma_4$, then $v_1 \rho v$ in Γ_4 (see Figure 5). Since G_c is primitive, we have $N_{G_c}(v_1) \setminus v \neq N_{G_c}(v) \setminus v_1$. Thus we may assume that there exists $u \sim v_1$ but $u \neq v$. We have $H_u = G_c[V(H_{13}) \cup \{u\}] \in \{\Gamma_4, \Gamma_5, \Gamma_6, H_{21}, H_{22}\}$ by above arguments. Now $H_{v,u} = G_c[V(H_{13}) \cup \{v, u\}]$ contains $H_v \cong \Gamma_4$ and H_u as its induced subgraphs. From

Figure 5 and Figure 8, clearly, $H_{v,u}$ will be $S_2^1, S_3^1, S_4^1, S_5^1$ and S_6^1 if H_u takes $\Gamma_4, \Gamma_5, \Gamma_6, H_{21}$ and H_{22} , respectively. However, $S_2^1, S_3^1, S_4^1, S_5^1$ and S_6^1 are all forbidden induced subgraphs of G_c .

If $H_v \cong \Gamma_5$, then $v_3\rho v$ in Γ_5 (see Figure 5). Similarly, there exists some u with $u \sim v_3$ but $u \neq v$, and then $H_u = G_c[V(H_{13}) \cup \{u\}] \in \{\Gamma_4, \Gamma_5, \Gamma_6, H_{21}, H_{22}\}$. Thus $H_{v,u} = G_c[V(H_{13}) \cup \{v, u\}]$ has $H_v \cong \Gamma_5$ and H_u as its induced subgraphs. First $H_u \neq H_{21}$ since $u \neq v_3$ in H_{21} . Additionally, $\{H_v, H_u\} \neq \{\Gamma_4, \Gamma_5\}$ as above. It is clear from Figure 8 that $H_{v,u}$ will be S_7^1 or S_8^1 if H_u takes Γ_5 (where $H_v = H_u = \Gamma_5$ corresponds S_7^1 ; $H_v, H_u \cong \Gamma_5$ corresponds S_8^1) and $H_{v,u}$ will be S_9^1 and S_{10}^1 if H_u takes Γ_6 and H_{22} , respectively. However, S_7^1, S_8^1, S_9^1 , and S_{10}^1 are all forbidden induced subgraphs of G_c .

If $H_v \cong \Gamma_6$, then $v_2 \rho v$ in Γ_6 (see Figure 5). Similarly, there exists some u with $u \sim v_2$ but $u \neq v$, and then $H_u = G_c[V(H_{13}) \cup \{u\}] \in \{\Gamma_4, \Gamma_5, \Gamma_6, H_{21}, H_{22}\}$. Clearly, $H_u \neq H_{22}$ since $u \neq v_2$ in H_{22} . Γ_4, Γ_5 will be abandoned as above. Thus $H = G_c[V(H_{13}) \cup \{v, u\}]$ will be S_{11}^1 and S_{12}^1 if H_u takes Γ_6 and H_{21} , respectively. However, S_{11}^1 and S_{12}^1 are all forbidden induced subgraphs of G_c .

The proof is complete. \Box

Theorem 4.9. A graph $G \in \mathcal{G}_n^2([-1]^{n-5})$ contains an induced subgraph which is isomorphic to H_{13} if and only if $G_c \cong H_{13}, H_{21}, H_{22}$ or H_{23} .

Proof. Assume that $G_c \cong H_{13}$, H_{21} , H_{22} or H_{23} . Obviously, G_c contains an induced subgraph which is isomorphic to H_{13} since each of H_{21} , H_{22} and H_{23} has an induced subgraph which is isomorphic to H_{13} . Consequently, G contains an induced subgraph which is isomorphic to H_{13} .

Conversely, assume that *G* contains an induced subgraph which is isomorphic to H_{13} . Since H_{13} is primitive, from Lemma 2.3 we know that G_c also has an induced subgraph isomorphic to H_{13} , and $G_c \cong H_{13}$ if $|V(G_c)| = 5$. If $|V(G_c)| \ge 6$ then, by Lemma 4.8, $H_v = G_c[V(H_{13}) \cup \{v\}] \in \{H_{21}, H_{22}\}$ for each $v \in V(G_c) \setminus V(H_{13})$. If $|V(G_c)| > 6$, then G_c has another vertex $u \ne v$ such that $H_u = G_c[V(H_{13}) \cup \{u\}] \in \{H_{21}, H_{22}\}$. We will distinguish the following cases.

Case 1. Assume that $H_v \cong H_{21}$ and $H_u \cong H_{22}$. We have $N_{H_v}(v) = \{v_1, v_2\}$ or $\{v_1, v_5\}$, and $N_{H_u}(u) = \{v_1, v_3, v_4\}$. Thus

$$G_c[V(H_{13}) \cup \{v, u\}] \cong \begin{cases} F_6, & \text{if } v \sim u \\ F_7, & \text{if } v \neq u \end{cases} \text{ (see } F_6, F_7 \text{ in Figure 7)}$$

which are impossible since F_6 and F_7 are forbidden subgraphs.

Case 2. Assume that $H_v \cong H_{22} \cong H_u$. We have $N_{H_v}(v) = \{v_1, v_3, v_4\} = N_{H_u}(u)$. If $v \nleftrightarrow u$ then $H_{v,u} = G_c[V(H_{13}) \cup \{v, u\}] \cong F_8$ (see Figure 7), but $\mu_4(F_8) \neq -1$. Thus $v \sim u$ and so $v\rho u$ in $H_{v,u}$. Since G_c is primitive, $N_{G_c}(v) \setminus u \neq N_{G_c}(u) \setminus v$. Thus we may assume that there exists $w \sim v$ but $w \nleftrightarrow u$. Again we have $H_w = G_c[V(H_{13}) \cup \{w\}] \in \{H_{21}, H_{22}\}$ and so $H_w \cong H_{21}$ due to $w \nleftrightarrow u$. Thus $N_{H_w}(w) = \{v_1, v_2\}$ or $\{v_1, v_5\}$. Then $G_c[V(H_{13}) \cup \{w, u\}] \cong F_7$ (see Figure 7), however $\mu_4(F_7) \neq -1$, a contradiction.

Case 3. Assume that $H_v \cong H_{21} \cong H_u$. Then $N_{H_v}(v)$, $N_{H_u}(u) = \{v_1, v_2\}$ or $\{v_1, v_5\}$. By the symmetry of $\{v_1, v_5\}$ and $\{v_1, v_2\}$ in H_v or H_u , $N_{H_v}(v) = \{v_1, v_5\} = N_{H_u}(u)$ is equivalent to $N_{H_v}(v) = \{v_1, v_2\} = N_{H_u}(u)$. We only need to consider the following two subcases.

If $N_{H_v}(v) = \{v_1, v_2\} = N_{H_u}(u)$, then $v \sim u$ since otherwise $G_c[V(H_{13}) \cup \{v, u\}] \cong F_9$ (see Figure 7), but $\mu_4(F_9) \neq -1$. Similarly as in Case 2, there exists some w with $w \sim v$ and $w \not\sim u$ such that $H_w = G_c[V(H_{13}) \cup \{w\}] \in \{H_{21}, H_{22}\}$. If $H_w \cong H_{22}$ then we turn to Case 1. If $H_w \cong H_{21}$, then

$$G_{c}[V(H_{13}) \cup \{w, u\}] \cong \begin{cases} F_{9}, & \text{if } N_{H_{21}}(w) = \{v_{1}, v_{2}\}\\ F_{10}, & \text{if } N_{H_{21}}(w) = \{v_{1}, v_{5}\} \end{cases} \text{ (see } F_{9}, F_{10} \text{ in Figure 7)}$$

However, F_9 and F_{10} are forbidden subgraphs of G_c , a contradiction.

If $N_{H_v}(v) = \{v_1, v_2\}$ and $N_{H_u}(u) = \{v_1, v_5\}$, then $v \sim u$ since otherwise $G_c[V(H_{13}) \cup \{v, u\}] \cong F_{10}$ (see Figure 7), but $\mu_4(F_{10}) \neq -1$, and so $H_{v,u} = G_c[V(H_{12}) \cup \{v, u\}] \cong H_{23}$ (see Figure 3). If $G_c \cong H_{v,u}$, there is nothing to do. Otherwise, G_c has another vertex $w \neq v, u$ such that $H_w = G_c[V(H_{13}) \cup \{w\}] \in \{H_{21}, H_{22}\}$ by Lemma 4.8. First let $H_w \cong H_{21}$. Then $N_{H_w}(w) = \{v_1, v_2\}$ or $\{v_1, v_5\}$. If the former occurs then $N_{H_w}(w) = \{v_1, v_2\} = N_{H_v}(v)$; if

the later occurs then $N_{H_w}(w) = \{v_1, v_5\} = N_{H_u}(u)$. The both are impossible by the above arguments. Next let $H_w \cong H_{22}$. Then we turn to Case 1 since $H_v \cong H_{21}$.

The proof is complete. \Box

Figure 9: Forbidden subgraphs $\mu_4 \neq -1$.

Theorem 4.10. A graph $G \in \mathcal{G}_n^2([-1]^{n-5})$ contains an induced subgraph which is isomorphic to H_{14} if and only if its canonical graph $G_c \cong H_{14}$ (see in Figure 3).

Proof. The sufficiency is obvious. We show the necessity. Since H_{14} is primitive and G contains an induced subgraph which is isomorphic to H_{14} , by Lemma 2.3, G_c also has an induced subgraph which is isomorphic to H_{14} and $G_c \cong H_{14}$ if $|V(G_c)| = 5$. For $|V(G_c)| \ge 6$, let $H_v = G_c[V(H_{14}) \cup \{v\}]$ for $v \in V(G_c) \setminus V(H_{14})$. Thus $\mu_4(H_v) = -1$ by Lemma 4.2. Additionally, H_v will be connected, since otherwise $H_v \cong S_1^2$ (see Figure 9) but $\mu_4(S_1^2) = 0$. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of $\mu_4(G_c) = -1$), we find that $\Gamma_7 - \Gamma_{10}$, shown in Figure 5, are the only four connected graphs of 6 vertices whose fourth largest eigenvalue is equal to -1 and each of them contains an induced subgraph which is isomorphic to H_{14} . Thus we have $H_v \in \{\Gamma_7, \Gamma_8, \Gamma_9, \Gamma_{10}\}$. Clearly H_v is imprimitive (in fact, $v_3\rho v$ in $\Gamma_7, v_2\rho v$ in $\Gamma_8, v_1\rho v$ in Γ_9 , $v_5\rho v$ in Γ_{10} (see Figure 5)). However, since G_c is primitive, H_v must be a proper induced subgraph of G_c . There exists $u \neq v$ such that $H_u = G_c[V(H_{14}) \cup \{u\}] \in \{\Gamma_7, \Gamma_8, \Gamma_9, \Gamma_{10}\}$ for $u \in V(G_c) \setminus V(H_v)$ by the above arguments. Now $H_{v,u} = G_c[V(H_{14}) \cup \{v, u\}]$ contains two induced subgraphs $H_u, H_v \in \{\Gamma_7, \Gamma_8, \Gamma_9, \Gamma_{10}\}$. On the other hand, since $v_2\rho v$ in Γ_8 , we may take $u \sim v_2$ and $u \neq v$. Thus $H_{v,u}$ can not contain two induced subgraphs isomorphic to Γ_8 or Γ_{10} simultaneously because $u \neq v_2$ in Γ_{10} . Similarly, $H_{v,u}$ can not contain two induced subgraphs isomorphic to Γ_9 or Γ_{10} simultaneously because $v_1 \rho v$ in Γ_9 but $v_1 \neq u$ in Γ_{10} . Furthermore, from Figure 9, $H_{v,u}$ will be S_2^2 , S_3^2 , S_4^2 , S_5^2 , S_6^2 , S_7^2 , S_8^2 and S_9^2 if $\{H_v, H_u\}$ equals $\{\Gamma_7, \Gamma_7\}$, $\{\Gamma_7, \Gamma_8\}$, $\{\Gamma_7, \Gamma_9\}$, $\{\Gamma_7, \Gamma_1\}$, $\{\Gamma_8, \Gamma_8\}, \{\Gamma_8, \Gamma_9\}, \{\Gamma_9, \Gamma_9\}$ and $\{\Gamma_{10}, \Gamma_{10}\}$, respectively. However, $S_2^2, S_2^2, S_3^2, S_4^2, S_5^2, S_6^2, S_7^2, S_8^2$ and S_9^2 are all forbidden induced subgraphs of G_c .

The proof is complete. \Box

Lemma 4.11. Let $G_c \in \mathcal{G}_n^2([-1]^{n-5})$ contain an induced subgraph which is isomorphic to H_{15} and $H_v = G_c[V(H_{15}) \cup \{v\}]$ for $v \in V(G_c) \setminus V(H_{15})$. Then $H_v \cong H_{18}$.

Proof. The graph H_v has six vertices and $\mu_4(H_v) = -1$ by Lemma 4.2. Additionally, H_v will be connected, since otherwise $H_v \cong S_1^3$ (see Figure 10) but $\mu_4(S_1^3) = 0$. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of $\mu_4(G_c) = -1$), we find that Γ_{11} , Γ_{12} and H_{18} are only three connected graphs on 6 vertices whose fourth largest equals -1 and contain an induced subgraph which is isomorphic to H_{15} . Thus $H_v \in {\Gamma_{11}, \Gamma_{12}, H_{18}}$. It suffices to eliminate the graphs Γ_{11}, Γ_{12} .

If $H_v \cong \Gamma_{11}$, then $v_1\rho v$ in Γ_{11} (see Figure 5). Since G_c is primitive, we may assume that there exists another vertex $u \sim v_1$ but $u \neq v$. Let $H_u = G_c[V(H_{15}) \cup \{u\}]$. We have $H_u \in \{\Gamma_{11}, \Gamma_{12}, H_{18}\}$ as above. Thus $H_{v,u} = G_c[V(H_{15}) \cup \{v, u\}]$ consists of Γ_{11} and H_u . From Figure 5 and Figure 10, clearly, $H_{v,u}$ will be S_2^3, S_3^3 and S_4^3 if H_u takes Γ_{11}, Γ_{12} and H_{18} , respectively. However, S_2^3, S_3^3 and S_4^3 are all forbidden induced subgraphs of G_c .

If $H_v \cong \Gamma_{12}$, then $v_5\rho v$ in Γ_{12} (see Figure 5). Similarly as above, G_c has a vertex $u \sim v_5$ but $u \neq v$ such that $H_u = G_c[V(H_{15}) \cup \{u\}] \in \{\Gamma_{11}, \Gamma_{12}, H_{18}\}$. Additionally, $\{H_v, H_u\} \neq \{\Gamma_{11}, \Gamma_{12}\}$ as above. Now $H_{v,u} = G_c[V(H_{15}) \cup \{v, u\}]$ contain induced subgraphs which are isomorphic to H_v or H_u . Clearly, $H_{v,u}$ will be S_5^3 and S_6^3 if H_u takes Γ_{12} ($H_v = H_u = \Gamma_{12}$ corresponds S_5^3 ; $H_v, H_u \cong \Gamma_{12}$ corresponds S_6^3); $H_{v,u}$ will be S_7^3 if H_u takes H_{18} , respectively. However, S_5^3, S_6^3 and S_7^3 are all forbidden induced subgraphs.

The proof is complete. \Box

Theorem 4.12. A graph $G \in \mathcal{G}_n^2([-1]^{n-5})$ contains an induced subgraph which is isomorphic to H_{15} if and only if its canonical graph $G_c \cong H_{15}$, H_{18} or H_{19} .

Proof. Assume that $G_c \cong H_{15}$, H_{18} or H_{19} . Since each of H_{18} and H_{19} has an induced subgraph which is isomorphic to H_{15} , G_c also has the induced subgraph which is isomorphic to H_{15} , and so has G.

Conversely, assume that *G* contains an induced subgraph which is isomorphic to H_{15} . By Lemma 2.3, G_c also has an induced subgraph isomorphic to H_{15} , and $G_c \cong H_{15}$ if $|V(G_c)| = 5$. If $|V(G_c)| \ge 6$ then $H_v = G_c[V(H_{15}) \cup \{v\}] \cong H_{18}$ for each $v \in V(G_c) \setminus V(H_{15})$ by Lemma 4.11. If G_c has exactly 6 vertices then $G_c \cong H_v \cong H_{18}$ as desired. Otherwise, G_c has another vertex $u \ne v$ such that $H_u = G_c[V(H_{15}) \cup \{u\}] \cong H_{18}$ again by Lemma 4.11. Thus, $H_{v,u} = G_c[V(H_{15}) \cup \{v, u\}]$ contains induced H_v, H_u which are isomorphic to H_{18} . Comparing H_{18} , clearly $N_{H_v}(v), N_{H_u}(u) = \{v_1, v_3, v_4\}, \{v_1, v_2, v_5\}, \{v_1, v_2, v_3\}$, or $\{v_1, v_4, v_5\}$. By the symmetry of H_{15} , we only need to distinguish the following cases.

Case 1. If $N_{H_v}(v) = \{v_1, v_2, v_5\}$ and $N_{H_u}(u) = \{v_1, v_3, v_4\}$, then

$$G_c[V(H_{15}) \cup \{v, u\}] \cong \begin{cases} F_{11}, & \text{if } v \sim u \\ F_{12}, & \text{if } v \neq u \end{cases} \text{ (see } F_{11}, F_{12} \text{ in Figure 7)}$$

However, F_{11} and F_{12} are forbidden subgraphs of G_c , a contradiction.

Case 2. If $N_{H_v}(v) = \{v_1, v_2, v_5\} = N_{H_u}(u)$, then $u \sim v$, since otherwise $H_{v,u} = G_c[V(H_{15}) \cup \{v,u\}] \cong F_{13}$ (see Figure 7), but $\mu_4(F_{13}) \neq -1$. Thus $u\rho v$ in $H_{v,u}$, and so $H_{v,u}$ is a proper subgraph of G_c . There exists $w \in V(G_c)$ such that $w \sim v$ but $w \neq u$. Again by Lemma 4.11, $H_w = G_c[V(H_{15}) \cup \{w\}] \cong H_{18}$. Similarly, $N_{H_w}(w) = \{v_1, v_3, v_4\}$, $\{v_1, v_2, v_5\}, \{v_1, v_2, v_3\}, \text{ or } \{v_1, v_4, v_5\}$. Now we consider $H_{w,v} = G_c[V(H_{15}) \cup \{w, v\}]$. Regarding w = u we know that $N_{H_w}(w) = \{v_1, v_3, v_4\}$ should be eliminated because of the reason in Case 1. If $N_{H_w}(w) = \{v_1, v_2, v_3\}$ or $\{v_1, v_4, v_5\}$ then $H_{v,w} \cong F_{14}$ (see Figure 7), but $\mu_4(F_{14}) \neq -1$. At last, $N_{H_w}(w) = \{v_1, v_2, v_5\} = N_{H_v}(v) = N_{H_u}(u)$. It means $w \sim u$ by arguments above. It contradicts the selection of $w \neq u$.

Case 3. If $N_{H_v}(v) = \{v_1, v_2, v_5\}$ and $N_{H_u}(u) = \{v_1, v_2, v_3\}$, then

$$H_{v,u} = G_c[V(H_{15}) \cup \{v, u\}] \cong \begin{cases} F_{14}, & \text{if } v \sim u \\ H_{19}, & \text{if } v \neq u \end{cases} \text{ (see Figure 3)}$$

Since F_{14} is a forbidden subgraph, we have finished the argument if $H_{v,u} \cong G_c$. Otherwise, $H_{v,u}$ is a proper subgraph of G_c . There exists a vertex $w \neq v, u$ such that $H_w = G_c[V(H_{15}) \cup \{w\}] \cong H_{18}$ by Lemma 4.11. Similarly, $N_{H_w}(w) = \{v_1, v_2, v_5\}, \{v_1, v_2, v_3\}, \{v_1, v_3, v_4\}$ or $\{v_1, v_4, v_5\}$. However, the case of $N_{H_v}(v) = \{v_1, v_2, v_3\}, \{v_1, v_3, v_4\}$ or $\{v_1, v_4, v_5\}$.

 $\{v_1, v_2, v_5\} = N_{H_w}(w)$ (similarly, $N_{H_u}(u) = \{v_1, v_2, v_3\} = N_{H_w}(w)$) should be eliminated as in Case 2; the case of $N_{H_v}(v) = \{v_1, v_2, v_5\}$ and $N_{H_w}(w) = \{v_1, v_3, v_4\}$ (similarly, $N_{H_u}(u) = \{v_1, v_2, v_3\}$ and $N_{H_w}(w) = \{v_1, v_4, v_5\}$) should be eliminated as in Case 1. It is a contradiction.

Case 4. $N_{H_v}(v) = \{v_1, v_2, v_5\}$ and $N_{H_u}(u) = \{v_1, v_4, v_5\}$. The two graphs corresponding to $H_{v,u} = G_c[V(H_{15}) \cup \{v, u\}]$ will be isomorphic in the Cases of 3 and 4. Thus the Case 3 is equivalent to the Case 4.

The proof is complete. \Box

Figure 11: Forbidden subgraphs $\mu_4 \neq -1$.

Lemma 4.13. Let $G_c \in \mathcal{G}_n^2([-1]^{n-5})$ contain an induced subgraph which is isomorphic to H_{16} and $H_v = G_c[V(H_{16}) \cup \{v\}]$ for $v \in V(G_c) \setminus V(H_{16})$. Then $H_v \cong H_{22}$.

Proof. Obviously, the graph H_v has six vertices and $\mu_4(H_v) = -1$ by Lemma 4.2. Additionally, H_v will be connected, since otherwise $H_v \cong S_1^4$ (see Figure 11) but $\mu_4(S_1^4) = 0$. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of $\mu_4(G_c) = -1$), we find that Γ_{13} , Γ_{14} , Γ_{15} and H_{22} are only four connected graphs on 6 vertices whose fourth largest eigenvalue equal -1 and each of them contains an induced subgraph isomorphic to H_{16} . Thus we have $H_v \in {\Gamma_{13}, \Gamma_{14}, \Gamma_{15}, H_{22}}$. It suffices to eliminate the graphs: $\Gamma_{13}-\Gamma_{15}$.

If $H_v \cong \Gamma_{13}$, then $v_4 \rho v$ in Γ_{13} (see Figure 5). Thus Γ_{13} is a proper subgraph of G_c , and we may assume that there exists $u \sim v_4$ but $u \neq v$ such that $H_u = G_c[V(H_{16}) \cup \{u\}] \in \{\Gamma_{13}, \Gamma_{14}, \Gamma_{15}, H_{22}\}$ as above. Now $H_{v,u} = G_c[V(H_{16}) \cup \{v, u\}]$ consists of induced subgraphs isomorphic to Γ_{13} and H_u . From Figure 11, obviously, $H_{v,u}$ will be S_2^4 or S_3^4 if H_u takes Γ_{13} (where $H_v = H_u = \Gamma_{13}$ corresponds S_2^4 ; $H_v, H_u \cong \Gamma_{13}$ corresponds S_3^4), and $H_{v,u}$ will be S_4^4, S_5^4 and S_6^4 if H_u takes Γ_{14}, Γ_{15} and H_{22} , respectively. However, $S_2^4, S_3^4, S_4^4, S_5^4$ and S_6^4 are all forbidden induced subgraphs of G_c .

If $H_v \cong \Gamma_{14}$, then $v_3 \rho v$ in Γ_{14} (see Figure 5). Similarly as above, G_c has another vertex $u \sim v_3$ but $u \neq v$ such that $H_u = G_c[V(H_{16}) \cup \{u\}] \in \{\Gamma_{13}, \Gamma_{14}, \Gamma_{15}, H_{22}\}$. Additionally, $\{H_v, H_u\} \neq \{\Gamma_{13}, \Gamma_{14}\}$ as above. Now $H_{v,u} = G_c[V(H_{16}) \cup \{v, u\}]$ contains induced subgraphs isomorphic to Γ_{14} and H_u . Since $u \neq v_3$ in Γ_{15} , $H_u \ncong \Gamma_{15}$. Clearly, $H_{v,u}$ will be S_7^2 and S_8^4 if H_u takes Γ_{14} and H_{22} , respectively. However, S_7^4 and S_8^4 are all forbidden induced subgraphs of G_c .

If $H_v \cong \Gamma_{15}$, then $v_5\rho v$ in Γ_{15} (see Figure 5). Similarly, G_c has another vertex $u \sim v_5$ but $u \neq v$ such that $H_u = G_c[V(H_{16}) \cup \{u\}] \in \{\Gamma_{15}, H_{22}\}$ (Γ_{13}, Γ_{14} will be abandoned as above). Thus $H_{v,u} = G_c[V(H_{16}) \cup \{v, u\}]$ will be S_9^4 and S_{10}^4 if H_u takes H_{15} and H_{22} , respectively. However, S_9^4 and S_{10}^4 are all forbidden induced subgraphs of G_c .

The proof is complete. \Box

Theorem 4.14. A graph $G \in \mathcal{G}_n^2([-1]^{n-5})$ contains an induced subgraph which is isomorphic to H_{16} if and only if its canonical graph $G_c \cong H_{16}$ or H_{22} .

Proof. Assume that $G_c \cong H_{16}$ or H_{22} . Since H_{22} has an induced subgraph isomorphic to H_{16} , G_c has the induced subgraph isomorphic to H_{16} , and so has G.

Conversely, assume that G contains an induced subgraph which is isomorphic to H_{16} . By Lemma 2.3, G_c has induced subgraph isomorphic to H_{16} , and $G_c \cong H_{16}$ if $|V(G_c)| = 5$. If $|V(G_c)| \ge 6$ then $H_v =$ $G_c[V(H_{16}) \cup \{v\}] \cong H_{22}$ for each $v \in V(G_c) \setminus V(H_{16})$ by Lemma 4.13. If G_c has exactly 6 vertices then $G_c \cong H_v \cong H_{22}$ as desired. Otherwise, G_c has another vertex $u \neq v$ such that $H_u = G_c[V(H_{16}) \cup \{u\}] \cong H_{22}$ again by Lemma 4.11. Thus $H_{v,u} = G_c[V(H_{16}) \cup \{v, u\}]$ contains induced subgraphs H_v and H_u . From Figure 3, we see that $N_{H_v}(v) = V(H_{16}) = N_{H_u}(u)$. If $v \neq u$ then $H_{v,u} \cong F_{15}$ (see Figure 7), but $\mu_4(F_{15}) \neq -1$. Thus $v \sim u$ and $v\rho u$ in $H_{v,u}$. Since G_c is a primitive, there exists another vertex $w \neq u, v$. Again, $H_w = G_c[V(H_{16}) \cup \{w\}] \cong H_{22}$. Now $N_{H_w}(w) = V(H_{16}) = N_{H_v}(v) = N_{H_u}(u)$. We have $w \sim u$ by arguments above, however $w \neq u$ by our choice. It implies that such *u* and *w* do not exist.

The proof is complete. \Box

Figure 12: Forbidden subgraphs $\mu_4 \neq -1$.

Theorem 4.15. A graph $G \in \mathcal{G}_n^2([-1]^{n-5})$ contains an induced subgraph which is isomorphic to H_{17} if and only if *its canonical graph* $G_c \cong H_{17}$ *.*

Proof. The sufficiency is obvious. For the necessity, let G contain an induced subgraph isomorphic to H_{17} . By Lemma 2.3, G_c has an induced subgraph isomorphic to H_{17} , and $G_c \cong H_{17}$ if $|V(G_c)| = 5$. If $|V(G_c)| \ge 6$, then $H_v = G_c[V(H_{17}) \cup \{v\}]$ for each $v \in V(G_c) \setminus V(H_{17})$, and thus $\mu_4(H_v) = -1$ by Lemma 4.2. Additionally, H_v will be connected, since otherwise $H_v \cong S_1^5$ (see Figure 12) but $\mu_4(S_1^5) = 0$. By using the Table A3 in [11] (also can using software SageMath 8.0 under the restriction of $\mu_4(G_c) = -1$), we find that Γ_{16} , shown in Figure 5, is the only connected graph of 6 vertices whose fourth largest eigenvalue equals -1 and contains an induced subgraphs isomorphic to H_{17} . Thus we have $H_v \cong \Gamma_{16}$. Obviously, Γ_{16} is imprimitive (in fact, $v_1 \rho v$ in Γ_{16} (see Figure 5)). However, since G_c is primitive, H_v should be a proper subgraph of G_c . There exists $u \in V(G_c) \setminus V(H_v)$ such that $H_u = G_c[V(H_{17}) \cup \{u\}] \cong \Gamma_{16}$ by the arguments above. Now the subgraph $H_{v,u} = G_c[V(H_{17}) \cup \{v, u\}]$ contains two induced subgraphs H_u, H_v which are all isomorphic to Γ_{16} . Furthermore, $H_{v,u}$ will be S_2^5 or S_3^5 if H_u takes Γ_{16} (in fact, $H_v = H_u \cong \Gamma_{16}$ corresponds S_2^5 ; $H_v, H_u \cong \Gamma_{16}$ corresponds S_3^5). However, S_2^5 and S_3^5 are the forbidden induced subgraphs of G_c .

The proof is complete. \Box

Finally, we obtain our main result below.

Theorem 4.16. A graph $G \in \mathcal{G}_n([-1]^{n-5})$ if and only if its canonical graph G_c is isomorphic to H_i , for $1 \ge i \ge 23$ (see H_1 – H_{23} in Figure 2 and Figure 3).

Proof. By definition we know that $\mathcal{G}_n([-1]^{n-5}) = \mathcal{G}_n^1([-1]^{n-5}) \cup \mathcal{G}_n^2([-1]^{n-5})$. The Theorem 4.1 completely characterize $\mathcal{G}_n^1([-1]^{n-5})$, i.e., $G \in \mathcal{G}_n^1([-1]^{n-5})$ if and only if its canonical graph G_c is isomorphic to one of H_1 – H_{11} .

By Lemma 4.4 we know that $H_{12}-H_{17}$ are exactly six minimal graphs in $\mathcal{G}_n^2([-1]^{n-5})$, i.e, G must contain at least one induced subgraph which is isomorphic to one of $H_{12}-H_{17}$ if $G \in \mathcal{G}_n^2([-1]^{n-5})$. Thus, by Theorems 4.7–4.15, we know that G contains an induced subgraph isomorphic to one of H_{12} – H_{17} if and only if its canonical graph is isomorphic to one of H_{12} – H_{23} .

The proof is complete. \Box

Acknowledgement We would like to thank the referees and the editors for very careful reading and for helpful comments, which helped us to improve the manuscript.

5932

References

- [1] B. Borovićanin, I. Gutman, Nullity of Graphs, in D. Cvetković, I. Gutman (Eds.), Applications of Graph Spectra, Mathematical Institute, Belgrade, 2009, pp. 107-122.
- W. G. Bridges, R. A. Mena, Multiplicative cones a family of three eigenvalue graphs, Aequ. Math. 22 (1981) 208-214.
- [3] D. de Caen, E. R. van Dam, E. Spence, A nonregular analogue of conference graphs, J. Combin. Theory Ser. A 88 (1999) 194–204.
- [4] M. Cámara, W. H. Haemers, Spectral characterizations of almost complete graphs, Discrete Appl. Math. 176 (2014) 19–23.
 [5] G. J. Chang, L. H. Huang, H. G. Yeh, A characterization of graphs with rank 4, Linear Algebra Appl. 434 (2011) 1793–1798.
- [6] G. J. Chang, L. H. Huang, H. G. Yeh, A characterization of graphs with rank 5, Linear Algebra Appl. 436 (2012) 4241-4250.
- [7] X. M. Cheng, A. L. Gavrilyuk, G. R. W. Greaves, J.H. Koolen, Biregular graphs with three eigenvalues, Europ. J. Combin. 56 (2016) 57-80.
- [8] B. Cheng, B. Liu, On the nullity of graphs, Electron. J. Linear Algebra 16 (2007) 60-67.
- [9] S. M. Cioabă, W. H. Haemers, J. R. Vermette, W. Wong, The graphs with all but two eigenvalues equal to ±1, J. Algebraic Combin. 41(3) (2015) 887-897
- [10] S. M. Cioabă, W. H. Haemers, J. R. Vermette, The graphs with all but two eigenvalues equal to -2 or 0, Des. Codes Cryptogr. 84(1-2) (2017) 153-163.
- [11] D. Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, Cambridge University Press, Cambridge, 2010.
- [12] E. R. van Dam, Regular graphs with four eigenvalues, Linear Algebra Appl. 226–228 (1995) 139–163.
- [13] E. R. van Dam, Nonregular graphs with three eigenvalues, J. Combin. Theory Ser. B 73 (1998) 101–118.
- [14] E. R. van Dam, J.H. Koolen, Z.J. Xia, Graphs with many valencies and few eigenvalues, Electron. J. Linear Algebra 28 (2015) 12 - 24.
- [15] E. R. van Dam, E. Spence, Small regular graphs with four eigenvalues, Discrete Math. 189 (1998) 233–257.
- [16] E. R. van Dam, E. Spence, Combinatorial designs with two singular values I: uniform multiplicative designs, J. Comb. Theory Ser. A 107 (2004) 127-142.
- [17] E. R. van Dam, E. Spence, Combinatorial designs with two singular values II. Partial geometric designs, Linear Algebra Appl. 396 (2005) 303-316.
- [18] M. Doob, Graphs with a small number of distinct eigenvalues, Ann. New York Acad. Sci. 175 (1970) 104–110.
- [19] X. Y. Huang, Q. X. Huang, On regular graphs with four distinct eigenvalues, Linear Algebra Appl. 512 (2017) 219–233.
- [20] L. S. de Lima, A. Mohammadian, C.S. Oliveira, The non-bipartite graphs with all but two eigenvalues in [-1, 1], Linear Multilinear Algebra 65(3) (2017) 526-544.
- [21] M. Muzychuk, M. Klin, On graphs with three eigenvalues, Discrete Math. 189 (1998) 191–207.
- [22] M. R. Oboudi, On the third largest eigenvalue of graphs, Linear Algebra Appl. 503 (2016) 164-179.
- [23] M. Petrović, On graphs with exactly one eigenvalue less than -1, J. Combin. Theory Ser. B 52 (1991) 102-112.
- [24] P. Rowlinson, On graphs with just three distinct eigenvalues, Linear Algebra Appl. 507 (2016) 462–473.
- [25] I. Sciriha, On the construction of graphs of nullity one, Discrete Math. 181(1-3) (1998) 193–211.
- [26] I. Sciriha, A characterization of singular graphs, Electron. J. Linear Algebra 16 (2007) 451–462.
- [27] S. S. Shrikhande, Bhagwandas, Duals of incomplete block designs, J. Indian. Stat. Assoc. 3 (1965) 30–37.
- [28] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New York, 1986.
- [29] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications 18 (1967) 145-174.
- [30] P. Erdös, S. Shelah, Separability properties of almost-disjoint families of sets, Israel Journal of Mathematics 12 (1972) 207-214.