Remarks on an Equation of the Ginzburg-Landau Type

Bei Wang ${ }^{\text {a }}$
${ }^{a}$ School of mathematics and information technology, Jiangsu Second Normal University, Nanjing, 210013, China

Abstract

This paper is concerned with a priori estimate of the Ginzburg-Landau equation. We study the uniform bound of classical solutions on the whole space. In addition, we also obtain the Liouville-type result of finite energy solutions.

1. Introduction

In 1994, Brezis, Merle and Riviere [5] studied the quantization effects of the following equation

$$
-\Delta u=\left(1-|u|^{2}\right) u \quad \text { in } \mathbb{R}^{2}
$$

It is the Euler-Lagrange equation of the Ginzburg-Landau (GL) energy

$$
E_{G L}(u)=\frac{1}{2}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}+\frac{1}{4}\left\|1-|u|^{2}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2} .
$$

Here $u: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a vector value function. In particular, they proved

$$
\begin{equation*}
|u| \leq 1 \quad \text { in } \quad \mathbb{R}^{2} \tag{1.1}
\end{equation*}
$$

(The same result was also obtained in [8]). Based on this result, they also obtained a Liouville-type theorem for the finite energy solution by an argument due to Cazenave. Namely,

$$
\begin{equation*}
\nabla u \in L^{2}\left(\mathbb{R}^{2}\right) \Rightarrow u(x) \equiv C \text { with }|C| \in\{0,1\} \tag{1.2}
\end{equation*}
$$

Those results can be generalized to the higher dimensions case (cf. [11]).
In 2010, Ma [13] gave a new proof of $|u| \leq 1$ on the whole space in the higher dimensions case, where only the maximum principle was employed. Afterwards, this priori estimate was also obtained for the Chern-Simons-Higgs type equation which has a more complicated right hand side (cf. [12]).

In 1995, Rubinstein (cf. [14]) introduced another GL functional with a new penalization

$$
E_{\beta}(u, G)=\frac{1}{2}\|\nabla u\|_{L^{2}(G)}^{2}+\frac{1}{4 \varepsilon^{2}}\left\|\beta^{2}-|u|^{2}\right\|_{L^{2}(G)}^{2}
$$

[^0]Here G is a bounded domain in $\mathbb{R}^{2}, \varepsilon>0$, and $\beta \in L^{\infty}(G)$. This functional is helpful to study the pinning effects of GL vortices (cf. [2], [3], [6], [7] and [9]) and other analogous problems appear in the study of Bose-Einstein condensate (cf. [1] and the references therein).

In this paper, we are concerned with the following equation

$$
\begin{equation*}
-\Delta u=u\left(\beta^{2}-|u|^{2}\right) \quad \text { in } \mathbb{R}^{n} \tag{1.3}
\end{equation*}
$$

where $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is a vector-valued function, and $\beta \in L^{\infty}\left(\mathbb{R}^{n}\right)$ satisfies

$$
\begin{equation*}
0<m \leq \beta(x) \leq M<\infty, \quad \forall x \in \mathbb{R}^{n} \tag{1.4}
\end{equation*}
$$

Here $n, k \geq 2, m, M$ are positive constants. We will use the idea in [13] to prove a result analogous to (1.1).
Theorem 1.1. Let $u \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)$ be a classical solution of (1.3) with (1.4). Then

$$
\begin{equation*}
|u| \leq M, \quad \forall x \in \mathbb{R}^{n} . \tag{1.5}
\end{equation*}
$$

Next, if u satisfies a stronger assumption $|u| \leq \beta$ than (1.5), we will prove a result analogous to a Liouville-type result (1.2) for the finite energy solutions.

Theorem 1.2. Let $u \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)$ be a finite energy solution (i.e. $\nabla u \in L^{2}\left(\mathbb{R}^{n}\right)$) of (1.3). Assume that β is a piecewise derivable function satisfying (1.4) and $x \cdot \nabla \beta \geq 0$. If

$$
\begin{equation*}
|u(x)| \leq \beta(x), \quad \forall x \in \mathbb{R}^{n} \tag{1.6}
\end{equation*}
$$

then either $u \in L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)$, or $|u| \equiv \beta$ a.e. in $\in \mathbb{R}^{n}$.
Remark 1.1.. An obvious fact is, if $u \in L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right) \cap C^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)$, then $|u| \rightarrow 0$ when $|x| \rightarrow \infty$. In addition, when $\beta=0$ in B_{ρ} and $\beta=1$ in $\mathbb{R}^{n} \backslash B_{\rho}$, Theorem 1.2 is consistent with Theorem 1.2 in [10].

Remark 1.2.. Let u be a finite energy solution of (1.3). By the regularity result (cf. Lemma A. 1 in [4]), one has $\sup _{\mathbb{R}^{n}}|\nabla u|<\infty$, which together with $\nabla u \in L^{2}\left(\mathbb{R}^{n}\right)$, implies $\nabla u \in L^{\gamma}\left(\mathbb{R}^{n}\right)$ for all $\gamma \geq 2$.

2. Proof of Theorem 1.1

For any fixed unit vector $\vec{e} \in \mathbb{S}^{k-1}$, we define $v=\vec{e} \cdot u$. Then from (1.3) we have

$$
\begin{equation*}
\Delta v+v\left(\beta^{2}-|u|^{2}\right)=0, \quad \text { in } \mathbb{R}^{n} \tag{2.1}
\end{equation*}
$$

Let $V=v^{2}$. Then, using $|u|^{2} \geq V$, from the result above we deduce that

$$
\begin{equation*}
\Delta V=2\left(v \Delta v+|\nabla v|^{2}\right) \geq 2 v \Delta v \geq 2 V\left(V-\beta^{2}\right) \tag{2.2}
\end{equation*}
$$

Given any small $R \in(0,1)$ and large $\alpha>1$, take

$$
w(x):=\left(R^{2}-\left|x-x_{0}\right|^{2}\right)^{-\alpha} .
$$

By (1.4) and a direct computation, we can see that

$$
\begin{equation*}
\Delta w+2 w\left(\beta^{2}-w\right) \leq 0, \quad \text { in } B_{R}\left(x_{0}\right) \tag{2.3}
\end{equation*}
$$

for sufficiently large α. Since $w(x)=\infty$ on $\partial B_{R}\left(x_{0}\right)$, we claim by the comparison lemma that

$$
V(x) \leq w(x), \text { in } B_{R}\left(x_{0}\right)
$$

In fact, if there exists a point $x_{1} \in \mathbb{R}^{n}$ such that $V\left(x_{1}\right)>w\left(x_{1}\right)$, then the positive maximum of $V(x)-w(x)$ can be achieved at some point x_{2}. Therefore, at point x_{2}, one has

$$
\begin{equation*}
0 \leq-\frac{1}{2} \Delta(V-w) \leq V\left(\beta^{2}-V\right)-w\left(\beta^{2}-w\right) \tag{2.4}
\end{equation*}
$$

by (2.2) and (2.3). On the other hand, if we write $g_{1}(t)=t\left(t-\beta^{2}(x)\right)$, then $g_{1}^{\prime}(t)>0$ for $t>M^{2} / 2$ and all $x \in \mathbb{R}^{n}$. This implies that

$$
V\left(\beta^{2}-V\right)-w\left(\beta^{2}-w\right)<0
$$

at x_{2} as long as we notice $V\left(x_{2}\right)>w\left(x_{2}\right) \geq R^{-2 \alpha}>M^{2} / 2$. This contradicts with (2.4) and the claim is verified. Then we have some constant $C(R)>0$ such that $|v(x)| \leq C(R)$ in $B_{\frac{R}{2}}\left(x_{0}\right)$. Since x_{0} and \vec{e} are arbitrary, we deduce that

$$
\begin{equation*}
|u(x)| \leq C, \quad \text { in } \mathbb{R}^{n} . \tag{2.5}
\end{equation*}
$$

Moreover, we prove $|u(x)| \leq M$ on \mathbb{R}^{n} by the contradiction argument.
Case 1. Suppose that there exists a point $x_{0} \in \mathbb{R}^{n}$ such that $v\left(x_{0}\right)>M$. First, by (2.1) and $v \leq|u|$ we see that

$$
\begin{equation*}
\Delta v+v\left(\beta^{2}-v^{2}\right) \geq 0 \quad \text { when } v>0 \tag{2.6}
\end{equation*}
$$

For small $\epsilon>0$, we take

$$
W_{1}(x):=v(x)-v\left(x_{0}\right)+\epsilon-\epsilon\left|x-x_{0}\right|^{2}
$$

By (2.5), $W_{1}(x) \rightarrow-\infty$ as $|x| \rightarrow \infty$. In view of $W_{1}\left(x_{0}\right)>0$, there exists a point $y \in \mathbb{R}^{n}$ such that

$$
W_{1}(y)=\max _{\mathbb{R}^{n}} W_{1}(x) \geq W_{1}\left(x_{0}\right)=\epsilon
$$

which implies

$$
\begin{equation*}
v(y) \geq v\left(x_{0}\right)+\epsilon\left|y-x_{0}\right|^{2}>M \tag{2.7}
\end{equation*}
$$

In view of $0 \geq \Delta W_{1}(y)=\Delta v(y)-2 n \epsilon$, by (2.6) we get

$$
\begin{equation*}
2 n \epsilon \geq \Delta v(y) \geq v(y)\left(v^{2}(y)-\beta^{2}(y)\right) \tag{2.8}
\end{equation*}
$$

If we write $g_{2}(t)=t\left(t^{2}-\beta^{2}(x)\right)$, then $g_{2}^{\prime}(t)>0$ for $t>M / \sqrt{3}$ and all $x \in \mathbb{R}^{n}$. This, together with (2.7), implies $g_{2}(v(y)) \geq g_{2}\left(v\left(x_{0}\right)+\epsilon\left|y-x_{0}\right|^{2}\right)$. Combining with (2.8) yields

$$
2 n \epsilon \geq g_{2}\left(v\left(x_{0}\right)+\epsilon\left|y-x_{0}\right|^{2}\right)
$$

Letting $\epsilon \rightarrow 0$, we get

$$
0 \geq v\left(x_{0}\right)\left(v^{2}\left(x_{0}\right)-\beta^{2}\left(x_{0}\right)\right),
$$

which, together with $v\left(x_{0}\right)>M$, leads to a contradiction.
Case 2. Assume that we can find a point $x_{0} \in \mathbb{R}^{n}$ such that $v\left(x_{0}\right)<-M$. If replacing W_{1} by

$$
W_{2}(x):=v(x)-v\left(x_{0}\right)-\epsilon+\epsilon\left|x-x_{0}\right|^{2}
$$

we can also see a contradiction by the same argument above. This shows that $v \geq-M$.
Combining Cases 1 and 2 together yields $|v(x)| \leq M$ for arbitrary $x \in \mathbb{R}^{n}$ and arbitrary \vec{e}. We then conclude that $|u(x)| \leq M$ in \mathbb{R}^{n}. This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

By (1.3) we have

$$
\begin{equation*}
|u|^{2}\left(\beta^{2}-|u|^{2}\right)=|\nabla u|^{2}-\Delta\left(|u|^{2} / 2\right) . \tag{3.1}
\end{equation*}
$$

In view of $\nabla u \in L^{2}\left(\mathbb{R}^{n}\right)$, the Sobolev inequality implies $u \in L^{2^{*}}\left(\mathbb{R}^{n}\right)$ when $n \geq 3$. Here $2^{*}=\frac{2 n}{n-2}$. Thus, we can find $r_{j} \rightarrow \infty$ such that

$$
\begin{aligned}
& r_{j} \int_{\partial B_{r_{j}}(0)}|\nabla u|^{2} d s=o(1), \quad \text { when } n \geq 2 \\
& r_{j} \int_{\partial B_{r_{j}}(0)}|u|^{2^{*}} d s=o(1), \quad \text { when } n \geq 3
\end{aligned}
$$

Therefore, by the divergence theorem and the Hölder inequality, when $r_{j} \rightarrow \infty$, there hold

$$
\begin{aligned}
& \left|\int_{B_{r_{j}}(0)} \Delta\left(|u|^{2} / 2\right) d x\right| \leq \int_{\partial B_{r_{j}}(0)}\left|u \| \partial_{v} u\right| d s \\
\leq & M\left(2 \pi r_{j} \int_{\partial B_{r_{j}}(0)}|\nabla u|^{2} d s\right)^{\frac{1}{2}}=o(1), \quad \text { when } n=2
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\int_{B_{r_{j}}(0)} \Delta\left(|u|^{2} / 2\right) d x\right| \leq \int_{\partial B_{r_{j}}(0)}\left|u \| \partial_{v} u\right| d s \\
\leq & \left(r_{j} \int_{\partial B_{r_{j}}(0)}|u|^{2^{*}} d s\right)^{\frac{1}{2^{*}}}\left(r_{j} \int_{\partial B_{r_{j}}(0)}|\nabla u|^{2} d s\right)^{\frac{1}{2}}\left|\partial B_{r_{j}}(0)\right|^{1-\frac{1}{2}-\frac{1}{2^{2}}} r_{j}^{-\frac{1}{2}-\frac{1}{2^{*}}} \\
= & o(1), \quad \text { when } n \geq 3 .
\end{aligned}
$$

Thus, by (3.1), we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|u|^{2}\left(\beta^{2}-|u|^{2}\right) d x=\|\nabla u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}<\infty . \tag{3.2}
\end{equation*}
$$

Set $S_{*}=\left\{x \in \mathbb{R}^{n} ; \epsilon_{0} \leq|u| \leq m / 2\right\}$ for some fixed small constant $\epsilon_{0} \in(0, m / 3)$. By (1.4) and (1.6),

$$
\int_{\mathbb{R}^{n}}|u|^{2}\left(\beta^{2}-|u|^{2}\right) d x \geq \int_{S_{*}}|u|^{2}\left(\beta^{2}-|u|^{2}\right) d x \geq \frac{3 m^{2}}{4} \epsilon_{0}^{2}\left|S_{*}\right| .
$$

This and (3.2) imply $\left|S_{*}\right|<\infty$. Thus, there exists suitably large $R_{0}>0$ such that $S_{*} \subset B_{R_{0}}(0)$. Since u is continuous and $\mathbb{R}^{n} \backslash B_{R_{0}}(0)$ is connected, either $|u| \leq \epsilon_{0}$ or $|u| \geq m / 2$ holds true on $\mathbb{R}^{n} \backslash B_{R_{0}}(0)$.

When $|u| \leq \epsilon_{0}$ on $\mathbb{R}^{n} \backslash B_{R_{0}}(0)$, it is led to $\beta^{2}-|u|^{2} \geq m^{2}-\epsilon_{0}^{2}$ on $\mathbb{R}^{n} \backslash B_{R_{0}}(0)$. Thus,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}|u|^{2} d x=\int_{B_{R_{0}}(0)}|u|^{2} d x+\int_{\mathbb{R}^{n} \backslash B_{R_{0}}(0)}|u|^{2} d x \\
\leq & \left|B_{R_{0}}\right| M^{2}+\frac{1}{m^{2}-\epsilon_{0}^{2}} \int_{\mathbb{R}^{n} \backslash B_{R_{0}}(0)}|u|^{2}\left(\beta^{2}-|u|^{2}\right) d x<\infty,
\end{aligned}
$$

by virtue of (3.2). Namely, $u \in L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)$.
When $|u| \geq m / 2$ on $\mathbb{R}^{n} \backslash B_{R_{0}}(0)$, by the same argument above, we can see

$$
\int_{\mathbb{R}^{n}}\left(\beta^{2}-|u|^{2}\right) d x<\infty
$$

in view of (1.6). This furthermore implies $\beta^{2}-|u|^{2} \in L^{2}\left(\mathbb{R}^{n}\right)$ by (1.4) and (1.6). Therefore, the C^{1}-functional

$$
E(U)=\int_{\mathbb{R}^{n}}|\nabla U|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{n}}\left(\beta^{2}-|U|^{2}\right)^{2} d x
$$

makes sense for $U \in B_{\delta}(u)$ for small $\delta>0$. In addition, the classical solution u of (1.3) is a critical point of $E(U)$. Thus, the Frechet derivative of $E(U)$ at u is zero. This leads to

$$
\begin{equation*}
\left[\frac{d}{d \lambda} E\left(u\left(\lambda^{-1} x\right)\right)\right]_{\lambda=1}=0 \tag{3.3}
\end{equation*}
$$

On the other hand, for $\lambda \neq 0$,

$$
E\left(u\left(\lambda^{-1} x\right)\right)=\lambda^{n-2} \int_{\mathbb{R}^{n}}|\nabla u(x)|^{2} d x+\frac{\lambda^{n}}{2} \int_{\mathbb{R}^{n}}\left(\beta^{2}(\lambda x)-|u(x)|^{2}\right)^{2} d x
$$

Therefore, from (3.3) we get

$$
\begin{equation*}
(n-2) \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x+\frac{n}{2} \int_{\mathbb{R}^{n}}\left(\beta^{2}-|u|^{2}\right)^{2} d x+\int_{\mathbb{R}^{n}}\left(\beta^{2}-|u|^{2}\right)\left(x \cdot \nabla \beta^{2}\right) d x=0 \tag{3.4}
\end{equation*}
$$

When $n=2$, it follows that

$$
\int_{\mathbb{R}^{2}}\left(\beta^{2}-|u|^{2}\right)^{2} d x=-\int_{\mathbb{R}^{2}}\left(\beta^{2}-|u|^{2}\right)\left(x \cdot \nabla \beta^{2}\right) d x \leq 0
$$

which implies $|u| \equiv \beta$ a.e. in \mathbb{R}^{2}.
When $n \geq 3$,

$$
\begin{equation*}
\left(n \beta^{2}+(n-4)|u|^{2}\right)>0 \tag{3.5}
\end{equation*}
$$

By (3.2), (3.4) and (3.5), there holds

$$
\frac{1}{2} \int_{\mathbb{R}^{n}}\left(\beta^{2}-|u|^{2}\right)\left(n \beta^{2}+(n-4)|u|^{2}\right) d x=-\int_{\mathbb{R}^{n}}\left(\beta^{2}-|u|^{2}\right)\left(x \cdot \nabla \beta^{2}\right) d x \leq 0
$$

This result leads to $|u| \equiv \beta$ a.e. in \mathbb{R}^{n}.

References

[1] A. Aftalion, S. Alama, L. Bronsard, Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate, Arch. Rational Mech. Anal. 178 (2005) 247-286.
[2] A. Aftalion, E. Sandier, S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity, J. Math. Pures Anal. 80 (2001) 339-372.
[3] S. Alama, L. Bronsard, Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions, J. Math. Phys. 46 (2005) no. 9, 095102, 39 pp.
[4] F. Bethuel, H. Brezis, F. Helein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations 1 (1993) 123-138.
[5] H. Brezis, F. Merle, T. Riviere, Quantization effects for $-\Delta u=u\left(1-|u|^{2}\right)$ in \mathbb{R}^{2}, Arch. Rational Mech. Anal. 126 (1994) 35-58.
[6] M. Dos Santos, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: the non-zero degree case, India. Univ. Math. J. 62 (2013) 551-564.
[7] M. Dos Santos, P. Mironescu, O. Misiats, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I: the zero degree case, Commun. Contemp. Math. 13 (2011) 885-914.
[8] M. Herve and R. M. Herve, Quelques proprietes des solutions de l'equation de Ginzburg-Landau sur un ouvert de \mathbb{R}^{2}, Potential Anal. 5 (1996), 591-609.
[9] L. Lassoued, P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint, J. d'Anal. Math. 77 (1999) 1-26.
[10] Y. Lei, Quantization for a Ginzburg-Landau type energy related to superconductivity with normal impurity inclusion, J. Math. Anal. Appl. 335 (2007) 243-259.
[11] Y. Lei, Some results on an n-Ginzburg-Landau type minimizer, J. Comput. Appl. Math. 217 (2008) 123-136.
[12] Y. Li, Y. Lei, Boundedness for solutions of equations of the Chern-Simons-Higgs type, Appl. Math. Lett. 88 (2019) 8-12.
[13] L. Ma, Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, C. R. Acad. Sci. Paris 348 (2010) 993-996.
[14] J. Rubinstein, On the equilibrium position of Ginzburg-Landau vortices, Z. Angew. Math. Phys. 46 (1995) 739-751.

[^0]: 2010 Mathematics Subject Classification. Primary 35Q56; Secondary 35J61, 35B45
 Keywords. Ginzburg-Landau equation, maximum principle, finite energy solution
 Received: 02 March 2019; Accepted: 25 May 2019
 Communicated by Marko Nedeljkov
 This research was supported partly by NNSF (11871278) of China.
 Email address: jsjywang@126.com (Bei Wang)

