Filomat 33:18 (2019), 5913–5917 https://doi.org/10.2298/FIL1918913W

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Remarks on an Equation of the Ginzburg-Landau Type

Bei Wang^a

^a School of mathematics and information technology, Jiangsu Second Normal University, Nanjing, 210013, China

Abstract. This paper is concerned with a priori estimate of the Ginzburg-Landau equation. We study the uniform bound of classical solutions on the whole space. In addition, we also obtain the Liouville-type result of finite energy solutions.

1. Introduction

In 1994, Brezis, Merle and Riviere [5] studied the quantization effects of the following equation

$$-\triangle u = (1 - |u|^2)u \quad in \ \mathbb{R}^2$$

It is the Euler-Lagrange equation of the Ginzburg-Landau (GL) energy

$$E_{GL}(u) = \frac{1}{2} \|\nabla u\|_{L^2(\mathbb{R}^2)}^2 + \frac{1}{4} \|1 - |u|^2\|_{L^2(\mathbb{R}^2)}^2$$

Here $u : \mathbb{R}^2 \to \mathbb{R}^2$ is a vector value function. In particular, they proved

$$|u| \le 1 \quad in \quad \mathbb{R}^2. \tag{1.1}$$

(The same result was also obtained in [8]). Based on this result, they also obtained a Liouville-type theorem for the finite energy solution by an argument due to Cazenave. Namely,

$$\nabla u \in L^2(\mathbb{R}^2) \Rightarrow u(x) \equiv C \text{ with } |C| \in \{0, 1\}.$$
(1.2)

Those results can be generalized to the higher dimensions case (cf. [11]).

In 2010, Ma [13] gave a new proof of $|u| \le 1$ on the whole space in the higher dimensions case, where only the maximum principle was employed. Afterwards, this priori estimate was also obtained for the Chern-Simons-Higgs type equation which has a more complicated right hand side (cf. [12]).

In 1995, Rubinstein (cf. [14]) introduced another GL functional with a new penalization

$$E_{\beta}(u,G) = \frac{1}{2} \|\nabla u\|_{L^2(G)}^2 + \frac{1}{4\varepsilon^2} \|\beta^2 - |u|^2\|_{L^2(G)}^2.$$

²⁰¹⁰ Mathematics Subject Classification. Primary 35Q56; Secondary 35J61, 35B45

Keywords. Ginzburg-Landau equation, maximum principle, finite energy solution

Received: 02 March 2019; Accepted: 25 May 2019

Communicated by Marko Nedeljkov

This research was supported partly by NNSF (11871278) of China.

Email address: jsjywang@126.com (Bei Wang)

Here *G* is a bounded domain in \mathbb{R}^2 , $\varepsilon > 0$, and $\beta \in L^{\infty}(G)$. This functional is helpful to study the pinning effects of GL vortices (cf. [2], [3], [6], [7] and [9]) and other analogous problems appear in the study of Bose-Einstein condensate (cf. [1] and the references therein).

In this paper, we are concerned with the following equation

$$-\Delta u = u(\beta^2 - |u|^2) \quad in \mathbb{R}^n, \tag{1.3}$$

where $u : \mathbb{R}^n \to \mathbb{R}^k$ is a vector-valued function, and $\beta \in L^{\infty}(\mathbb{R}^n)$ satisfies

$$0 < m \le \beta(x) \le M < \infty, \quad \forall x \in \mathbb{R}^n.$$

$$\tag{1.4}$$

Here $n, k \ge 2, m, M$ are positive constants. We will use the idea in [13] to prove a result analogous to (1.1).

Theorem 1.1. Let $u \in C^2(\mathbb{R}^n, \mathbb{R}^k)$ be a classical solution of (1.3) with (1.4). Then

$$|u| \le M, \quad \forall x \in \mathbb{R}^n.$$

Next, if *u* satisfies a stronger assumption $|u| \leq \beta$ than (1.5), we will prove a result analogous to a Liouville-type result (1.2) for the finite energy solutions.

Theorem 1.2. Let $u \in C^2(\mathbb{R}^n, \mathbb{R}^k)$ be a finite energy solution (i.e. $\nabla u \in L^2(\mathbb{R}^n)$) of (1.3). Assume that β is a piecewise derivable function satisfying (1.4) and $x \cdot \nabla \beta \ge 0$. If

$$|u(x)| \le \beta(x), \quad \forall x \in \mathbb{R}^n, \tag{1.6}$$

then either $u \in L^2(\mathbb{R}^n, \mathbb{R}^k)$, or $|u| \equiv \beta$ a.e. $in \in \mathbb{R}^n$.

Remark 1.1.. An obvious fact is, if $u \in L^2(\mathbb{R}^n, \mathbb{R}^k) \cap C^2(\mathbb{R}^n, \mathbb{R}^k)$, then $|u| \to 0$ when $|x| \to \infty$. In addition, when $\beta = 0$ in B_ρ and $\beta = 1$ in $\mathbb{R}^n \setminus B_\rho$, Theorem 1.2 is consistent with Theorem 1.2 in [10].

Remark 1.2.. Let *u* be a finite energy solution of (1.3). By the regularity result (cf. Lemma A.1 in [4]), one has $\sup_{\mathbb{R}^n} |\nabla u| < \infty$, which together with $\nabla u \in L^2(\mathbb{R}^n)$, implies $\nabla u \in L^{\gamma}(\mathbb{R}^n)$ for all $\gamma \ge 2$.

2. Proof of Theorem 1.1

For any fixed unit vector $\vec{e} \in \mathbb{S}^{k-1}$, we define $v = \vec{e} \cdot u$. Then from (1.3) we have

$$\Delta v + v(\beta^2 - |u|^2) = 0, \quad in \mathbb{R}^n.$$

$$(2.1)$$

Let $V = v^2$. Then, using $|u|^2 \ge V$, from the result above we deduce that

$$\Delta V = 2(v \Delta v + |\nabla v|^2) \ge 2v \Delta v \ge 2V(V - \beta^2). \tag{2.2}$$

Given any small $R \in (0, 1)$ and large $\alpha > 1$, take

$$w(x) := (R^2 - |x - x_0|^2)^{-\alpha}$$

By (1.4) and a direct computation, we can see that

$$\Delta w + 2w(\beta^2 - w) \le 0, \quad \text{in } B_R(x_0) \tag{2.3}$$

for sufficiently large α . Since $w(x) = \infty$ on $\partial B_R(x_0)$, we claim by the comparison lemma that

$$V(x) \leq w(x)$$
, in $B_R(x_0)$.

In fact, if there exists a point $x_1 \in \mathbb{R}^n$ such that $V(x_1) > w(x_1)$, then the positive maximum of V(x) - w(x) can be achieved at some point x_2 . Therefore, at point x_2 , one has

$$0 \le -\frac{1}{2} \triangle (V - w) \le V(\beta^2 - V) - w(\beta^2 - w)$$
(2.4)

by (2.2) and (2.3). On the other hand, if we write $g_1(t) = t(t - \beta^2(x))$, then $g'_1(t) > 0$ for $t > M^2/2$ and all $x \in \mathbb{R}^n$. This implies that

$$V(\beta^2 - V) - w(\beta^2 - w) < 0$$

at x_2 as long as we notice $V(x_2) > w(x_2) \ge R^{-2\alpha} > M^2/2$. This contradicts with (2.4) and the claim is verified. Then we have some constant C(R) > 0 such that $|v(x)| \le C(R)$ in $B_{\frac{R}{2}}(x_0)$. Since x_0 and \vec{e} are arbitrary, we deduce that

$$|u(x)| \le C, \quad in \ \mathbb{R}^n. \tag{2.5}$$

Moreover, we prove $|u(x)| \le M$ on \mathbb{R}^n by the contradiction argument.

Case 1. Suppose that there exists a point $x_0 \in \mathbb{R}^n$ such that $v(x_0) > M$. First, by (2.1) and $v \le |u|$ we see that

$$\Delta v + v(\beta^2 - v^2) \ge 0 \quad \text{when } v > 0. \tag{2.6}$$

For small $\epsilon > 0$, we take

$$W_1(x) := v(x) - v(x_0) + \epsilon - \epsilon |x - x_0|^2.$$

By (2.5), $W_1(x) \to -\infty$ as $|x| \to \infty$. In view of $W_1(x_0) > 0$, there exists a point $y \in \mathbb{R}^n$ such that

$$W_1(y) = \max_{\mathbb{R}^n} W_1(x) \ge W_1(x_0) = \epsilon,$$

which implies

$$v(y) \ge v(x_0) + \epsilon |y - x_0|^2 > M.$$
 (2.7)

In view of $0 \ge \triangle W_1(y) = \triangle v(y) - 2n\epsilon$, by (2.6) we get

$$2n\epsilon \ge \Delta v(y) \ge v(y)(v^2(y) - \beta^2(y)). \tag{2.8}$$

If we write $g_2(t) = t(t^2 - \beta^2(x))$, then $g'_2(t) > 0$ for $t > M/\sqrt{3}$ and all $x \in \mathbb{R}^n$. This, together with (2.7), implies $g_2(v(y)) \ge g_2(v(x_0) + \epsilon|y - x_0|^2)$. Combining with (2.8) yields

$$2n\epsilon \ge g_2(v(x_0) + \epsilon |y - x_0|^2).$$

Letting $\epsilon \to 0$, we get

$$0 \ge v(x_0)(v^2(x_0) - \beta^2(x_0)),$$

which, together with $v(x_0) > M$, leads to a contradiction.

Case 2. Assume that we can find a point $x_0 \in \mathbb{R}^n$ such that $v(x_0) < -M$. If replacing W_1 by

$$W_2(x) := v(x) - v(x_0) - \epsilon + \epsilon |x - x_0|^2$$

we can also see a contradiction by the same argument above. This shows that $v \ge -M$.

Combining Cases 1 and 2 together yields $|v(x)| \le M$ for arbitrary $x \in \mathbb{R}^n$ and arbitrary \vec{e} . We then conclude that $|u(x)| \le M$ in \mathbb{R}^n . This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

By (1.3) we have

$$|u|^{2}(\beta^{2} - |u|^{2}) = |\nabla u|^{2} - \Delta(|u|^{2}/2).$$
(3.1)

In view of $\nabla u \in L^2(\mathbb{R}^n)$, the Sobolev inequality implies $u \in L^{2^*}(\mathbb{R}^n)$ when $n \ge 3$. Here $2^* = \frac{2n}{n-2}$. Thus, we can find $r_i \rightarrow \infty$ such that c

$$\begin{split} r_j \int_{\partial B_{r_j}(0)} |\nabla u|^2 ds &= o(1), \quad \text{when } n \geq 2; \\ r_j \int_{\partial B_{r_j}(0)} |u|^{2^*} ds &= o(1), \quad \text{when } n \geq 3. \end{split}$$

Therefore, by the divergence theorem and the Hölder inequality, when $r_i \rightarrow \infty$, there hold

$$\begin{split} & \left| \int_{B_{r_j}(0)} \Delta(|u|^2/2) dx \right| \leq \int_{\partial B_{r_j}(0)} |u| |\partial_v u| ds \\ & \leq M \left(2\pi r_j \int_{\partial B_{r_j}(0)} |\nabla u|^2 ds \right)^{\frac{1}{2}} = o(1), \quad when \ n = 2; \end{split}$$

and

$$\begin{split} \left| \int_{B_{r_j}(0)} \Delta(|u|^2/2) dx \right| &\leq \int_{\partial B_{r_j}(0)} |u| |\partial_{\nu} u| ds \\ &\leq \left(r_j \int_{\partial B_{r_j}(0)} |u|^{2^*} ds \right)^{\frac{1}{2^*}} \left(r_j \int_{\partial B_{r_j}(0)} |\nabla u|^2 ds \right)^{\frac{1}{2}} |\partial B_{r_j}(0)|^{1-\frac{1}{2}-\frac{1}{2^*}} r_j^{-\frac{1}{2}-\frac{1}{2^*}} \\ &= o(1), \quad \text{when } n \geq 3. \end{split}$$

Thus, by (3.1), we have

$$\int_{\mathbb{R}^n} |u|^2 (\beta^2 - |u|^2) dx = \|\nabla u\|_{L^2(\mathbb{R}^n)}^2 < \infty.$$
(3.2)

Set $S_* = \{x \in \mathbb{R}^n; \epsilon_0 \le |u| \le m/2\}$ for some fixed small constant $\epsilon_0 \in (0, m/3)$. By (1.4) and (1.6),

$$\int_{\mathbb{R}^n} |u|^2 (\beta^2 - |u|^2) dx \ge \int_{S_*} |u|^2 (\beta^2 - |u|^2) dx \ge \frac{3m^2}{4} \epsilon_0^2 |S_*|.$$

This and (3.2) imply $|S_*| < \infty$. Thus, there exists suitably large $R_0 > 0$ such that $S_* \subset B_{R_0}(0)$. Since u is continuous and $\mathbb{R}^n \setminus B_{R_0}(0)$ is connected, either $|u| \le \epsilon_0$ or $|u| \ge m/2$ holds true on $\mathbb{R}^n \setminus B_{R_0}(0)$. When $|u| \le \epsilon_0$ on $\mathbb{R}^n \setminus B_{R_0}(0)$, it is led to $\beta^2 - |u|^2 \ge m^2 - \epsilon_0^2$ on $\mathbb{R}^n \setminus B_{R_0}(0)$. Thus,

$$\begin{split} &\int_{\mathbb{R}^n} |u|^2 dx = \int_{B_{R_0}(0)} |u|^2 dx + \int_{\mathbb{R}^n \setminus B_{R_0}(0)} |u|^2 dx \\ &\leq |B_{R_0}| M^2 + \frac{1}{m^2 - \epsilon_0^2} \int_{\mathbb{R}^n \setminus B_{R_0}(0)} |u|^2 (\beta^2 - |u|^2) dx < \infty, \end{split}$$

by virtue of (3.2). Namely, $u \in L^2(\mathbb{R}^n, \mathbb{R}^k)$.

When $|u| \ge m/2$ on $\mathbb{R}^n \setminus B_{R_0}(0)$, by the same argument above, we can see

$$\int_{\mathbb{R}^n} (\beta^2 - |u|^2) dx < \infty$$

5916

in view of (1.6). This furthermore implies $\beta^2 - |u|^2 \in L^2(\mathbb{R}^n)$ by (1.4) and (1.6). Therefore, the C^1 -functional

$$E(U) = \int_{\mathbb{R}^n} |\nabla U|^2 dx + \frac{1}{2} \int_{\mathbb{R}^n} (\beta^2 - |U|^2)^2 dx$$

makes sense for $U \in B_{\delta}(u)$ for small $\delta > 0$. In addition, the classical solution u of (1.3) is a critical point of E(U). Thus, the Frechet derivative of E(U) at u is zero. This leads to

$$\left[\frac{d}{d\lambda}E(u(\lambda^{-1}x))\right]_{\lambda=1} = 0.$$
(3.3)

On the other hand, for $\lambda \neq 0$,

$$E(u(\lambda^{-1}x)) = \lambda^{n-2} \int_{\mathbb{R}^n} |\nabla u(x)|^2 dx + \frac{\lambda^n}{2} \int_{\mathbb{R}^n} (\beta^2 (\lambda x) - |u(x)|^2)^2 dx.$$

Therefore, from (3.3) we get

$$(n-2)\int_{\mathbb{R}^n} |\nabla u|^2 dx + \frac{n}{2} \int_{\mathbb{R}^n} (\beta^2 - |u|^2)^2 dx + \int_{\mathbb{R}^n} (\beta^2 - |u|^2) (x \cdot \nabla \beta^2) dx = 0.$$
(3.4)

When n = 2, it follows that

$$\int_{\mathbb{R}^2} (\beta^2 - |u|^2)^2 dx = -\int_{\mathbb{R}^2} (\beta^2 - |u|^2) (x \cdot \nabla \beta^2) dx \le 0,$$

which implies $|u| \equiv \beta$ a.e. in \mathbb{R}^2 .

When $n \ge 3$,

$$(n\beta^2 + (n-4)|u|^2) > 0. ag{3.5}$$

By (3.2), (3.4) and (3.5), there holds

$$\frac{1}{2}\int_{\mathbb{R}^n} (\beta^2 - |u|^2)(n\beta^2 + (n-4)|u|^2)dx = -\int_{\mathbb{R}^n} (\beta^2 - |u|^2)(x \cdot \nabla \beta^2)dx \le 0.$$

This result leads to $|u| \equiv \beta$ a.e. in \mathbb{R}^n .

References

- A. Aftalion, S. Alama, L. Bronsard, Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate, Arch. Rational Mech. Anal. 178 (2005) 247–286.
- [2] A. Aftalion, E. Sandier, S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity, J. Math. Pures Anal. 80 (2001) 339–372.
- [3] S. Alama, L. Bronsard, Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions, J. Math. Phys. 46 (2005) no. 9, 095102, 39 pp.
- [4] F. Bethuel, H. Brezis, F. Helein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations 1 (1993) 123-138.
- [5] H. Brezis, F. Merle, T. Riviere, Quantization effects for $-\Delta u = u(1 |u|^2)$ in \mathbb{R}^2 , Arch. Rational Mech. Anal. 126 (1994) 35–58.
- [6] M. Dos Santos, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part II: the non-zero degree case, India. Univ. Math. J. 62 (2013) 551–564.
- [7] M. Dos Santos, P. Mironescu, O. Misiats, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I: the zero degree case, Commun. Contemp. Math. 13 (2011) 885–914.
- [8] M. Herve and R. M. Herve, Quelques proprietes des solutions de l'equation de Ginzburg-Landau sur un ouvert de R², Potential Anal. 5 (1996), 591–609.
- [9] L. Lassoued, P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint, J. d'Anal. Math. 77 (1999) 1–26.
- [10] Y. Lei, Quantization for a Ginzburg-Landau type energy related to superconductivity with normal impurity inclusion, J. Math. Anal. Appl. 335 (2007) 243–259.
- [11] Y. Lei, Some results on an *n*-Ginzburg-Landau type minimizer, J. Comput. Appl. Math. 217 (2008) 123–136.
- [12] Y. Li, Y. Lei, Boundedness for solutions of equations of the Chern-Simons-Higgs type, Appl. Math. Lett. 88 (2019) 8–12.
- [13] L. Ma, Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, C. R. Acad. Sci. Paris 348 (2010) 993–996.
- [14] J. Rubinstein, On the equilibrium position of Ginzburg-Landau vortices, Z. Angew. Math. Phys. 46 (1995) 739–751.