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Abstract. It is known that if an operator T is complex symmetric then its Aluthge transform is also complex
symmetric. This Note is devoted to showing that the Duggal transform doesn’t inherit this property. For
instance, we’ll show that the Duggal transform isn’t always complex symmetric when T is, as it was claimed
in [5].

1. Introduction

Let L(H) be the algebra of all bounded linear operators on a separable complex Hilbert space H . For
an operator T ∈ L(H), T∗ denotes the adjoint of T. An operator T ∈ L(H) is said to be normal if T∗T = TT∗,
quasinormal if T∗T and T commute, binormal if T∗T and TT∗ commute, subnormal if there exists a Hilbert
space K containingH and a normal operator N on K such that NH ⊂ H and T = N|H , and hyponormal if
T∗T − TT∗ ≥ 0.

A conjugation onH is an antilinear operator C : H →H which satisfies 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H
and C2 = I. An operator T ∈ L(H) is said to be complex symmetric if there exists a conjugation C onH such
that T = CT∗C. Many standard operators such as normal operators, algebraic operators of order 2, Hankel
matrices, finite Toeplitz matrices, all truncated Toeplitz operators, and Volterra integration operators are
included in the class of complex symmetric operators. Several authors have studied the structure of complex
symmetric operators (see [6]-[8], [12], and [13] for more details). For spectral properties, see also [2].

Recall that for a given operator T ∈ L(H), we have the following writing T = U|T| called the polar
decomposition of T where U is a partial isometry with (ker U = ker T) and |T| := (T∗T)

1
2 . The Aluthge

transform of T is the operator T̃ := |T|
1
2 U|T|

1
2 . This transform is playing an important role in many aspects

around the study of T (see for example [1], [3], [4] and [11]). An other operator connected to T is the Duggal
transform TD := |T|U and will be considered in this paper concerning particularly complex symmetry.
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2. What happens for Duggal transform?

We start by recalling the following result [15, Theorem 3.1]:

Proposition 2.1. If T =
∑n−1

i=1 λiei ⊗ ei+1 and λi , 0 for all i, then T is complex symmetric if and only if |λi| = |λn−i|

for evey 1 ≤ i ≤ n − 1.

We’ll show the following result which is an immediate consequence.

Corollary 2.2. If T =
∑n−1

i=1 λiei ⊗ ei+1 and λi , 0 for all i, then its Duggal transform TD is complex symmetric if
and only if |λi| = |λn−1−i| for evey 1 ≤ i ≤ n − 2 .

Proof. One may without loss of generality assume that λi > 0 for every i. Or equivalently, consider
T =

∑n−1
i=1 λiei ⊗ ei+1 and λi , 0 for all i, then T =

∑n−1
i=1 |λi| fi ⊗ fi+1 where f1 = e1 and fi+1 := λ̄1...λ̄i

|λ1 |...|λi |
ei+1 and of

courseB = { fi, 1 ≤ i ≤ n} is an orthonormal basis. If we write (and we’ll do so for all matrices in the sequel)
the matrix of T according to the basis B, we have

T � Mat(T,B) =



0 |λ1| 0 . . . 0
0 0 |λ2| 0 . . . 0
...

...
. . .

. . . . . . 0
...

... . 0
. . . 0

. . . . 0 |λn−1|

0 0 . . . . . 0


It has been shown [15, Theorem 3.1] that T is complex symmetric if and only if |λi| = |λn−i| for every

1 ≤ i ≤ n − 1.
A simple calculations shows that

U =



0 1 0 . . . 0
0 0 1 0 . . . 0
...

...
. . .

. . . . . . 0
...

... . 0
. . . 0

. . . . 0 1
0 0 . . . . . 0



|T| =


0
|λ1|

. . .

|λn−1|


Thus the Duggal transform is given by

TD = |T|U =



0 0 0 . . . 0
0 0 |λ1| 0 . . . 0
...

...
. . .

. . . . . . 0
...

... . 0
. . . 0

. . . . 0 |λn−2|

0 0 . . . . . 0


= 0 ⊕



0 |λ1| 0 . . . 0
...

. . .
. . . . . . 0

... . 0
. . . 0

. . . 0 |λn−2|

0 . . . . . 0
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and has (more or less) the same shape as T.
Using Proposition 2.1 and [9, Lemma 1] (which says that A is complex symmetric if and only if 0 ⊕ A is

complex symmetric), TD is complex symmetric if and only if |λi| = |λn−1−i| for every 1 ≤ i ≤ n − 2.

Corollary 2.3. If T =
∑n−1

i=1 λiei ⊗ ei+1 and λi , 0 for all i, then T and its Duggal transforms TD are both complex
symmetric if and only if |λ1| = |λ2| = · · · = |λn−1|.

From what has been shown above, one easily infer that T and TD are both complex symmetric if and
only if |λ1| = |λ2| = . . . = |λn−1|

which means that typically

T = α



0 1 0 . . . 0
0 0 1 0 . . . 0
...

...
. . .

. . . . . . 0
...

... . 0
. . . 0

. . . . 0 1
0 0 . . . . . 0


,

where α is arbitrary in C.
Notice also that in this case all generalized Aluthge transforms of T are complex symmetric with the

conjugation C(z1, z2, . . . , zn) = (z̄n, . . . , z̄2, z̄1).
Also, we aren’t facing the trivial case of a fixed point of Aluthge transform map which means that T is

not quasinormal and even more (see below).
Indeed, if

T =



0 1 0 . . . 0
0 0 1 0 . . . 0
...

...
. . .

. . . . . . 0
...

... . 0
. . . 0

. . . . 0 1
0 0 . . . . . 0


,

then

|T| =


0

1
. . .

1


and

T|T| =



0 1 0 . . . 0
0 0 1 0 . . . 0
...

...
. . .

. . . . . . 0
...

... . 0
. . . 0

. . . . 0 1
0 0 . . . . . 0


= T
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while

|T|T =



0 0 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . . 0
...

...
... 0 1

0 0 . . . 0 0


.

Thus T|T| , |T|T and T is not quasinormal.
On the other hand, remark that this operator is binormal.

3. Binormal operators and the symmetric property

Recall that in L(H), two operators A and B commute if [A,B] =: AB − BA = 0
An operator T inL(H) is quasinormal if T commutes with T∗T and is said to be binormal if TT∗ commutes

with T∗T (or equivalently [|T|, |T∗|] = 0).

Theorem 3.1. If T =
∑n−1

i=1 λiei ⊗ ei+1 and λi , 0 for all i, then T is a binormal operator.

Proof.
It’s easy to see that

|T| =



0
|λ1|

|λ2|

. . .

|λn−1|


and |T∗| =



|λ1|

|λ2|

. . .

|λn−1|

0



|T||T∗| =



0
|λ1λ2|

. . .

|λn−2λn−1|

0


= |T||T∗|

Remark 3.2. 1. The claim in [10, Proposition 3.1] saying that: ”a binormal operator T is complex symmetric if
and only if its Duggal transform is complex symmetric” is not true. One may construct easy examples from
what has been shown above.
Indeed, it’s enough to take

T =


0 1 0 0
0 0 2 0
0 0 0 1
0 0 0 0


2. In the same paper, the authors are using as a fact that if an operator T is binormal and complex symmetric with

the polar decomposition T = U|T| then U is unitary. Also this claim is not true as one may see from all our
examples.
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4. Generalized Aluthge transforms and the symmetric property

Let T ∈ L(H) with the polar decomposition T = U|T|. The generalized Aluthge transform of T is the
operator T̃(t) = |T|tU|T|1−t for t ∈ [0, 1].

One may see the following result as a generalization of the one given in section 2 (see also [15, Section
3]).

Theorem 4.1. If T =
∑n−1

i=1 λiei ⊗ ei+1 and λi , 0 for all i, then its generalized Aluthge transform T̃(t), for t ∈]0, 1].
is complex symmetric if and only if |λi|

t
|λi+1|

1−t = |λn−1−i|
t
|λn−i|

1−t for evey 1 ≤ i ≤ n − 2 . In particular

1. Its Aluthge transform T̃ = T̃( 1
2 ) is complex symmetric if and only if |λiλi+1| = |λn−1−iλn−i| for evey 1 ≤ i ≤ n−2.

2. Its Duggal transform TD = T̃(1) is complex symmetric if and only if |λi| = |λn−1−i| for evey 1 ≤ i ≤ n − 2.

Proof.
As in the previous section, one may check easily that

T̃(t) = |T|tU|T|1−t

=


0
|λ1|

. . .

|λn−1|



t



0 1 0 . . . 0
0 0 1 0 . . . 0
...

...
. . .

. . . . . . 0
...

... . 0
. . . 0

. . . . 0 1
0 0 . . . . . 0




0
|λ1|

. . .

|λn−1|



1−t

=



0 0
0 |λ1|

t
|λ2|

1−t

0

0
. . .
. . . |λn−2|

t
|λn−1|

1−t

0


= 0 ⊕



0 |λ1|
t
|λ2|

1−t 0 . . . 0
...

. . .
. . . . . . 0

... . 0
. . . 0

. . . 0 |λn−2|
t
|λn−1|

1−t

0 . . . . . 0


for every t ∈]0, 1], and the result follows immediately from [9, Lemma 1] and [15, Theorem 3.1].

Remark 4.2. 1. If an operator T is complex symmetric then its Aluthge transform T̃ = T̃( 1
2 ) is complex symmetric

but the converse is not true: Consider for example n = 5 and |λ1| = |λ3|, |λ2| = |λ4| and |λ1| , |λ4|.
2. The second assertion of the theorem shows that for most cases in this situation, the Duggal transform is not

complex symmetric.
The explanation of the confusion in [5] comes from the following: as it is stated in [7, Theorem 2], if T ∈ L(H)
is a complex symmetric operator with a conjugation C then there exists a partial conjugation J supported on
ran(|T|) such that T = CJ|T| and J|T| = |T|J. A generalization of a theorem of Godič and Lucenko is used to
show that the U appearing in the polar decomposition may be written as U = CJ where J is partial conjugation
which can of course be extended to a conjugation (let’s say J) acting on the whole space H without affecting
T = CJ|T| = CJ|T|. The only problem is that if one considers |T|CJ , then it is not necessarily the Duggal
transform of T.

Indeed,
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Consider our previous example in Remark 3.2

T =


0 1 0 0
0 0 2 0
0 0 0 1
0 0 0 0

 = U|T|

where

U =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 and |T| =


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

 .
We know that T is complex symmetric operator with the conjugation C(z1, z2, z3, z4) = (z̄4, z̄3, z̄2, z̄1). We know
also that U = CJ. Thus J = CU and we have J(z1, z2, z3, z4) = (0, z̄4, z̄3, z̄2). (or equivalently J is a partial
conjugation such that Je1 = 0, Je2 = e4, Je3 = e3 and Je4 = e2)
Obviously, J can be extended to a conjugation J (by setting Je1 = e1 which means J(z1, z2, z3, z4) =
(z̄1, z̄4, z̄3, z̄2).
It’s rather easy to see that

CJ =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 = U while CJ =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



|T|CJ =


0 0 0 0
0 0 1 0
0 0 0 2
1 0 0 0

 ,

0 0 0 0
0 0 1 0
0 0 0 2
0 0 0 0

 = TD.

3. When n = 3, all Duggal transforms of our studied operators are complex symmetric. Indeed, in this case, the
Duggal transforms are nilpotent of degree 2 and it is known that these operators are complex symmetric.

5. Added remarks on mean transforms and the symmetric property

Recall that if T ∈ L(H), then the generalized mean transform of T is the operator T̂(t) = 1
2 [T̃(t)+ T̃(1− t)],

where T̃(t) = |T|tU|T|1−t for t ∈ (0, 1
2 ) is the generalized Aluthge transform of T. The mean transform has

been considered in [14].

Theorem 5.1. If T =
∑n−1

i=1 λiei ⊗ ei+1 and λi , 0 for all i, then its generalized mean transform T̂(t) (t ∈]0, 1
2 ]) is

complex symmetric if and only if |λi|
t
|λi+1|

1−t+|λi|
1−t
|λi+1|

t = |λn−1−i|
t
|λn−i|

1−t+|λn−1−i|
1−t
|λn−i|

t for evey 1 ≤ i ≤ n−2
. In particular

1. If T is complex symmetric then its generalized mean transforms T̂(t) are complex symmetric for all t in ]0, 1
2 ].

2. On the other hand, its mean transform T̂ = T̂(0) is not complex symmetric in general.

Proof.
As in the proof of theorem 4.1, one has for t ∈]0, 1

2 ] that
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T̂(t) = 1
2 [T̃(t) + T̃(1 − t)]

=



0 0

0 1
2

[
|λ1|

t
|λ2|

1−t + |λ1|
1−t
|λ2|

t
]

0

0
. . .
. . . 1

2

[
|λn−2|

t
|λn−1|

1−t + |λn−2|
1−t
|λn−1|

t
]

0



= 0 ⊕ 1
2



0
(
|λ1|

t
|λ2|

1−t + |λ1|
1−t
|λ2|

t
)

0 . . . 0
...

. . .
. . . . . . 0

... . 0
. . . 0

. . . 0
(
|λn−2|

t
|λn−1|

1−t + |λn−2|
1−t
|λn−1|

t
)

0 . . . . . 0


,

which proves, thanks to [9, Lemma 1] and [15, Theorem 3.1], the main statement of our theorem. The
second statement is obvious since |λi| = |λn−i| and |λi+1| = |λn−i−1| for every 1 ≤ i ≤ n − 2, whenever T is
complex symmetric.

Now, the last statement is illustrated by the following example.
Let’s consider the example with n = 4. (One could, of course, treat the general case; we choose to leave

it to the interested reader.)

T =


0 |λ1| 0 0
0 0 |λ2| 0
0 0 0 |λ3|

0 0 0 0


It’s rather easy to show that

T̂ =


0 |λ1 |

2 0 0
0 0 |λ1 |+|λ2 |

2 0
0 0 0 |λ2 |+|λ3 |

2

0 0 0 0


• Then T̂ is complex symmetric if and only if |λ1| = |λ2| + |λ3|. Notice that this happens only if λ2 = 0 if

we assume, in addition, that T is complex symmetric (which means |λ1| = |λ3|).
• T̂ may be complex symmetric even though T is not!
• Better (or worse!), for our examples T̂ is never complex symmetric when T and its Duggal transform

TD are!
Indeed, it is enough to check it for the following example.
If

T =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 then T̂ =


0 1

2 0 0
0 0 1 0
0 0 0 1
0 0 0 0
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and T̂ is not complex symmetric.

Remark 5.2. It’s easy to see that the considered examples: T =
∑n−1

i=1 λiei ⊗ ei+1 and λi , 0 for all i, are also centered
in the sense that the doubly infinite sequence (here it is a finite sequence, since T is nilpotent Tn = 0)

{. . . , (T2)∗T2,T∗T,TT∗,T2(T2)∗, . . . }

is a set of mutually commuting operators.
This also answers in the negative some questions asked in section 5 of [10].
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