Connections Between H_{v}-S-Act, GHS-Act and S-Act

Salma Shaheen ${ }^{\text {a }}$, Muhammad Shabir ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics Quaid-i-Azam University Islamabad Pakistan

Abstract

The largest class of hyperstructures is the one which satisfies the weak properties and they are called H_{v}-structures. In this paper, the concept of H_{v}-S-act is introduced and some of their properties are investigated. The present paper establishes a possible connection between S-act, $G H S$-act and H_{v}-S-act. It is shown that the quotient of GHS-act with any equivalence relation is $H_{v}-S$-act. The main tool to study all hyperstructures is the fundamental relations. The study of fundamental relations in H_{v}-S-act reveals some interesting results. Specifically, these relations connect weak hyperactions with the corresponding classical actions.

1. Introduction

Algebraic hyperstructures are a natural extension of classical algebraic structures. Theory of hyperstructure is initiated in 1934 by the French Mathematician Marty [11]. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. This particular character of hyperstructure attracted mathematicians and researchers towards this direction. During last decades hyperstructures seem to have a variety of applications not only in other branches of mathematics but also in many other sciences including the social sciences. These applications range from biomathematics and hardonic physics to automata theory. Hyperstructure can now be widely applied in industry and production. A recent book contains a wealth of applications [2]. Via this book, Corsini and Leoreanu presented some of numerous applications of the algebraic hyperstructures. Different hyperstructures are extensively studied from the theoretical perspective such as in fuzzy set theory, rough set theory, optimization theory, cryptography, codes, analysis of computer programs, automata, formal language theory, combinatorics, artificial intelligence, probability, graphs and hypergraphs, geometry, lattices and binary relations, see [5], [6], [7], [8], [9] [10] and [21].
H_{v}-structures were introduced by Vougiouklis in Fourth AHA Congress. Vougiouklis defined the notion of an H_{v}-group [18]. H_{v}-structures satisfy the weak axioms, where the non-empty intersection replaces the equality. Since then many papers concerning various H_{v}-structures have appeared in literature, see [2]. Vougiouklis defined the concept of H_{v}-vector space which is a generalization of the concept of vector space in classical theory [18]. Davvaz introduced H_{v}-module of fractions of a hypermodule which is a generalization of the concept of module of fractions [3]. Davvaz surveyed the theory of H_{v}-structures [4]. The reader will find some principal notions and theorems about H_{v}-structures in book "Hyperstructures

[^0]and their representations" [20]. Applications of H_{v}-structures in other sciences can be seen in [6], [7] and [20].

One of the very competent conception in many branches of mathematics as well as in computer science is the action of a semigroup or a monoid on a non-empty set. A representation of a semigroup S by transformation of a set defines an S-act. Sen et al. [13] and Shahbaz [14] have introduced the concept of hyperaction. Their approach of defining hyperaction lacks perfection. Shabir et al., modified this conception by introducing the notion of GHS-act [14].

In this paper we present the idea of weak hyperaction. This paper is arranged in the following manner. Section 2 is a collection of definitions of basic terms and theorems concerning hyperstructure and semigroup action. In Section 3, we introduce the action of H_{v}-monoid on a non-empty set and call it H_{v}-S-act. Furthermore, some basic properties of H_{v}-S-acts are investigated. Section 3 is devoted to the study of congruences and quotients of hyperactions. It is shown that the quotient of a GHS-act with an equivalence relation is $H_{v}-S$-act. The main tools in the theory of hyperstructures are the fundamental relations. In section 5, we study the fundamental relations in $H_{v}-S$-act which relates weak hyperactions with classical actions. In the end, some concluding remarks are given.

2. Preliminaries

In this section some basic concepts pertaining to hyperstructure and semigroup acts are given, which will be required in later sections.

Definition 1. [2] Let S be a non-empty set and $P^{*}(S)$ be the set of all non-empty subsets of S. A n-hyperoperation on S is a map $f: S^{n} \longrightarrow P^{*}(S)$. The number n is called the arity of f. A set S, endowed with a family Γ of hyperoperations is called a hyperstructure or a multivalued algebra. If Γ is singleton that is $\Gamma=\{f\}$, where arity of f is 2 , then the hyperstructure is called a hypergroupoid.

Definition 2. [2] If $\circ: S \times S \longrightarrow \mathcal{P}^{*}(S)$ is a hyperoperation or join operation, then the image of the pair (s, t) of $S \times S$ is denoted by $s \circ t$ and is called the hyperproduct of s and t.

If S_{1} and S_{2} are non-empty subsets of (S, \circ), then $S_{1} \circ S_{2}=\underset{\substack{s \in S_{1} \\ s^{\prime} \in S_{2}}}{\cup} s \circ s^{\prime}$.
In the pursuit, we state some basic notions related to hypergroupoids.
Definition 3. [2] A hypergroupoid (S, \circ) is called a semihypergroup iffor all $s_{1}, s_{2}, s_{3} \in S,\left(s_{1} \circ s_{2}\right) \circ s_{3}=s_{1} \circ\left(s_{2} \circ s_{3}\right)$.
Definition 4. [16] A hypergroupoid (S, \circ) is called an H_{v}-semigroup if

$$
\left(s_{1} \circ s_{2}\right) \circ s_{3} \cap s_{1} \circ\left(s_{2} \circ s_{3}\right) \neq \emptyset \text { for all } s_{1}, s_{2}, s_{3} \in S
$$

An H_{v}-semigroup is called an H_{v}-group if
$s \circ S=S \circ s=S$ for all $s \in S$.
Definition 5. [16] An element e in a semihypergroup (H_{v}-semigroup) $(S, \circ$) is called an identity element if $s \in$ $e \circ s=s \circ e(s \in e \circ s \cap s \circ e)$ for all $s \in S$. A hypermonoid ($H_{v^{-}}$monoid) is the semihypergroup (H_{v}-semigroup) with an identity element.

Definition 6. [16] An element 0 in a semihypergroup $\left(H_{v}\right.$-semigroup) (S, \circ) is called a zero element if $0 \in 0 \circ s=$ $s \circ 0(0 \in s \circ 0 \cap 0 \circ s)$ for all $s \in S$.

Definition 7. [2] A semihypergroup (H_{v}-semigroup) (S, \circ) is commutative if $s \circ t=t \circ s(s \circ t \cap t \circ s \neq \emptyset)$ for all $s, t \in S$.

Definition 8. [9] A non-empty subset T of a semihypergroup (S, \circ) is called a subsemihypergroup of (S, \circ) if $T \circ T \subseteq T$.
The idea of representing an object by some other object which is better known at least in some respects is quite familiar in mathematics. Representation of semigroups (monoids) by transformations of sets give rise to the notion of action of semigroups (monoids).

Definition 9. [11] Let ($S, \cdot \cdot$) be a monoid and A be a non-empty set. A right action of S on A is a function $\xi: A \times S \longrightarrow A$ (usually denoted by $\xi(a, s) \longmapsto a s)$ such that
(i) $a(s t)=(a s) t$,
(ii) $a e=a$, for all $a \in A$ and $s, t \in S$.

Definition 10. [15] Let (S, \circ) be a hypermonoid with identity element e and A be a non-empty set. A generalized hyperaction of S on A is a function * defined as

$$
\begin{array}{rll}
* & : & A \times S \longrightarrow \mathcal{P}^{*}(A) \\
(a, s) & \longmapsto & a * s \in \mathcal{P}^{*}(A)
\end{array}
$$

where $\mathcal{P}^{*}(A)$ is the family of all non-empty subsets of A. A non-empty set A endowed with hyperaction $*$ is called right GHS-act if for all $a \in A$ and $s, t \in S$
(i) $a *(s \circ t)=(a * s) * t$,
(ii) $a \in a * e$.

Example 1. [15] Let A be a non-empty set and $\mathcal{T}(A)$ be the set of all transformations from A to A. Define $\circ: \mathcal{T}(A) \times \mathcal{T}(A) \longrightarrow \mathcal{P}^{*}(\mathcal{T}(A))$ by $f \circ g=\{f, g$, fg\} for all $f, g \in \mathcal{T}(A)$, where $f g$ represents the composition of two maps. Then $(\mathcal{T}(A), \circ)$ is a hypermonoid. Now define $*: \mathcal{T}(A) \times A \longrightarrow \mathcal{P}^{*}(A)$ by $f * a=\{a, f(a)\}$. Then $\mathcal{T}_{(A)} A$ is a left $G H \mathcal{T}(A)$-act. Indeed, for $f, g \in \mathcal{T}(A)$ and $a \in A, g *(f * a)=\{a, f(a), g(a), g(f(a))\}=(g \circ f) * a$.

3. On Weak Hyperaction

In this section, we define the hyperaction of an H_{v}-monoid on a non-empty set and call it H_{v} - S-act. The notion of an H_{v}-S-act is a generalization of GHS-act in hyperstructure as well as S-act notion in classical theory.

Definition 11. Let (S, \circ) be an H_{v}-monoid and A be a non-empty set. A weak hyperaction of S on A is a function

$$
\begin{aligned}
{ }^{*} \mathcal{H}: \quad A \times S & \longrightarrow \mathcal{P}^{*}(A) \\
(a, s) & \longmapsto a *_{\mathcal{H}} s \in \mathcal{P}^{*}(A)
\end{aligned}
$$

where $\mathcal{P}^{*}(A)$ is the family of all non-empty subsets of A. A non-empty set A endowed with weak hyperaction ${ }^{*} \mathcal{H}$ is called right H_{v}-S-act or right H_{v}-act over S if for all $a \in A$ and $s, t \in S$
(i) $a{ }^{*} \mathcal{H}(s \circ t) \cap\left(a{ }^{*} \mathcal{H} s\right){ }^{*} \mathcal{H} t \neq \emptyset$,
(ii) $a \in a *_{\mathcal{H}} e$.

We write $\left(A_{S},{ }^{*} \mathcal{H}\right)$ to indicate that A is a right H_{v}-S-act. Analogously, one can define a left H_{v} - S-act, written as $\left({ }_{\varsigma} A,{ }^{*} \mathcal{H}\right)$.

In order to understand the concept, consider the following examples.

Example 2. Consider the H_{v}-monoid (S, \circ), where $S=\{e, s, t, q\}$ and \circ is defined in Table 1.

\circ	e	s	t	q
e	e	s	t	q
s	s	s	$\{s, t\}$	$\{s, t\}$
t	t	q	q	q
q	q	$\{s, t\}$	$\{s, t\}$	$\{s, t\}$

Table 1
Let $A=\{a, b, c, d\}$ and weak hyperaction ${ }^{*} \mathcal{H}$ of S on A is presented in Table 2.

$* \mathcal{H}$	e	s	t	q
a	a	$\{a, b\}$	$\{a, b\}$	$\{a, b\}$
b	b	b	b	b
c	c	d	d	d
d	d	$\{c, d\}$	$\{c, d\}$	$\{c, d\}$
	Table 2			

Then $\left(A_{S},{ }^{*} \mathcal{H}\right)$ is a right H_{v}-S-act over H_{v}-monoid (S, \circ).
Example 3. Consider the classical differential ring of real valued functions $C^{1}(\mathbb{R})$ with the usual differentiation. For any $f, g \in C^{1}(\mathbb{R})$, define a hyperoperation on the ring $C^{1}(\mathbb{R})$ by

$$
f \circ g=\{f, g, f g\}
$$

where $f g$ is defined as $(f g)(x)=f(x) g(x)$ for all $x \in \mathbb{R}$. Then for $f, g, h \in C^{1}(\mathbb{R})$

$$
(f \circ g) \circ h=\{f, g, h, f g, f h, g h,(f g) h\}=f \circ(g \circ h)
$$

and also $I($ identity function $) \in C^{1}(\mathbb{R})$ and $I \in I \circ f=f \circ I$. Therefore, $\left(C^{1}(\mathbb{R}), \circ\right)$ is a hypermonoid. Define ${ }^{*} \mathcal{H}: \mathbb{R} \times C^{1}(\mathbb{R}) \longrightarrow \mathcal{P}^{*}(\mathbb{R})$ (described as $\left.(a, f) \longmapsto a{ }^{*} \mathcal{H} f\right)$ by

$$
a *_{\mathcal{H}} f=\left\{a, f(a), f^{\prime}(a)\right\} .
$$

Here $a *_{\mathcal{H}} I=\{a, 1\}$, for all $a \in \mathbb{R}$. Also

$$
\begin{aligned}
\left(a *_{\mathcal{H}} f\right){ }^{*} \mathcal{H} g & =\left\{a, f(a), f^{\prime}(a)\right\} *_{\mathcal{H}} g \\
& =\left\{a, f(a), g(a), f^{\prime}(a), g^{\prime}(a), g(f(a)), g\left(f^{\prime}(a)\right), g^{\prime}(f(a)), g^{\prime}\left(f^{\prime}(a)\right)\right\} . \\
a *_{\mathcal{H}}(f \circ g) & =a *_{\mathcal{H}}\{f, g, f g\} \\
& =\left\{a, f(a), g(a),(f g)(a), f^{\prime}(a), g^{\prime}(a),(f g)^{\prime}(a)\right\} .
\end{aligned}
$$

As, $\left(a{ }^{*}{ }_{\mathcal{H}} f\right){ }^{*} \mathcal{H} g \cap a{ }^{*} \mathcal{H}(f \circ g) \neq \emptyset$, therefore \mathbb{R} is an $H_{v}-C^{1}(\mathbb{R})$-act.
Remark 1. As every hypermonoid is an H_{v}-monoid, we can compare generalized hyperaction and weak hyperaction of a hypermonid on a non-empty set. For a hypermonoid (S, \circ), every right GHS-act is an H_{v}-S-act but the converse is not true in general. Consider the hypermonoid (S, \circ), where $S=\{e, s, t, q\}$ and \circ is defined in Table 3 .

\circ	e	s	t	q
e	e	s	t	q
s	s	s	$\{s, t\}$	s
t	$\{s, t\}$	s	t	s
q	q	s	s	q

Table 3

Let $A=\{a, b\}$ and hyperaction ${ }^{*} \mathcal{H}$ of S on A is presented in Table 4.

${ }^{*} \mathcal{H}$	e	s	t	q
a	a	a	b	A
b	A	a	A	A

Table 4
Then $\left(A_{S},{ }^{*} \mathcal{H}\right)$ is a right H_{v}-S-act over hypermonoid (S, \circ) which is not a GHS-act because $a{ }^{*} \mathcal{H}(s \circ t) \neq\left(a *_{\mathcal{H}} s\right){ }^{\mathcal{H}}$ t.
All properties of H_{v}-S-acts are also true for subsets. Therefore, we have the following result.
Proposition 1. Let A be a non-empty set, (S, \circ) be an H_{v}-monoid and ${ }^{*} \mathcal{H}$ be a weak hyperaction of S on A. Then $\left(A_{S},{ }^{*} \mathcal{H}\right)$ is an H_{v}-S-act if and only if for all $A^{\prime} \in \mathcal{P}^{*}(A)$ and $S_{1}, S_{2} \in \mathcal{P}^{*}(S)$ the following conditions hold:
(i) $A^{\prime}{ }^{*} \mathcal{H}\left(S_{1} \circ S_{2}\right) \cap\left(A^{\prime}{ }^{*}{ }_{\mathcal{H}} S_{1}\right){ }^{\mathcal{H}} S_{2} \neq \emptyset$,
(ii) $A^{\prime} \subseteq A^{\prime}{ }^{*} \mathcal{H} e$.

Proof. Suppose $\left(A_{S},{ }^{*} \mathcal{H}\right)$ is an H_{v}-S-act. Then for $A^{\prime} \in \mathcal{P}^{*}(A)$ and $S_{1}, S_{2} \in \mathcal{P}^{*}(S)$, we have

$$
\begin{aligned}
A^{\prime} *_{\mathcal{H}}\left(S_{1} \circ S_{2}\right) & =\bigcup_{\substack{a \in A^{\prime} \\
s_{1}, S_{2} \in S}} a * \mathcal{H}\left(s_{1} \circ s_{2}\right) \\
\left(A^{\prime} *_{\mathcal{H}} S_{1}\right) *_{\mathcal{H}} S_{2} & =\bigcup_{\substack{a \in A^{\prime} \\
s_{1}, s_{2} \in S}}\left(a * \mathcal{H} s_{1}\right) *_{\mathcal{H}} s_{2} .
\end{aligned}
$$

As $\left(A_{S},{ }^{*} \mathcal{H}\right)$ is an $H_{v}-S$-act, therefore $A^{\prime}{ }^{*} \mathcal{H}\left(S_{1} \circ S_{2}\right) \cap\left(A^{\prime}{ }^{*} \mathcal{H} S_{1}\right){ }^{\mathcal{H}} S_{2} \neq \emptyset$. Also $A^{\prime} \subseteq A^{\prime}{ }^{*} \mathcal{H}$ e for $A^{\prime} \in \mathcal{P}^{*}(A)$. Converse is obvious.

Remark 2. If (S, \circ) is a commutative H_{v}-monoid, then every left H_{v}-S-act can be considered as a right H_{v}-S-act. Indeed, if $\left({ }_{S} A,{ }^{*} \mathcal{H}\right)$ is a left $H_{v^{-}}$S-act, we may define a right multiplication by elements of S as:

$$
a * s=s{ }^{*} \mathcal{H} \text { a for } a \in A, s \in S
$$

Then $a \in a * e=e *_{\mathcal{H}}$ a for all $a \in A$ and $\left(a * s_{1}\right) * s_{2} \cap a *\left(s_{1} \circ s_{2}\right) \neq \emptyset$ for all $s_{1}, s_{2} \in S$ and $a \in A$.
Proposition 2. Let $\left(A_{S},{ }_{\mathcal{H}}\right)$ and $\left(B_{S}, *_{\mathcal{H}}^{\prime}\right)$ be two right H_{v}-acts over an H_{v}-monoid (S, \circ). Then $A \times B$ can induce an H_{v}-S-act.

Proof. Define the weak hyperaction \circledast of S on Cartesian product $A \times B$ by
$(a, b) \circledast s=\left(a *_{\mathcal{H}} s\right) \times\left(b *_{\mathcal{H}}^{\prime} s\right)$ for $(a, b) \in A \times B$ and $s \in S$.
Then for all $(a, b) \in A \times B$ and $s, t \in S$, we have

$$
\begin{aligned}
((a, b) \circledast s) \circledast t & =\underset{\left(a^{\prime}, b^{\prime}\right) \in(a, b) \circledast s}{\cup}\left(a^{\prime}, b^{\prime}\right) \circledast t \\
& =\bigcup_{\substack{a^{\prime} \in a a^{\prime} *_{\mathcal{H}} \\
b^{\prime} \in b^{s} \mathcal{H}^{s}}}\left(a^{\prime} *_{\mathcal{H}} t\right) \times\left(b^{\prime} *_{\mathcal{H}}^{\prime} t\right) \\
& =\left(\left(a *_{\mathcal{H}} s\right) *_{\mathcal{H}} t\right) \times\left(\left(b *_{\mathcal{H}}^{\prime} s\right) *_{\mathcal{H}} t\right) .
\end{aligned}
$$

$(a, b) \circledast(s \circ t)=\left(a *_{\mathcal{H}}(s \circ t)\right) \times\left(b *_{\mathcal{H}}^{\prime}(s \circ t)\right)$.
As $\left(a *_{\mathcal{H}} s\right) *_{\mathcal{H}} t \cap a *_{\mathcal{H}}(s \circ t) \neq \emptyset$ and $\left(b *_{\mathcal{H}}^{\prime} s\right) *_{\mathcal{H}} t \cap b *_{\mathcal{H}}(s \circ t) \neq \emptyset$, we have $((a, b) \circledast s) \circledast t \cap(a, b) \circledast(s \circ t) \neq \emptyset$. Also $a \in a{ }^{*} \mathcal{H} e$ and $b \in b{ }^{\prime} \mathcal{H}^{\prime} e$ imply that $(a, b) \in\left(a{ }^{*} \mathcal{H} e\right) \times\left(b{ }^{*} \mathcal{H} e\right)=(a, b) \circledast e$. Hence $\left((A \times B)_{S}, \circledast\right)$ is an H_{v}-S-act.

Sen et al. (2011) defined the Cartesian product of two hypermonoids. In a similar way, we can define Cartesian product of two H_{v}-monoids.

Let (S, \circ) and $\left(T, \circ^{\prime}\right)$ be two H_{v}-monoids with identities e and e^{\prime}, respectively. Then their Cartesian product $S \times T$ can induce an H_{v}-monoid with respect to the hyperoperation \otimes defined as:

$$
\left(s_{1}, t_{1}\right) \otimes\left(s_{2}, t_{2}\right)=\left(s_{1} \circ s_{2}\right) \times\left(t_{1} \circ^{\prime} t_{2}\right)=\left\{(s, t) \mid s \in s_{1} \circ s_{2}, t \in t_{1} \circ^{\prime} t_{2}\right\} .
$$

Identity element of $S \times T$ is $\left(e, e^{\prime}\right)$. The H_{v}-monoid $S \times T$ is called the direct product of S and T, written as $(S \times T, \otimes)$.

Proposition 3. Let $\left(A_{S}, *_{\mathcal{H}}\right)$ and $\left(B_{T}, *_{\mathcal{H}}^{\prime}\right)$ be an H_{v}-S-act and an H_{v}-T-act, respectively. Then $A \times B$ can induce an H_{v} - $(S \times T)$-act.

Proof. Define $\circledast:(A \times B) \times(S \times T) \longrightarrow \mathcal{P}^{*}(A \times B)$ by
$(a, b) \circledast(s, t)=\left(a *_{\mathcal{H}} s\right) \times\left(b *_{\mathcal{H}}^{\prime} t\right)$ for all $(a, b) \in(A \times B)$ and $(s, t) \in S \times T$.
Then for all $(a, b) \in A \times B$ and $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in S \times T$, we have

$$
\begin{aligned}
\left((a, b) \circledast\left(s_{1}, t_{1}\right)\right) \circledast\left(s_{2}, t_{2}\right) & =\underset{\substack{a^{\prime} \in a *_{\mathcal{H}} \mathcal{S}_{1} \\
b^{\prime} \in b^{\prime} \mathcal{H}_{1}^{\prime}}}{\cup}\left(a^{\prime}, b^{\prime}\right) \circledast\left(s_{2}, t_{2}\right) \\
& =\underset{\substack{a^{\prime} \in a *^{\prime} \mathcal{H}^{\prime} \mathcal{S}_{1} \\
b^{\prime} \in b^{\prime} \mathcal{H}^{1}}}{\cup}\left(a^{\prime} *_{\mathcal{H}} s_{2}\right) \times\left(b^{\prime} *_{\mathcal{H}}^{\prime} t_{2}\right) \\
& =\left(\left(a *_{\mathcal{H}} s_{1}\right) *_{\mathcal{H}} s_{2}\right) \times\left(\left(b *_{\mathcal{H}}^{\prime} t_{1}\right) *_{\mathcal{H}}^{\prime} t_{2}\right) . \\
(a, b) \circledast\left(\left(s_{1}, t_{1}\right) \otimes\left(s_{2}, t_{2}\right)\right) & =(a, b) \circledast\left(\left(s_{1} \circ s_{2}\right) \times\left(s_{2} \circ^{\prime} t_{2}\right)\right) \\
& =\left(a *_{\mathcal{H}}\left(s_{1} \circ s_{2}\right)\right) \times\left(b *_{\mathcal{H}}^{\prime}\left(t_{1} \circ^{\prime} t_{2}\right)\right)
\end{aligned}
$$

As $\left(A_{S},{ }^{*} \mathcal{H}\right)$ is an H_{v}-S-act and $\left(B_{T},{ }^{\prime}{ }_{\mathcal{H}}\right)$ is an H_{v}-T-act, we have $\left(\left((a, b) \circledast\left(s_{1}, t_{1}\right)\right) \circledast\left(s_{2}, t_{2}\right)\right) \cap(a, b) \circledast\left(\left(s_{1}, t_{1}\right) \otimes\left(s_{2}, t_{2}\right)\right) \neq$ \emptyset. Also, $a \in a *_{\mathcal{H}} e$ and $b \in b *_{\mathcal{H}}^{\prime} e^{\prime}$ imply that $(a, b) \in\left(a *_{\mathcal{H}} e\right) \times\left(b *_{\mathcal{H}}^{\prime} e^{\prime}\right)=(a, b) \circledast\left(e, e^{\prime}\right)$. Hence, $A \times B$ is an $H_{v}-(S \times T)$-act.

Definition 12. Let $\left(X_{S}, *\right)$ be an H_{v}-S-act. An element θ of X is called an absorbing element of X if $\theta \in \theta * s$ for all $s \in S$.

Note that an H_{v}-S-act may have several absorbing elements, it may also have no absorbing element. In order to understand the concept, consider the following example in which every element is an absorbing element.

Example 4. Let (S, \circ) be an H_{v}-monoid, where $S=\{e, p, q, s, t, v\}$ and \circ is defined in Table .

\circ	e	p	q	s	t	v
e	e	$\{e, p\}$	$\{e, q\}$	$\{e, s\}$	$\{e, t\}$	$\{e, v\}$
p	$\{e, p\}$	p	$\{s, t\}$	t	p	$\{s, v\}$
q	$\{e, q\}$	$\{s, v\}$	q	$\{p, t\}$	$\{e, t\}$	v
s	$\{e, s\}$	s	$\{t, v\}$	s	t	v
t	$\{e, t\}$	$\{q, s\}$	t	$\{p, q\}$	t	v
v	$\{e, v\}$	$\{s, t\}$	$\{s, t\}$	$\{s, t\}$	$\{s, t\}$	v

Table 5

Let $X=\{x, y, z\}$ and the weak hyperaction $*$ of S on X is exhibited in Table .

$*$	e	p	q	s	t	v
x	x	$\{x, y\}$	$\{x, z\}$	x	$\{x, y, z\}$	$\{x, z\}$
y	y	$\{x, y\}$	$\{x, y\}$	$\{x, y\}$	$\{x, y\}$	$\{x, z\}$
z	z	$\{x, y, z\}$	z	z	z	$\{x, y, z\}$

Table 6
Then $\left(x_{s}, *\right)$ is an H_{v}-S-act and $X \in X *$ sor all $x \in x$ and $s \in S$.
Proposition 4. Let $\left(A_{S}, *_{\mathcal{H}}\right)$ and $\left(B_{S}, *_{\mathcal{H}}^{\prime}\right)$ be two $H_{v}-S$-acts. If θ and θ^{\prime} are absorbing elements of A and B, respectively, then $\left(\theta, \theta^{\prime}\right)$ is an absorbing element of $A \times B$, which is an H_{v}-S-act with weak hyperaction \circledast.

Proof. As θ and θ^{\prime} are absorbing elements of A and B, we have $\theta \in \theta{ }^{*} \mathcal{H} s$ and $\theta^{\prime} \in \theta^{\prime}{ }^{*} \mathcal{H} s$ for all $s \in S$ which implies $\left(\theta, \theta^{\prime}\right) \in\left(\theta{ }^{*} \mathcal{H} s\right) \times\left(\theta^{\prime}{ }^{*} \mathcal{H} s\right)=\left(\theta, \theta^{\prime}\right) \circledast s$ for all $s \in S$. Hence $\left(\theta, \theta^{\prime}\right)$ is an absorbing element of $A \times B$.

Proposition 5. Let $\left(A_{S},{ }^{*} \mathcal{H}\right)$ and $\left(B_{T},{ }^{*}{ }_{\mathcal{H}}\right)$ be an H_{v}-S-act and an $H_{v}-T$-act, ${ }_{\mathcal{H}}$. If θ and θ^{\prime} are absorbing elements of A and B, respectively, then $\left(\theta, \theta^{\prime}\right)$ is an absorbing element of $A \times B$, which is an $H_{v}-(S \times T)$-act with weak hyperaction \circledast.

Proof. Directly follows from Proposition 3.
Definition 13. Let $\left(A_{S},{ }^{*} \mathcal{H}\right)$ be a right H_{v}-S-act. A subset $A^{\prime} \neq \emptyset$ of A is called an H_{v}-S-subact of A if $A^{\prime}{ }^{*} \mathcal{H} S \subseteq A^{\prime}$, that is, $a^{\prime}{ }_{\mathcal{H}} s \subseteq A^{\prime}$ for all $a^{\prime} \in A^{\prime}$ and $s \in S$.

Proposition 6. Let $\left(A_{S},{ }^{*} \mathcal{H}\right)$ be an H_{v}-S-act and A_{1} and A_{2} be any two H_{v}-S-subacts of A. Then $A_{1} \cap A_{2}$ is also an H_{v}-S-subact of A if $A_{1} \cap A_{2}$ is non-empty.

Proof. The proof is straightforward.
By the definition of an H_{v}-S-act and the product of H_{v}-S-acts we have the next proposition.
Proposition 7. Let $\left(A_{S},{ }^{*} \mathcal{H}\right)$ and $\left(B_{T},{ }^{\prime}{ }_{\mathcal{H}}^{\prime}\right)$ be two H_{v}-S-acts and A^{\prime} and B^{\prime} be H_{v}-S-subacts of A and B, respectively. Then $A^{\prime} \times B^{\prime}$ is an H_{v}-S-subact of $A \times B$, which is an H_{v}-S-act with weak hyperaction \otimes.

Definition 14. Let $\left(X_{S}, *\right)$ and $\left(Y_{S}, *^{\prime}\right)$ be two H_{v}-S -acts. A mapping $f: X \rightarrow Y$ is called
(i) weak S-homomorphism, if $f(X * s) \cap\left(f(X) *^{\prime} s\right) \neq \emptyset$ for all $x \in X, s \in S$.
(ii) inclusion S-homomorphism, if $f(X * s) \subseteq\left(f(x) *^{\prime} s\right)$ for all $x \in X, s \in S$.
(iii) strong S-homomorphism, if $f(x * s)=f(X) *_{\mathcal{H}}^{\prime}$ sfor all $x \in X, s \in S$.

Obviously, every s-S-homomorphism is i-S-homomorphism and every i-S-homomorphism is w - S homomorphism. But the converse is not true in general. An w - S-homomorphism (resp. i - S-homomorphism, s - S-homomorphism) $f: A \rightarrow B$ is called w-S-isomorphism (resp. i - S-isomorphism, s - S-isomorphism) if f is bijective and in this situation it is denoted by $A_{S} \sim B_{S}\left(\right.$ resp. $\left.A_{S} \simeq B_{S}, A_{S} \simeq B_{S}\right)$.

Proposition 8. Let $f:\left(A_{S},{ }^{*} \mathcal{H}\right) \longrightarrow\left(B_{S},{ }^{\prime}{ }_{\mathcal{H}}\right)$ be an i-S-homomorphism of H_{v}-S-acts. If θ is an absorbing element of A_{S}, then $f(\theta)$ is an absorbing element of B_{S}.

Proof. As θ is an absorbing element, we have $\theta \in \theta{ }^{*} \mathcal{H}$ s for all $s \in S$. Then

$$
f(\theta) \in f\left(\theta *_{\mathcal{H}} s\right) \subseteq f(\theta) *_{\mathcal{H}}^{\prime} s \text { for all } s \in S
$$

Therefore, $f(\theta)$ is an absorbing element of $\left(B_{S}, *_{\mathcal{H}}^{\prime}\right)$.

Proposition 9. Let $f:\left(A_{S},{ }^{*} \mathcal{H}\right) \longrightarrow\left(B_{S}, *_{\mathcal{H}}^{\prime}\right)$ be an s-S-homomorphism of $H_{v}-S$-acts. Then the followings are satisfied.
(i) If A^{\prime} is an H_{v}-S-subact of A, then $f\left(A^{\prime}\right)$ is an H_{v}-S-subact of B.
(ii) If f is surjective and B^{\prime} is an H_{v}-S-subact of B, then $f^{-1}\left(B^{\prime}\right)$ is an H_{v}-S-subact of A.

Definition 15. Let $\left(X_{S}, *\right)$ be a right H_{v}-S-act. An element $s \in S$ acts on X weakly injective if

$$
x * s=x^{\prime} * s \Longrightarrow x=x^{\prime} \text { for all } x, x^{\prime} \in X .
$$

And $s \in S$ acts on x strongly injective if

$$
x * s \cap x^{\prime} * s \neq \emptyset \Longrightarrow x=x^{\prime} \text { for all } x, x^{\prime} \in X
$$

Remark 3. Clearly, an element which acts strongly injective also acts weakly injective but the converse is not true in general. Let (S, \circ) be an H_{v}-monoid, where $S=\{e, s, t, q\}$ and \circ is defined in Table .

\circ	e	s	t	q
e	e	$\{a, t\}$	t	$\{e, q\}$
s	$\{s, t\}$	$\{s, t\}$	$\{s, t\}$	$\{s, t\}$
t	t	t	t	t
q	$\{e, q\}$	$\{s, q\}$	$\{e, q\}$	q

Table 7
Let $x=\left\{x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right\}$ and weak hyperaction $*$ of S on X is defined in Table.

${ }^{*} \mathcal{H}$	e	s	t	q
x_{1}	x_{1}	y_{1}	y_{1}	$\left\{x_{1}, y_{1}\right\}$
y_{1}	y_{1}	y_{1}	y_{1}	y_{1}
x_{2}	$\left\{x_{2}, x_{3}\right\}$	$\left\{y_{2}, y_{3}\right\}$	$\left\{y_{2}, y_{3}\right\}$	$\left\{x_{2}, x_{3}, y_{3}\right\}$
y_{2}	y_{2}	y_{2}	y_{2}	y_{2}
x_{3}	$\left\{y_{1}, x_{3}\right\}$	$\left\{y_{1}, x_{3}\right\}$	$\left\{y_{1}, x_{3}\right\}$	$\left\{y_{1}, x_{3}\right\}$
y_{3}	y_{3}	y_{3}	y_{3}	y_{3}

Txble 8
Then $\left(x_{S}, *\right)$ is an H_{v}-S-act. The elements e and q of S acts on x weakly injective but not strongly injective because $\left(y_{1} * e\right) \cap\left(x_{3} * e\right) \neq \emptyset$ and $\left(x_{1} * q\right) \cap\left(y_{2} * q\right) \neq \emptyset$.

Proposition 10. Let $\left(A_{S},{ }^{*} \mathcal{H}\right)$ and $\left(B_{S}, *_{\mathcal{H}}^{\prime}\right)$ be two H_{v}-S-acts. If $s \in S$ acts strongly injective on A and B, then s also acts strongly injective on $A \times B$, which is an H_{v}-S-act with weak hyperaction \circledast.

Proof. If $(a, b) \circledast s \cap\left(a^{\prime}, b^{\prime}\right) \circledast s \neq \emptyset$ for all $(a, b),\left(a^{\prime}, b^{\prime}\right) \in A \times B$, then $\left(a *_{\mathcal{H}} s\right) \times\left(b *_{\mathcal{H}}^{\prime} s\right) \cap\left(a^{\prime}{ }_{\mathcal{H}} s\right) \times\left(b^{\prime} *_{\mathcal{H}}^{\prime} s\right) \neq \emptyset$ which implies $a *{ }_{\mathcal{H}} \mathcal{S} \cap a^{\prime} *_{\mathcal{H}} \mathcal{S} \neq \emptyset$ and $b *_{\mathcal{H}}^{\prime} s \cap b^{\prime}{ }^{*_{\mathcal{H}}^{\prime}} \mathcal{S} \neq \emptyset$. As $s \in S$ acts strongly injective on A and B, we have $a=a^{\prime}$ and $b=b^{\prime}$. Therefore, s acts strongly injective on $A \times B$.

Proposition 11. Let $\left(A_{S}, *_{\mathcal{H}}\right)$ be an H_{v}-S-act and $\left(B_{T}, *_{\mathcal{H}}^{\prime}\right)$ be an H_{v}-T-act. If s and t acts strongly injective on A and B, respectively, then (s, t) acts strongly injective on $A \times B$, which is an $H_{v}-S \times T$-act $A \times B$ with weak hyperaction \circledast.

Proof. The proof is straightforward.

4. Relationship Between H_{v}-S-Act and GHS-Act

This section is devoted to the study of congruence and quotients of hyperaction which relates H_{v}-Sact and GHS-act. Throughout this section, unless otherwise stated, (S, \circ) is a hypermonoid with identity element e.

Definition 16. [21] An equivalence relation σ on a right $G H S$-act $\left(A_{S}, *\right)$ is called a congruence relation if for every $a, b \in A$ and $s \in S$

$$
a \sigma b \Longrightarrow[a * s]_{\sigma}=[b * s]_{\sigma}
$$

where, for $B \subseteq A,[B]_{\sigma}=\left\{[b]_{\sigma}: b \in B\right\}$ and $[b]_{\sigma}$ is the equivalence class of b with respect to σ.
Note that for every $A_{1}, A_{2} \subseteq A,\left[A_{1}\right]_{\sigma}=\left[A_{2}\right]_{\sigma}$ if and only if for every $a_{1} \in A_{1}$ there exists $a_{2} \in A_{2}$ such that $a_{1} \sigma a_{2}$ and for every $a_{2} \in A_{2}$ there exists $a_{1} \in A_{1}$ such that $a_{1} \sigma a_{2}$.

The set of all equivalence relations on A_{S} is denoted by $\operatorname{Eq}\left(A_{S}\right)$ and the set of all congruences on A_{S} is denoted by $\operatorname{Con}\left(A_{S}\right)$.

Define hyperaction \boxtimes of S on $A / \sigma=\left\{[a]_{\sigma}: a \in A\right\}$ by

$$
[a]_{\sigma} \boxtimes s=\bigcup_{x \in[a]_{\sigma}}[x * s]_{\sigma} \text { for all } a \in A \text { and } s \in S
$$

Firstly, we prove that \boxtimes is well-defined. Suppose that $[a]_{\sigma}=[b]_{\sigma}$ imply that $a \sigma b$. Let $[y]_{\sigma} \in[a]_{\sigma} \boxtimes s=\underset{x \in[a]_{\sigma}}{\cup}[x * s]_{\sigma}$. So

$$
[y]_{\sigma} \in[x * s]_{\sigma} \text { for some } x \in[a]_{\sigma} .
$$

As σ is an equivalence relation, we have $x \sigma b$ which imply that $[y]_{\sigma} \in[b]_{\sigma} \boxtimes s$. Similarly, $[b]_{\sigma} \boxtimes s \subseteq[a]_{\sigma} \boxtimes s$. Therefore, \boxtimes is well defined. Also, $(A / \sigma, \boxtimes)$ is an H_{v}-S-act. Indeed, $[a * s]_{\sigma} \subseteq[a]_{\sigma} \boxtimes s$ for $a \in A$ and $s \in S$. So

$$
\begin{aligned}
& {[(a * s) * t]_{\sigma} } \subseteq\left([a]_{\sigma} \boxtimes s\right) \boxtimes t, \\
& {[a *(s \circ t)]_{\sigma} } \subseteq \\
& {[a]_{\sigma} \boxtimes(s \circ t) \text { for } s, t \in S . }
\end{aligned}
$$

Thus, $\left(\left([a]_{\sigma} \boxtimes s\right) \boxtimes t\right) \cap\left([a]_{\sigma} \boxtimes(s \circ t)\right) \neq \emptyset$ and $[a]_{\sigma} \subseteq[a]_{\sigma} \boxtimes e$ which implies that $(A / \sigma, \boxtimes)$ is an $H_{v}-S$-act.
Notice if σ is a congruence on $\left(A_{S}, *\right)$, then

$$
[a]_{\sigma} \boxtimes s=[a * s]_{\sigma} \text { for all } s \in S
$$

If σ is a congruence relation, then $(A / \sigma, \boxtimes)$ is a GHS-act.
The above arguments have been summarized in the following theorem.
Theorem 1. Let $\left(A_{S}, *\right)$ be a right GHS-act. Then
(i) $(A / \sigma, \boxtimes)$ is an $H_{v}-S$-act if $\sigma \in \mathrm{Eq}\left(A_{S}\right)$.
(ii) $(A / \sigma, \boxtimes)$ is a GHS-act if $\sigma \in \operatorname{Con}\left(A_{S}\right)$.

The above theorem establishes a link between GHS-act and H_{v}-S-act. If $\left(A_{S}, *\right)$ is a right H_{v}-S-act and $\sigma \in \operatorname{Con}\left(A_{S}\right)$, then we have the following result.

Lemma 1. Let $\left(A_{S}, *\right)$ be a right H_{v}-S-act and $\sigma \in \operatorname{Con}\left(A_{S}\right)$. Then $(A / \sigma, \boxtimes)$ is an H_{v}-S-act.
Theorem 2. Let $\left(X_{S}, *\right)$ be a right $G H S$-act and $\sigma \in E q\left(A_{S}\right)$. Then we have the following:
(i) The natural map $\pi: X \rightarrow X / \sigma$ given by $\pi(x)=[x]_{\sigma}$ for $x \in X$ is an i-S-homomorphism.
(ii) The natural map $\pi: X \rightarrow X / \sigma$ is an s-S-homomorphism if and only if $\sigma \in \operatorname{Con}\left(X_{S}\right)$.

Proof. (i) For $a \in A$ and $s \in S, \pi(a * s)=[a * s]_{\sigma} \subseteq \bigcup_{x \in[a]_{\sigma}}[x * s]_{\sigma}=[a]_{\sigma} \boxtimes s=\pi(a) \boxtimes s$.
(ii) For $\sigma \in \operatorname{Con}\left(A_{S}\right), a \in A$ and $s \in S \pi(a * s)=[a * s]_{\sigma}=[a]_{\sigma} \boxtimes s=\pi(a) \boxtimes s$. Thus π is strong S-homomorphism.

Conversely, suppose that π is a strong s-S-homomorphism, $a, b \in A, a \sigma b$ and $s \in S$. Then $[a * s]_{\sigma} \subseteq$ $\bigcup_{x \in[b]_{\sigma}}[x * s]_{\sigma}=[b]_{\sigma} \boxtimes s=\pi(b) \boxtimes s=\pi(b * s)=[b * s]_{\sigma}$. Similarly, $[b * s]_{\sigma} \subseteq[a * s]_{\sigma}$ and hence $\sigma \in \operatorname{Con}\left(A_{S}\right)$.
Theorem 3. Let $\left(X_{S}, *\right)$ and $\left(X_{S}, *^{\prime}\right)$ be two GHS-acts and $f:\left(X_{S}, *\right) \longrightarrow\left(X_{S}, *^{\prime}\right)$ be w-S-homomorphism, then $\sigma=\left\{\left(x, x^{\prime}\right): f(x)=f\left(x^{\prime}\right)\right\}$ is an equivalence relation on X. If f is an s-S-homomorphism, then σ is a congruence on X.

Proof. The proof is straightforward.
Theorem 4. Let $\left(X_{S}, *\right)$ and $\left(Y_{S}, *^{\prime}\right)$ be two GHS-acts, $f:(X, *) \longrightarrow\left(Y, *^{\prime}\right)$ be a w-S-homomorphism and $\sigma=\left\{\left(x, x^{\prime}\right)\right.$: $\left.f(x)=f\left(x^{\prime}\right)\right\}$. Then there exists a unique w-S-homomorphism $\alpha: X / \sigma \rightarrow Y$ defined by $\alpha\left([x]_{\sigma}\right)=f(x)$ for all $x \in X$ such that $\alpha \circ \pi=f$.

Figure 1

Proof. Let $[a]_{\sigma}=[b]_{\sigma}$ in A / σ. Then, $a \sigma b$ implies $f(a)=f(b)$. Therefore, $\alpha\left([a]_{\sigma}\right)=f(a)$ is well-defined. Also, α is w-S-homomorphism. Indeed, for $[a]_{\sigma} \in A / \sigma$ and $s \in S$

$$
\begin{aligned}
\alpha\left([a]_{\sigma} \boxtimes s\right) & =\alpha\left(\cup_{x \in[a]_{\sigma}}^{\cup}[x * s]_{\sigma}\right) \\
& =\bigcup_{x \in[a]_{\sigma}} \alpha\left([x * s]_{\sigma}\right)=\bigcup_{x \in[a]_{\sigma}} f(x * s) .
\end{aligned}
$$

And

$$
\alpha\left([a]_{\sigma}\right) *^{\prime} s=f(a) *^{\prime} s
$$

So $\alpha\left([a]_{\sigma} \boxtimes s\right) \cap \alpha\left([a]_{\sigma}\right) *^{\prime} s \neq \emptyset$.
Corollary 1. If $f:\left(A_{S}, *\right) \longrightarrow\left(B_{S}, *^{\prime}\right)$ be a w-S-epimorphism, then $A / \sigma \sim B$.
The above result remains valid if $\left(A_{S}, *\right)$ and $\left(B_{S}, *^{\prime}\right)$ are H_{v}-S-acts and f is an s - S-homomorphism.
Theorem 5. Let $\left(X_{S}, *\right)$ be a right GHS-act and $\rho \in E q\left(X_{S}\right)$ and $\sigma \in \operatorname{Con}\left(X_{S}\right)$ such that $\rho \subseteq \sigma$. Then $\sigma / \rho=$ $\left\{\left([x]_{\rho},\left[x^{\prime}\right]_{\rho}\right) \in X / \rho \times X / \rho:\left(x, x^{\prime}\right) \in \sigma\right\}$ is a congruence relation on X / ρ and $(X / \rho) /(\sigma / \rho) \cong X / \sigma$.
Proof. From Theorem $1(A / \rho, \boxtimes)$ and $\left(A / \sigma, \boxtimes^{\prime}\right)$ are H_{v}-S-acts. Define $\alpha: A / \rho \longrightarrow A / \sigma$ by $\alpha\left([a]_{\rho}\right)=[a]_{\sigma}$. Firstly, we show that the map α is $s-S$-homomorphism. Let $a \in A$ and $s \in S$. Then

$$
\begin{aligned}
\alpha\left([a]_{\rho} \boxtimes s\right) & =\alpha\left(\cup_{x \in[a] \rho}^{\cup}[x * s]_{\rho}\right) \\
& =\cup_{x \in[a]_{\rho}}\left([x * s]_{\rho}\right) \\
& =\bigcup_{x \in[a]_{\rho}}[x * s]_{\sigma} \\
\alpha\left([a]_{\rho}\right) \boxtimes^{\prime} s & =[a]_{\sigma} \boxtimes^{\prime} s \\
& =\cup_{x \in[a] \sigma}[x * s]_{\sigma} .
\end{aligned}
$$

But σ is a congruence on A_{S}. So we have $\alpha\left([a]_{\rho} \boxtimes s\right)=[a * s]_{\sigma}=[a]_{\sigma} \boxtimes^{\prime} s=\alpha\left([a]_{\rho}\right) \boxtimes^{\prime} s$ which implies α is an s-S-homomorphism. Obviously, α is a bijection. Now it remains to prove that

$$
\sigma / \rho=\left\{\left([a]_{\rho},[b]_{\rho}\right) \in A / \rho \times A / \rho: \alpha\left([a]_{\rho}\right)=\alpha\left([b]_{\rho}\right)\right\} .
$$

Let $\left([a]_{\rho},[b]_{\rho}\right) \in A / \rho \times A / \rho$ such that $\alpha\left([a]_{\rho}\right)=\alpha\left([b]_{\rho}\right) \Longleftrightarrow[a]_{\sigma}=[b]_{\sigma} \Longleftrightarrow a \sigma b \Longleftrightarrow\left([a]_{\rho},[b]_{\rho}\right) \in \sigma / \rho$. Thus σ / ρ is a congruence by Theorem 3. Hence by Corollary $1(A / \rho) /(\sigma / \rho) \sim A / \sigma$.

5. Actions Obtained from H_{v}-S-Acts

The main tools in the theory of an H_{v}-structures are fundamental relations. These relations were introduced and first studied by Vougiouklis [17]. In this section, we studied the fundamental relations for H_{v}-S-act. This establishes a link between weak hyperactions and the corresponding classical actions.

Let (S, \circ) be an H_{v}-monoid and \mathcal{V} be the set of all expressions consisting of finite hyperoperations of elements of S. Define a binary relation β on S by

$$
s \beta t \Longleftrightarrow \text { there exists } v \in \mathcal{V} \text { such that }\{s, t\} \subset v
$$

and denote by $\bar{\beta}$ the transitive closure of the relation β [2].
Proposition 12. [2] Let (S, \circ) be an H_{v}-monoid. Then $\bar{\beta}$ is the smallest equivalence relation such that $S / \bar{\beta}$ is a monoid.
The relation $\bar{\beta}$ is the fundamental equivalence relation on S and $S / \bar{\beta}$ is the fundamental monoid. Following the similar technique.

Let $\left(A_{S},{ }^{*} \mathcal{H}\right)$ be an $H_{v}-S$-act and \mathcal{U} denote the set of all finite hyperactions of elements of S on A.
Define the relation γ on A as follows:

$$
a \gamma b \Longleftrightarrow\{a, b\} \subset u \text { for some } u \in \mathcal{U} .
$$

Clearly, γ is reflexive and symmetric but not a transitive relation. Let us denote $\bar{\gamma}$ the transitive closure of relation γ. The relation $\bar{\gamma}$ is an equivalence relation and $[a]_{\bar{\gamma}}$ is an equivalence class of the element a.

We can rewrite the definition of $\bar{\gamma}$ on A as follows:

$$
\begin{aligned}
a \gamma b & \Longleftrightarrow \exists a_{1}, a_{2}, \ldots, a_{n+1} \in A \text { with } a=a_{1}, b=a_{n+1} \text { and } \\
\exists u_{1}, u_{2}, u_{3}, \ldots, u_{n} & \in \mathcal{U} \text { such that }\left\{a_{i}, a_{i+1}\right\} \subset u_{i} \text { for } i=1,2, \ldots, n .
\end{aligned}
$$

Theorem 6. Let $\left(A_{S},{ }^{*} \mathcal{H}\right)$ be an $H_{v}-S$-act. Then $\bar{\gamma}$ is the smallest equivalence relation defined on A such that $A / \bar{\gamma}$ is an $S / \bar{\beta}$-act.

Proof. First we prove that the quotient set $A / \bar{\gamma}$ is $S / \bar{\beta}$-act. On $A / \bar{\gamma}$, the operation \circledast using $\bar{\beta}$ classes in S is defined as follows:

$$
\begin{aligned}
{[x]_{\bar{\sigma}} \circledast[s]_{\beta} } & =\left\{[c]_{\bar{\sigma}}: c \in[a]_{\bar{\sigma}} *[s]_{\bar{\beta}}\right\} \\
\text { for }[x]_{\bar{\sigma}} & \in X / \bar{\sigma} \text { and }[s]_{\bar{\beta}} \in S / \bar{\beta} .
\end{aligned}
$$

Firstly, we prove that $[a]_{\bar{\gamma}} \circledast[s]_{\bar{\beta}}$ is a singleton. For this, let $a^{\prime} \in[a]_{\bar{\gamma}}$ and $s^{\prime} \in[s]_{\bar{\beta}}$. We have

$$
\begin{aligned}
a^{\prime} \bar{\gamma} a & \Longrightarrow \exists a_{1}, a_{2}, \ldots, a_{n+1} \in A \text { with } a^{\prime}=a_{1}, a=a_{n+1} \text { and } \\
\exists u_{1}, u_{2}, u_{3}, \ldots, u_{n} & \in \mathcal{U} \text { such that }\left\{a_{i}, a_{i+1}\right\} \subset u_{i}, \text { for } i=1,2, \ldots, n .
\end{aligned}
$$

And

$$
\begin{aligned}
s^{\prime} \bar{\beta} s & \Longrightarrow \exists s_{1}, s_{2}, \ldots, s_{m+1} \in S \text { with } s^{\prime}=s_{1}, s=s_{m+1} \text { and } \\
\exists v_{1}, v_{2}, v_{3}, \ldots, v_{m} & \in \mathcal{V} \text { such that }\left\{s_{j}, s_{j+1}\right\} \subset v_{j}, \text { for } j=1,2, \ldots, m .
\end{aligned}
$$

From these we obtain

$$
\begin{array}{rll}
\left\{a_{i}, a_{i+1}\right\} *_{\mathcal{H}} s_{1} & \subset & u_{i}{ }^{*} \mathcal{H} v_{1}, i=1,2, \ldots, n-1 \\
a_{n+1} *_{\mathcal{H}}\left\{s_{j}, s_{j+1}\right\} & \subset & u_{n} *_{\mathcal{H}} v_{j}, j=1,2, \ldots, m .
\end{array}
$$

Here the sets

$$
u_{i} *_{\mathcal{H}} v_{1}=t_{i}, i=1,2, \ldots, n-1 \text { and } u_{n} \mathcal{H}_{\mathcal{H}} v_{j}=t_{n-1+j}, j=1,2, \ldots, m
$$

are elements of \mathcal{U}. Now, pick up elements $z_{1}, z_{2}, \ldots, z_{n+m}$ such that

$$
z_{i} \in a_{i}{ }^{*} \mathcal{H} s_{1}, i=1,2, \ldots, n \text { and } z_{n+j} \in a_{n+1}{ }^{*} \mathcal{H} s_{j+1}, j=1,2, \ldots, m
$$

Using the above relation, we have

$$
\left\{z_{k}, z_{k+1}\right\} \subset t_{k}, k=1,2, \ldots, m+n-1
$$

Thus, every element $z_{1} \in a_{1} *_{\mathcal{H}} s_{1}=a^{\prime} *_{\mathcal{H}} s^{\prime}$ is $\bar{\gamma}$ equivalent to every element $z_{m+n} \in a *_{\mathcal{H}} s$. Thus $[a]_{\bar{\gamma}} \circledast[s]_{\bar{\beta}}$ is singleton. So, we can write

$$
[a]_{\bar{\gamma}} \circledast[s]_{\bar{\beta}}=[c]_{\bar{\gamma}} \text { for all } c \in[a]_{\bar{\gamma}^{*}}{ }_{\mathcal{H}}[s]_{\bar{\beta}} .
$$

Obviously $A / \bar{\gamma}$ is an $S / \bar{\beta}$-act.
Let σ be any other equivalence relation on A such that A / σ is an $S / \bar{\beta}$-act. Then $[a]_{\sigma} \circledast[s]_{\bar{\beta}}$ are singletons, that is

$$
[a]_{\sigma} \circledast[s]_{\bar{\beta}}=[c]_{\sigma} \text { for all } c \in[a]_{\sigma} *_{\mathcal{H}}[s]_{\bar{\beta}} .
$$

Thus, we can write for $a \in A, s \in S$ and $A^{\prime} \subset[a]_{\sigma}, S^{\prime} \subset[s]_{\bar{\beta}}$

$$
[a]_{\sigma} \circledast[s]_{\bar{\beta}}=\left[A^{\prime} * \mathcal{H} S^{\prime}\right]_{\sigma}=[a * \mathcal{H} s]_{\sigma} .
$$

Let $a \gamma a^{\prime}$. Then $\left\{a, a^{\prime}\right\} \subset u$ for some $u \in \mathcal{U}$. Take $u=x{ }_{\mathcal{H}} s$ for some $x \in A$ and $s \in S$. Then, using relation $\sigma, x{ }_{\mathcal{H}} \mathcal{s}$ is a subset of one class, say $\left[u_{i}\right]_{\sigma}$, for some i, so $u=x *_{\mathcal{H}} \mathcal{S} \subset\left[u_{i}\right]_{\sigma} \Longrightarrow[a]_{\sigma}=\left[a^{\prime}\right]_{\sigma} \Longrightarrow a \sigma a^{\prime}$ and as σ is transitive, we have

$$
a \bar{\gamma} a^{\prime} \Longrightarrow a \sigma a^{\prime}
$$

Therefore, $\bar{\gamma}$ is the smallest equivalence relation such that quotient is an $S / \bar{\beta}$-act.
Remark 4. From Theorem 6, we conclude that $\bar{\gamma}$ is the smallest equivalence relation such that $A / \bar{\gamma}$ is an $S / \bar{\beta}$-act. The relation $\bar{\gamma}$ is a fundamental relation on A and the quotient is said to be a fundamental $S / \bar{\beta}$-act.
Theorem 7. Let $\left(A_{S},{ }^{*} \mathcal{H}\right)$ and $\left(B_{S},{ }_{\mathcal{H}}^{\prime}\right)$ be two H_{v}-S-acts, $f: A \longrightarrow B$ be an s-S-homomorphism and $\bar{\gamma}_{1}, \bar{\gamma}_{2}$ and $\bar{\beta}$ be the fundamental relations on A, B and S, respectively. Then the map $\bar{f}:\left(A / \bar{\gamma}_{1}, \boxtimes\right) \longrightarrow\left(B / \bar{\gamma}_{2}, \boxtimes^{\prime}\right)$ defined by $\bar{f}\left([a]_{\gamma_{1}}\right)=[f(a)]_{\gamma_{2}}$ is an $S / \bar{\beta}$-homomorphism of $S / \bar{\beta}$-acts.
Proof. Clearly, $A / \bar{\gamma}_{1}$ and $B / \bar{\gamma}_{2}$ are $S / \bar{\beta}$-acts. First we show that \bar{f} is well-defined. Suppose that

$$
[a]_{\overline{\gamma_{1}}}=[b]_{\gamma_{1}}
$$

Then $a \bar{\gamma}_{1} b \Longrightarrow \exists a_{1}, a_{2}, \ldots, a_{n+1} \in A$ with $a^{\prime}=a_{1}, a=a_{n+1}$ and $\exists u_{1}, u_{2}, u_{3}, \ldots, u_{n} \in \mathcal{U}_{A}$ such that $\left\{a_{i}, a_{i+1}\right\} \subset u_{i}$, for $i=1,2, \ldots, n$. Since f is an s-S-homomorphism and $u_{i} \in \mathcal{U}_{A}$, we get $f\left(u_{i}\right) \in \mathcal{U}_{B}$. Therefore $f(a) \bar{\gamma}_{2} f(b)$ which implies $[f(a)]_{\overline{\gamma_{2}}}=[f(b)]_{\bar{\gamma}_{2}}$, and so $\bar{f}\left([a]_{\bar{\gamma}_{1}}\right)=\bar{f}\left([b]_{\bar{\gamma}_{1}}\right)$. Thus \bar{f} is well-defined. Now,

$$
\begin{aligned}
\bar{f}\left([a]_{\bar{\gamma}_{1}} \boxtimes[s]_{\bar{\beta}}\right) & =\bar{f}\left([a * \mathcal{H} s]_{\bar{\gamma}_{1}}\right) \\
& =\left[f\left(a * \mathcal{H}^{\prime} s\right)\right]_{\gamma_{2}} \\
& =\left[f(a) *^{\prime} \mathcal{H}^{\prime} s\right]_{\bar{\gamma}_{2}} \\
& =[f(a)]_{\gamma_{2}} *^{\prime} \mathcal{H}^{[s]_{\bar{\beta}}} \\
& =\bar{f}\left([a]_{\bar{\gamma}_{1}}\right) \boxtimes^{\prime}[s]_{\bar{\beta}} .
\end{aligned}
$$

Theorem 8. Let $\left(A,{ }_{\mathcal{H}}\right)$ and $\left(B, *_{\mathcal{H}}^{\prime}\right)$ be H_{v}-S-acts, $f: A \longrightarrow B$ be a s-S-homomorphism and $\bar{\gamma}_{1}, \bar{\gamma}_{2}$ and $\bar{\beta}$ be the fundamental relations on A, B and S, respectively. Then the diagram

Figure 2.
is commutative, where g_{A}, g_{B} are the natural projections of $\left(A,{ }^{*} \mathcal{H}\right)$ and $\left(B, *_{\mathcal{H}}^{\prime}\right)$, respectively.

6. Conclusion

The class of hyperstructures called H_{v}-structures has been studied from numerous aspects as well as in association with many other topics of mathematics. Here, in this paper, we introduced the concept of H_{v}-S-act and investigated some basic properties. A link between H_{v}-S-act, GHS-act and S-act (action notion in classical theory) have been established.

In future, we will focus on application of H_{v}-S-act in biology, chemistry, physics and social sciences mainly the use of H_{v}-S-act in questionnaire. We will also characterized H_{v}-S-act in term of primeness.

References

[1] . Corsini, Prolegomena of hypergroup theory (Second Edition), Aviani Editore., 1993
[2] . Corsini and V. Leoreanu, Applications of hyperstructures theory, Advanced in Mathematics, Kluwer Academic Publisher, 2003.
[3] . Davvaz, Remarks on weak hypermodules, Bull. Korean Math. Soc. 36(1999), 599 -608.
[4] . Davvaz, A brief survey of the theory of H_{v}-structures, In: Proc. 8th Int. Congress on AHA, Greece. (2002) 39-57.
[5] . Davvaz and V. Leoreanu, Hyperring Theory and Applications. USA: International Academic Press. 2008.
[6] . Davvaz, A. Dehghan and A. Benvidi, Chemical hyperalgebra: Dismutation reactions. MATCH Commun. Math. Comput. Chem. 67(2012) 55-63.
[7] . Davvaz, A. Dehghan and M. M. Heidari, Inheritance examples of algebraic hyperstructures, Inform. Sci. 224(2013) 180-187.
[8] . Davvaz, I. Cristea, Fuzzy algebraic hyperstructures, An introduction in Stud. Fuzziness Soft Comput., 321, Springer, 2015.
[9] . Ebrahimi, A. Karimi and M. Mahmoudi, Quotients and isomorphism theorems of universal hyperalgebras, It. J. Pure and Appl. Math. 18(2005) 9-22.
[10] . Hila, B. Davvaz and N. Naka, On quasi-hyperideals in semihypergroups, Comm. Algebra. 39(2011), 4183-4194.
[11] . Klip, U. Knauer and A. Mikhalev, Monoids, acts and categories, Walter de Gruyter, Berlin, New York, 2000.
[12] . Marty, Sur une generalization de la notion de groupe, 8th Congres Math. Stockholm, Scandinaves, 1934, 45-49.
[13] . K. Sen, R. Ameri and G. Chowdhery, Hyperaction of semigroup and monoids, It. J. Pure and Appl. Math. 28(2011) 285-294.
[14] . Shahbaz, The category of hyper S-acts, It. J. Pure and Appl. Math. 29(2012) 325-332.
[15] . Shabir, Shaheen, On prime and semiprime generalized hyperaction of hypermonoid, Mathematics Slovaca, 67(3) (2017), 657-670.
[16] . Spartalis, On H_{v}-semigroups, It. J. Pure and Appl. Math., 11(2002) 165-174.
[17] . Vougiouklis, Hyperstructures and their representations, Palm Harber. USA: Hadronic Press, Inc. 1994.
[18] . Vougiouklis, A new class of hyperstructures. J. Combin. Inf. Sys. Sci. 20(1995), 229-235.
[19] . Vougioukli, H_{v}-vector spaces from helix hyperoperation, Int. J. Math. Anal. 1(2009), 109-120.
[20] . Vougiouklis, Bar and theta hyperoperation, Ratio Mathematica. 21(2011), 27-42.
[21] . Zhan, S.Sh. Mousavi and M. Jafarpour, On hyperactions of hypergroups, UPB Sci.Bull. Series A: Appl. Math. Physiscs, 73(1) (2011), 117-128.

[^0]: 2010 Mathematics Subject Classification. 16W22, 20 N20.
 Keywords. Hypermonoid, H_{v}-S-act, Absorbing and fixed elements, GHS-act, S-act, Fundamental relations
 Received: 14 April 2017; Accepted: 30 June 2017
 Communicated by Dijana Mosić
 Email addresses: salmashaheen2017@gmail.com (Salma Shaheen), mshabirbhatti@yahoo.co.uk (Muhammad Shabir)

