Published by Faculty of Sciences and Mathematics, University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Hyponormality on General Bergman Spaces

Houcine Sadraoui ${ }^{\text {a }}$
${ }^{a}$ Department of mathematics, College of Sciences, King Saud University, P. O Box 2455 Riyadh 11451, Saudi Arabia.

Abstract

A bounded operator T on a Hilbert space is hyponormal if $T^{*} T-T T^{*}$ is positive. We give a necessary condition for the hyponormality of Toeplitz operators on weighted Bergman spaces, for a certain class of radial weights, when the symbol is of the form $f+\bar{g}$, where both functions are analytic and bounded on the unit disk. We give a sufficient condition when f is a monomial.

1. Introduction

Let $w(r)$ be a nonegative measurable function defined on $(0,1)$, and assume $0<\int_{0}^{1} r w(r) d r<\infty$. Define the Hilbert space $L_{a, w}^{2}$ to be the space of analytic functions on the unit disk U such that $\int_{0}^{1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} r w(r) \frac{d r d \theta}{\pi}<\infty$. We set $\alpha_{n}=2 \int_{0}^{1} r^{2 n+1} w(r) d r$. Then $L_{a, w}^{2}=\left\{f=\sum a_{n} z^{n}\right.$ analytic on the unit disk such that $\left.\|f\|^{2}=\sum \alpha_{n}\left|a_{n}\right|^{2}<\infty\right\}$ and its orthonormal basis is given by $e_{n}=\frac{z^{n}}{\sqrt{\alpha_{n}}}$. Toeplitz operators on $L_{a, w}^{2}$ are defined by $T_{f}(k)=P(f k)$, with f bounded measurable on U, k in $L_{a, w}^{2}$, and P the orthogonal projection on $L_{a, w}^{2}$. Hankel operators are defined by $H_{f}(k)=(I-P)(f k)$ where f and k are as before. A bounded operator on a Hilbert space is said to be hyponormal if $T^{*} T-T T^{*}$ is positive. Unweighted Bergman spaces are considered in [2,3,11]. Hyponormality on the Hardy space was first considered in [4,5]. The first results on hyponormality of Toeplitz operators on Bergman spaces are in [10] and the necessary condition is improved in [1]. All the known results on hyponormality on weighted Bergman spaces consider particular types of polynomials as a symbol. We cite for example [8] and [9]. In this work we consider hyponormality of Toeplitz operators on $L_{a, w}^{2}$. Under a condition on the weight we give a general necessary condition for the hyponormality of Toeplitz operators on $L_{a, w}^{2}$ with a symbol of the form $f+\bar{g}$, where f and g are bounded analytic on the the unit disk. We give sufficient conditions for hyponormality when f is a monomial and g is a polynomial. A necessary and sufficient condition for normality of $T_{f+\bar{g}}$, when f and g are analytic in an open set containing U, is also obtained as a consequence.

2. Basic properties of Toeplitz operators and equivalent forms of hyponormality

These properties are known on the Bergman space and they hold also for weighted Bergman spaces.We assume f, g are in $L^{\infty}(U)$. Then we have:

[^0]1. $T_{f+g}=T_{f}+T_{g}$.
2. $T_{f}^{*}=T_{\bar{f}}$.
3. $T_{\bar{f}} T_{g}=T_{\bar{f} g}$ if f or g analytic on U.

The use of these properties leads to describing hyponormality in more than one form. These are easy to prove, and one of the forms uses Douglas lemma [6].
Proposition 2.1. Let f, g be bounded and analytic on U. Then the following are equivalent:

1. $T_{f+\bar{g}}$ is hyponormal.
2. $H_{\bar{g}}^{*} H_{\bar{g}} \leq H_{\bar{f}}^{*} H_{\bar{f}}$.
3. $\|(I-P)(\bar{g} k)\| \leq\|(I-P)(\bar{f} k)\|$ for any k in $L_{a, w}^{2}$.
4. $\|\bar{g} k\|^{2}-\|P(\bar{g} k)\|^{2} \leq\|\bar{f} k\|^{2}-\|P(\bar{f} k)\|^{2}$ for any k in $L_{a, w}^{2}$.
5. $H_{\bar{g}}=L H_{\bar{f}}$ where L is of norm less than or equal to one.

We also need the following two lemmas. The symbols m, n, p etc denote nonnegative integers.
Lemma 2.2. For m and n integers we have $P\left(z^{n} \overline{z^{m}}\right)=\left\{\begin{array}{ll}0, & \text { if } n<m \\ \frac{\alpha_{n}}{\alpha_{n-m}} z^{n-m}, & \text { if } n \geq m\end{array}\right.$.
Proof. If $n<m$ we have $\left\langle P\left(z^{n} \overline{z^{m}}\right), z^{p}\right\rangle=\left\langle z^{n} \overline{z^{m}}, z^{p}\right\rangle=\left\langle z^{n}, z^{p+m}\right\rangle=0$ for any integer p. Thus $P\left(z^{n} \overline{z^{m}}\right)=0$. For $n \geq m,\left\langle P\left(z^{\overline{z^{m}}}\right), z^{p}\right\rangle=\left\langle z^{n}, z^{p+m}\right\rangle=0$ if $p \neq n-m$. So $P\left(z^{n} \overline{z^{m}}\right)=\lambda z^{n-m}$ and $\left\langle P\left(z^{n} \overline{z^{m}}\right), z^{n-m}\right\rangle=\lambda\left\|z^{n-m}\right\|^{2}=\lambda \alpha_{n-m}$. Since $\left\langle P\left(z^{n} \overline{z^{m}}\right), z^{n-m}\right\rangle=\left\langle z^{\overline{z^{m}}}, z^{n-m}\right\rangle=\left\langle z^{n}, z^{n}\right\rangle=\alpha_{n}$, we deduce that $\lambda=\frac{\alpha_{n}}{\alpha_{n-m}}$ and the result follows.
Lemma 2.3. For $f=\sum a_{n} z^{n}$ bounded and analytic on the unit disk.The matrix of $T_{\bar{f}} T_{f}-T_{f} T_{\bar{f}}$ in the orthonormal basis $\left\{e_{n}\right\}$ is given by

$$
\Lambda_{i, j}=\sum_{m \geq j-i, m \geq 0} \frac{a_{m+i-j} \overline{a_{m}} \alpha_{i+m}}{\sqrt{\alpha_{i}} \sqrt{\alpha_{j}}}-\sum_{i-j \leq m \leq i, 0 \leq m} \frac{a_{m} \overline{\overline{a_{m+j-i}} \sqrt{\alpha_{i}} \sqrt{\alpha_{j}}}}{\alpha_{i-m}}
$$

Proof. We have $T_{f}\left(e_{j}\right)=\frac{1}{\sqrt{\alpha_{j}}} \sum_{n} a_{n} z^{n+j}$ and $T_{\bar{f}} T_{f}\left(e_{j}\right)=\frac{1}{\sqrt{a_{j}}} P\left(\sum_{m, n} a_{n} \overline{a_{m}} z^{n+j} \bar{z}^{m}\right)=\frac{1}{\sqrt{a_{j}}} \sum_{m-n \leq j} a_{n} \overline{a_{m}} \frac{\alpha_{n+j}}{\alpha_{n+j-m}} z^{n+j-m}$ which can be written

$$
T_{\bar{f}} T_{f}\left(e_{j}\right)=\frac{1}{\sqrt{\alpha_{j}}} \sum_{p \geq 0, m+p \geq j} \frac{\alpha_{m+p}}{\alpha_{p}} a_{m+p-j} \overline{a_{m}} z^{p}
$$

We deduce that

$$
\left\langle T_{\bar{f}} T_{f}\left(e_{j}\right), e_{i}\right\rangle=\frac{1}{\sqrt{\alpha_{i}} \sqrt{\alpha_{j}}} \sum_{m \geq j-i, m \geq 0} a_{m+i-j} \overline{a_{m}} \alpha_{i+m}
$$

Similarly, we show that

$$
\left\langle T_{f} T_{\bar{f}}\left(e_{j}\right), e_{i}\right\rangle=\sum_{i-j \leq m \leq i, 0 \leq m} \frac{a_{m} \overline{a_{m+j-i}} \sqrt{\alpha_{i}} \sqrt{\alpha_{j}}}{\alpha_{i-m}}
$$

and the proof is complete.
Corollary 2.4. The following holds

$$
\Lambda_{i+n, i+n+p}=\sum_{l \leq i+n} \frac{\left(\alpha_{i+n+p+l} \alpha_{i+n-l}-\alpha_{i+n} \alpha_{i+n+p}\right) a_{l} \overline{a_{l+p}}}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}} \alpha_{i+n-l}}+\sum_{l>i+n} \frac{\alpha_{i+n+p+l} a_{l} \overline{a_{l+p}}}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}}}
$$

Proof. This follows from the previous lemma by putting $m=p+l$ in the first sum and $m=l$ in the second.

3. The results

Denote by $\left(\theta_{i, j}\right)$ the matrix of the, possibly unbounded, Toeplitz operator on H^{2} with symbol $\left|f^{\prime}\right|^{2}$. Our main result uses the following lemma, where C denotes a constant.

Lemma 3.1. Let $f=\sum a_{n} z^{n}$ be bounded on U. Assume $f^{\prime} \in H^{2}$ and $\left(\alpha_{n}\right)$ satisfies the following conditions:

$$
\begin{align*}
& n^{2}\left|\frac{\alpha_{i+n+p+l} \alpha_{i+n-l}-\alpha_{i+n} \alpha_{i+n+p}}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}} \alpha_{i+n-l}}\right| \leq C l(l+p), \quad l \leq i+n \tag{1}\\
& \frac{n^{2}\left(\alpha_{i+n+p+l} \alpha_{i+n-l}-\alpha_{i+n} \alpha_{i+n+p)}\right.}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}} \alpha_{i+n-l}} \underset{n \rightarrow \infty}{\rightarrow} l(l+p) \tag{2}
\end{align*}
$$

Then

$$
n^{2} \Lambda_{i+n, i+n+p} \underset{n \rightarrow \infty}{\rightarrow} \theta_{i, i+p}
$$

Proof. We have $\sum_{l} l^{2}\left|a_{l}\right|^{2}<\infty$ since $f^{\prime} \in H^{2}$. Using the previous lemma we have

$$
n^{2} \Lambda_{i+n, i+n+p}=\sum_{l \leq i+n} \frac{n^{2}\left(\alpha_{i+n+p+l} \alpha_{i+n-l}-\alpha_{i+n} \alpha_{i+n+p}\right) a_{l} \overline{a_{l+p}}}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}} \alpha_{i+n-l}}+\sum_{l>i+n} \frac{n^{2} \alpha_{i+n+p+l} a_{l} \overline{a_{l+p}}}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}}} .
$$

Set $h_{n}(l)=\frac{n^{2}\left(\alpha_{i+n+p+l}, \alpha_{i+n-l}-\alpha_{i+n} \alpha_{i+n+p}\right) a \overline{\bar{l}} \overline{l_{l+p}}}{\sqrt{a_{i+n}} \sqrt{a_{i+n+p}} \alpha_{i+n-l}}$. From (1) we have $\left|h_{n}(l)\right| \leq(C / 2)\left(l^{2}\left|a_{l}\right|^{2}+(l+p)^{2}\left|a_{l+p}\right|^{2}\right)=I(l)$ and $\int_{0}^{\infty} I(l) d v(l)<\infty$, where v is the counting measure. Using (2) and the dominated convergence theorem we obtain

$$
\lim _{n \rightarrow \infty} \sum_{l \leq i+n} \frac{n^{2}\left(\alpha_{i+n+p+l} \alpha_{i+n-l}-\alpha_{i+n} \alpha_{i+n+p}\right) a_{l} \overline{a_{l+p}}}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}} \alpha_{i+n-l}}=\sum l(l+p) a_{l} \overline{a_{l+p}} .
$$

We also have, for $l>i+n$

$$
\left|\frac{n^{2} \alpha_{i+n+p+l} a_{l} \overline{a_{l+p}}}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}}}\right| \leq 1 / 2\left(l^{2}\left|a_{l}\right|^{2}+(l+p)^{2}\left|a_{l+p}\right|^{2}\right)
$$

By the dominated convergence theorem we see that

$$
\sum_{l>i+n} \frac{n^{2} \alpha_{i+n+p+l} a_{l} \overline{a_{l+p}}}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}}} \rightarrow 0 .
$$

The result follows since $\theta_{i, i+p}=\sum_{l} l(l+p) a_{l} \overline{a_{l+p}}$.
Remark 3.2. Examples of weights satisfying conditions (1) and (2) of the previous lemma are: $w(r)=r^{2 s}, s>-\frac{1}{2}$, $w(r)=|\log r|$, and $w(r)=1-r^{2}$.

From now on we assume $\left(\alpha_{n}\right)$ satisfies the hypotheses of the previous lemma. We state our main result.
Theorem 3.3. Let f and g be bounded analytic functions on U, and assume $f^{\prime} \in H^{2}$. If $T_{f+\bar{g}}$ is hyponormal on $L_{a, w}^{2}$ then $g^{\prime} \in H^{2}$ and $\left|g^{\prime}\right| \leq\left|f^{\prime}\right|$ a.e on the unit circle.

Proof. Denote by $\left(\Gamma_{i, j}\right)$ the matrix of $T_{\bar{g}} T_{g}-T_{g} T_{\bar{g}}$ and put $g=\sum_{n} b_{n} z^{n}$. Hyponormality of $T_{f+\bar{g}}$ leads to the inequality $n^{2} \Gamma_{i+n, i+n} \leq n^{2} \Lambda_{i+n, i+n}$. We deduce that

$$
\sum_{l \leq i+n} \frac{n^{2}\left(\alpha_{i+n+l} \alpha_{i+n-l}-\left(\alpha_{i+n}\right)^{2}\right)\left|b_{l}\right|^{2}}{\alpha_{i+n} \alpha_{i+n-l}} \leq \sum_{l \leq i+n} \frac{n^{2}\left(\alpha_{i+n+l} \alpha_{i+n-l}-\left(\alpha_{i+n}\right)^{2}\right)\left|a_{l}\right|^{2}}{\alpha_{i+n} \alpha_{i+n-l}}+\sum_{l>i+n} \frac{n^{2} \alpha_{i+n+l}\left|a_{l}\right|^{2}}{\alpha_{i+n}}
$$

Write the left hand side sum as an integral $\int u_{n}(l) d v(l)$. By Fatou's lemma, condition (2) of the previous lemma and taking the limit on both sides we get

$$
\sum l^{2}\left|b_{l}\right|^{2} \leq \sum l^{2}\left|a_{l}\right|^{2}
$$

Thus $g^{\prime} \in H^{2}$. From the previous lemma we deduce that $n^{2}\left(\Lambda_{i+n, i+n+p}-\Gamma_{i+n, i+n+p}\right) \underset{n \rightarrow \infty}{\rightarrow} \theta_{i, i+p}-\phi_{i, i+p}$ where $\left(\phi_{i, j}\right)$ is the matrix of the Hardy space Toeplitz operator $T_{\left|g^{\prime}\right|^{2}}$. Hyponormality leads to the positivity of $T_{\left|f^{\prime}\right|^{2}-\left|g^{\prime}\right|^{2}}$, and a property of Toeplitz forms [7] implies that $\left|g^{\prime}\right| \leq\left|f^{\prime}\right|$ a.e on the unit circle. The proof is complete.

Corollary 3.4. Let f and g be analytic and univalent in an open set containing U. Then $T_{f+\bar{g}}$ is normal if and only if $g=c f+d$ for some constants c and d with $|c|=1$.

Proof. if $g=c f+d$ with $|c|=1$, it is easy to see that $T_{f+\bar{g}}$ is normal. Conversely if $T_{f+\bar{g}}$ is normal then $\left|g^{\prime}\right|=\left|f^{\prime}\right|$ on the circle and a maximum modulus argument shows that $g^{\prime}=c f^{\prime}$ with $|c|=1$. Thus $g=c f+d$.

We now find a sufficient condition for hyponormality when $f=z^{q}$. We begin with the case $g=\lambda z^{p}$. We set $\mu_{1}=\min \left\{\sqrt{\frac{\alpha_{i+p}}{\alpha_{i+q}}}, 0 \leq i<q\right\}, \mu_{2}=\min \left\{\sqrt{\frac{\alpha_{i+p} \alpha_{i-q}}{\alpha_{i+q} \alpha_{i-q}-\alpha_{i}^{2}}}, q \leq i<p\right\}$ and $\mu_{3}=\inf \left\{\sqrt{\frac{\left(\alpha_{i+p} \alpha_{i-p}-\alpha_{i}^{2}\right) \alpha_{i-q}}{\left(\alpha_{i+q} \alpha_{i-q}-\alpha_{i}^{2}\right) \alpha_{i-p}}}, p \leq i\right\}$.

Proposition 3.5. Assume $p>q$. The operator $T_{z^{q}+\lambda z^{p}}$ is hyponormal if and only if $|\lambda| \leq \lambda_{p, q}=\min \left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$.
Proof. In this case hyponormality is equivalent to $|\lambda|^{2} H_{z^{p}}^{*} H_{\overline{z^{p}}} \leq H_{\overline{q^{9}}}^{*} H_{\overline{z^{q}}}$. A computation shows that the matrix of $H_{\overline{z^{m}}}^{*} H_{\overline{z^{m}}}$ is diagonal and its diagonal term is given by:

$$
D_{i}=\frac{\alpha_{i+m}}{\alpha_{i}} \text { if } m>i, \quad D_{i}=\frac{\alpha_{i+m}}{\alpha_{i}}-\frac{\alpha_{i}}{\alpha_{i-m}} \text { if } m \leq i
$$

Hyponormality is thus equivalent to the following inequalities:
i) $|\lambda|^{2} \frac{\alpha_{i+q}}{\alpha_{i}} \leq \frac{\alpha_{i+p}}{\alpha_{i}} \quad 0 \leq i<q$
ii) $|\lambda|^{2}\left(\frac{\alpha_{i+q}}{\alpha_{i}}-\frac{\alpha_{i}}{\alpha_{i-q}}\right) \leq \frac{\alpha_{i+p}}{\alpha_{i}} \quad q \leq i<p$
iii) $|\lambda|^{2}\left(\frac{\alpha_{i+q}}{\alpha_{i}}-\frac{\alpha_{i}}{\alpha_{i-q}}\right) \leq \frac{\alpha_{i+p}}{\alpha_{i}}-\frac{\alpha_{i}}{\alpha_{i-p}} \quad p \leq i$

Obviously inequality i) is equivalent to $|\lambda| \leq \mu_{1}=\min \left\{\sqrt{\frac{\alpha_{i+p}}{\alpha_{i+q}}}, 0 \leq i \leq q\right\}$, and ii) is equivalent to $|\lambda| \leq \mu_{2}=$ $\min \left\{\sqrt{\frac{\alpha_{i+p} \alpha_{i-q}}{\alpha_{i+q} \alpha_{i-q}-\alpha_{i}^{2}}}, q \leq i<p\right\}$. The last inequality is equivalent to $|\lambda| \leq \mu_{3}=\inf \left\{\sqrt{\left.\frac{\left(\alpha_{i+p} \alpha_{i-p}-\alpha_{i}^{2}\right) \alpha_{i-q}}{\left(\alpha_{i+q}\right.} \alpha_{i-q}-\alpha_{i}^{2}\right) \alpha_{i-p}}, p \leq i\right\}$. Thus hyponormality of $T_{z^{q}+\lambda z^{p}}$ is equivalent to $|\lambda| \leq \mu_{p, q}=\min \left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$.
Remark 3.6. If $p=q$ then clearly hyponormality of $T_{z^{q}+\lambda \overline{z^{p}}}$ is equivalent to $|\lambda| \leq 1$. Thus if $p \geq q$, from the previous theorem $\left|\mu_{p, q}\right| \leq \frac{q}{p}$.

In the following proposition we assume $q \geq 2$ (the case $q=1$ being trivial). We set
$\tau_{1}=\min \left\{\sqrt{\frac{\alpha_{i+q}}{\alpha_{i+p}}}, 0 \leq i<p\right\}, \tau_{2}=\min \left\{\sqrt{\frac{\alpha_{i+q} \alpha_{i-p}}{\alpha_{i-p} \alpha_{i+p}-\alpha_{i}^{2}}}, p \leq i<q\right\}$ and $\tau_{3}=\inf \left\{\sqrt{\frac{\left(\alpha_{i+q} \alpha_{i-q}-\alpha_{i}^{2}\right) \alpha_{i-p}}{\left(\alpha_{i+p} \alpha_{i-p}-\alpha_{i}^{2}\right) \alpha_{i-q}}}, q \leq i\right\}$.

Proposition 3.7. Assume $p<q$ then $T_{z^{q}+\lambda \overline{z^{p}}}$ is hyponormal if and only if $|\lambda| \leq \sigma_{p, q}=\min \left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}$.
The proof, being similar to the proof given above, is omitted. We set $\sigma_{q, q}=1$. Note that hyponormality of $T_{f+\bar{g}}$ implies that $\|g\| \leq\|f\|$. In particular $\sigma_{p, q} \leq \sqrt{\frac{\alpha_{q}}{\alpha_{p}}}$. In what follows we give a sufficient condition for the hyponormality of $T_{z^{q}+\bar{g}}$. We denote by B_{1} the unit ball of $L_{a, w}^{2 \perp}$.
Definition 3.8. For $f \in L_{a, w}^{2}$, set

$$
G_{f}=\left\{g \in L_{a, w}^{2}, \sup \left\{|<\bar{g} k, u>|, u \in B_{1}\right\} \leq \sup \left\{|<\bar{f} k, u>|, u \in B_{1}\right\} \text { for any } k \in H^{\infty}\right\} .
$$

By the density of H^{∞} in $L_{a, w}^{2}$ we see that $g \in G_{f}$ is equivalent to $T_{f+\bar{g}}$ is hyponormal. We list the properties of G_{f} in the following proposition:
Proposition 3.9. Let $f \in L_{a, w}^{2}$, the following holds:
i) G_{f} is convex and balanced.
ii) If $g \in G_{f}$ and c is a constant the $g+c \in G_{f}$.
iii) $f \in G_{f}$.
iv) G_{f} is weakly closed.

Proof. i), ii) and iii) follow from the definition of G_{f}. For the proof of iv) assume $\left(g_{i}\right)$ is a net in G_{f} such that $g_{i} \rightarrow g$. We have for $v \in B_{1}$ and $k \in H^{\infty},\left|<\overline{g_{i}} k, v>\right| \leq \sup \left\{|<\bar{f} k, u>|, u \in B_{1}\right\}$. Taking the limit we get $|<\bar{g} k, v>| \leq \sup \left\{|<\bar{f} k, u>|, u \in B_{1}\right\}$ for any $v \in B_{1}$. Taking the supremum on the left hand side we get: $\sup \left\{|<\bar{g} k, u>|, u \in B_{1}\right\} \leq \sup \left\{|<\bar{f} k, u>|, u \in B_{1}\right\}$ for any $k \in H^{\infty}$. This completes the proof.
Corollary 3.10. Assume $\left(\lambda_{n}\right)$ is a sequence of complex numbers satisfying $\sum\left|\lambda_{n}\right| \leq 1$.Then $T_{z^{q}+\sum_{1}^{q} \lambda_{m} \sigma_{m, q^{z^{m}}}+\sum_{q+1}^{\infty} \lambda_{m} \mu_{m, n} \overline{z^{m}}}$ is hyponormal.
Proof. Set $g_{N}=\sum_{1}^{q} \lambda_{m} \sigma_{m, q} z^{m}+\sum_{q+1}^{N} \lambda_{m} \mu_{m, q} z^{m}$ for $N \geq q+1$ and let $h=\sum_{n} h_{n} z^{n}$ be in $L_{a, w}^{2}$. We have the following inequalities for $M>N \geq q+1$

$$
\left|\left\langle g_{M}-g_{N}, h\right\rangle\right| \leq \sum_{N}^{M}\left|\lambda_{m}\right|\left|h_{m} \|\left|\alpha_{m}\right| \leq\left(\sum_{N}^{M}\left|\lambda_{m}\right|^{2}\left|\alpha_{m}\right|\right)^{1 / 2}\left(\sum_{N}^{M}\left|h_{m}\right|^{2}\left|\alpha_{m}\right|\right)^{1 / 2}\right.
$$

Thus $\left(g_{N}\right)$ converges weakly and a similar argument shows that the limit is $\sum_{1}^{q} \lambda_{m} \sigma_{m, q} z^{m}+\sum_{q+1}^{\infty} \lambda_{m} \mu_{m, q} z^{m}$. The result follows from the previous proposition.

References

[1] P. Ahern and Z. Cuckovic, A mean value inequality with applications to Bergman space operators, Pac.J.Math, Vol173.no2(1996) 295-305.
[2] S. Axler, Bergman spaces and their operators, in Surveys of Some Recent results in Operator Theory, Vol.1, Pitman Research Notes in Math, Vol.171, Longman, Harlow, (1988) 1-50.
[3] S. Axler, Bergman space, the Bloch space and commutators of multiplication operators, Duke Math.J., 53(1986)315-332.
[4] C. Cowen, Hyponormal and subnormal Toeplitz operators, in Surveys of Some Results in Operator Theory, Vol.1, Pitman Research Notes in Math, Vol.171, Longman, Harlow, (1988) 155-167.
[5] C. Cowen, Hyponormality of Toeplitz operators, Proc.Amer.Math.Soc., 103(1988) 809-812.
[6] R. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc.Amer.Math.Soc., 17(1966) 21-32.
[7] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, University of California Press, Berkeley and Los Angeles,1958.
[8] M. Hazarika, On hyponormality of Toeplitz operators on the weighted Bergman space, Communications in Mathematics and Applications, Vol3(2012), 2, 147-157.
[9] S. Hwang and J. Lee, Hyponormal Toeplitz operators on the weighted Bergman spaces, Mathematical Inequalities and Applications, 15(2012) 323-330.
[10] H. Sadraoui, Hyponormality of Toeplitz operators and composition operators, Thesis, Purdue University, 1992.
[11] K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990.

[^0]: 2010 Mathematics Subject Classification. Primary 47B35, 47B20; Secondary 15B48.
 Keywords. Toeplitz operator, weighted Bergman spaces, hyponormality, positive matrices.
 Received: 11 February 2019; Accepted: 19 May 2019
 Communicated by Dragana Cvetković-Ilić
 This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.
 Email address: sadrawi@ksu.edu.sa (Houcine Sadraoui)

