Filomat 33:17 (2019), 5737–5741 https://doi.org/10.2298/FIL1917737S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Hyponormality on General Bergman Spaces

Houcine Sadraoui^a

^aDepartment of mathematics, College of Sciences, King Saud University, P. O Box 2455 Riyadh 11451, Saudi Arabia.

Abstract. A bounded operator *T* on a Hilbert space is hyponormal if $T^*T - TT^*$ is positive. We give a necessary condition for the hyponormality of Toeplitz operators on weighted Bergman spaces, for a certain class of radial weights, when the symbol is of the form $f + \overline{g}$, where both functions are analytic and bounded on the unit disk. We give a sufficient condition when *f* is a monomial.

1. Introduction

Let w(r) be a nonegative measurable function defined on (0, 1), and assume $0 < \int_0^1 rw(r)dr < \infty$. Define the Hilbert space $L^2_{a,w}$ to be the space of analytic functions on the unit disk U such that $\int_0^1 \int_0^{2\pi} |f(re^{i\theta})|^2 rw(r) \frac{drd\theta}{\pi} < \infty$. We set $\alpha_n = 2 \int_0^1 r^{2n+1}w(r)dr$. Then $L^2_{a,w} = \left\{ f = \sum a_n z^n$ analytic on the unit disk such that $||f||^2 = \sum \alpha_n |a_n|^2 < \infty \right\}$ and its orthonormal basis is given by $e_n = \frac{z^n}{\sqrt{\alpha_n}}$. Toeplitz operators on $L^2_{a,w}$ are defined by $T_f(k) = P(fk)$, with f bounded measurable on U, k in $L^2_{a,w}$ and P the orthogonal projection on $L^2_{a,w}$. Hankel operators are defined by $H_f(k) = (I - P)(fk)$ where f and k are as before. A bounded operator on a Hilbert space is said to be hyponormal if $T^*T - TT^*$ is positive. Unweighted Bergman spaces are considered in [2, 3, 11]. Hyponormality on the Hardy space was first considered in [4, 5]. The first results on hyponormality of Toeplitz operators on Bergman spaces are in [10] and the necessary condition is improved in [1]. All the known results on hyponormality on weighted Bergman spaces consider particular types of polynomials as a symbol. We cite for example [8] and [9]. In this work we consider hyponormality of Toeplitz operators on $L^2_{a,w}$ with a symbol of the form $f + \overline{g}$, where f and g are bounded analytic on the the unit disk. We give sufficient conditions for hyponormality when f is a monomial and g is a polynomial. A necessary and sufficient condition for normality of $T_{f+\overline{g}}$, when f and g are analytic in an open set containing U, is also obtained as a consequence.

2. Basic properties of Toeplitz operators and equivalent forms of hyponormality

These properties are known on the Bergman space and they hold also for weighted Bergman spaces.We assume f, g are in $L^{\infty}(U)$. Then we have:

Keywords. Toeplitz operator, weighted Bergman spaces, hyponormality, positive matrices.

Received: 11 February 2019; Accepted: 19 May 2019

²⁰¹⁰ Mathematics Subject Classification. Primary 47B35, 47B20; Secondary 15B48.

Communicated by Dragana Cvetković-Ilić

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center. *Email address:* sadrawi@ksu.edu.sa (Houcine Sadraoui)

1. $T_{f+g} = T_f + T_g$. 2. $T_f^* = T_{\overline{f}}$. 3. $T_{\overline{f}}T_g = T_{\overline{f}g}$ if *f* or *g* analytic on *U*.

The use of these properties leads to describing hyponormality in more than one form. These are easy to prove, and one of the forms uses Douglas lemma [6].

Proposition 2.1. Let *f*, *g* be bounded and analytic on U. Then the following are equivalent:

- 1. $T_{f+\overline{q}}$ is hyponormal.
- 2. $H_{\overline{q}}^*H_{\overline{g}} \leq H_{\overline{f}}^*H_{\overline{f}}$.
- 3. $||(I-P)(\overline{g}k)|| \le ||(I-P)(\overline{f}k)||$ for any k in $L^2_{a,w}$.
- $\begin{array}{l} 4. \ \|\overline{g}k\|^2 \|P(\overline{g}k)\|^2 \leq \|\overline{f}k\|^2 \|P(\overline{f}k)\|^2 \ for \ any \ k \ in \ L^2_{a,w}. \\ 5. \ H_{\overline{g}} = LH_{\overline{f}} \ where \ L \ is \ of \ norm \ less \ than \ or \ equal \ to \ one. \end{array}$

We also need the following two lemmas. The symbols m, n, p etc denote nonnegative integers.

Lemma 2.2. For *m* and *n* integers we have $P(z^n \overline{z^m}) = \begin{cases} 0, & \text{if } n < m \\ \frac{\alpha_n}{\alpha_{n-m}} z^{n-m}, & \text{if } n \ge m \end{cases}$.

Proof. If n < m we have $\langle P(z^n \overline{z^m}), z^p \rangle = \langle z^n \overline{z^m}, z^p \rangle = \langle z^n, z^{p+m} \rangle = 0$ for any integer p. Thus $P(z^n \overline{z^m}) = 0$. For $n \ge m, \left\langle P(z^n \overline{z^m}), z^p \right\rangle = \left\langle z^n, z^{p+m} \right\rangle = 0 \text{ if } p \ne n-m. \text{ So } P(z^n \overline{z^m}) = \lambda z^{n-m} \text{ and } \left\langle P(z^n \overline{z^m}), z^{n-m} \right\rangle = \lambda ||z^{n-m}||^2 = \lambda \alpha_{n-m}.$ Since $\langle P(z^n \overline{z^m}), z^{n-m} \rangle = \langle z^n \overline{z^m}, z^{n-m} \rangle = \langle z^n, z^n \rangle = \alpha_n$, we deduce that $\lambda = \frac{\alpha_n}{\alpha_{n-m}}$ and the result follows. \Box

Lemma 2.3. For $f = \sum a_n z^n$ bounded and analytic on the unit disk. The matrix of $T_{\overline{f}}T_f - T_f T_{\overline{f}}$ in the orthonormal basis $\{e_n\}$ is given by

$$\Lambda_{i,j} = \sum_{m \ge j-i, m \ge 0} \frac{a_{m+i-j}\overline{a_m}\alpha_{i+m}}{\sqrt{\alpha_i}\sqrt{\alpha_j}} - \sum_{i-j \le m \le i, 0 \le m} \frac{a_m\overline{a_{m+j-i}}\sqrt{\alpha_i}\sqrt{\alpha_j}}{\alpha_{i-m}}$$

Proof. We have $T_f(e_j) = \frac{1}{\sqrt{\alpha_j}} \sum_n a_n z^{n+j}$ and $T_{\overline{f}} T_f(e_j) = \frac{1}{\sqrt{\alpha_j}} P(\sum_{m,n} a_n \overline{a_m} z^{n+j} \overline{z}^m) = \frac{1}{\sqrt{\alpha_j}} \sum_{m-n \le i} a_n \overline{a_m} \frac{\alpha_{n+j}}{\alpha_{n+j-m}} z^{n+j-m}$ which can be written

$$T_{\overline{f}}T_f(e_j) = \frac{1}{\sqrt{\alpha_j}} \sum_{p \ge 0, m+p \ge j} \frac{\alpha_{m+p}}{\alpha_p} a_{m+p-j} \overline{a_m} z^p.$$

We deduce that

$$\left\langle T_{\overline{f}}T_{f}(e_{j}), e_{i} \right\rangle = \frac{1}{\sqrt{\alpha_{i}}} \sum_{m \geq j-i, m \geq 0} a_{m+i-j}\overline{a_{m}} \alpha_{i+m}$$

Similarly, we show that

$$\left\langle T_{f}T_{\overline{f}}(e_{j}), e_{i} \right\rangle = \sum_{i-j \le m \le i, 0 \le m} \frac{a_{m}\overline{a_{m+j-i}} \sqrt{\alpha_{i}} \sqrt{\alpha_{j}}}{\alpha_{i-m}}$$

and the proof is complete. \Box

Corollary 2.4. The following holds

$$\Lambda_{i+n,i+n+p} = \sum_{l \le i+n} \frac{(\alpha_{i+n+p+l}\alpha_{i+n-l} - \alpha_{i+n}\alpha_{i+n+p})a_l\overline{a_{l+p}}}{\sqrt{\alpha_{i+n}}\sqrt{\alpha_{i+n+p}}\alpha_{i+n-l}} + \sum_{l>i+n} \frac{\alpha_{i+n+p+l}a_l\overline{a_{l+p}}}{\sqrt{\alpha_{i+n}}\sqrt{\alpha_{i+n+p}}}.$$

Proof. This follows from the previous lemma by putting m = p + l in the first sum and m = l in the second.

3. The results

Denote by $(\theta_{i,j})$ the matrix of the, possibly unbounded, Toeplitz operator on H^2 with symbol $|f'|^2$. Our main result uses the following lemma, where *C* denotes a constant.

Lemma 3.1. Let $f = \sum a_n z^n$ be bounded on U. Assume $f' \in H^2$ and (α_n) satisfies the following conditions:

$$n^{2}\left|\frac{\alpha_{i+n+p+l}\alpha_{i+n-l} - \alpha_{i+n}\alpha_{i+n+p}}{\sqrt{\alpha_{i+n}}\sqrt{\alpha_{i+n+p}}\alpha_{i+n-l}}\right| \le Cl(l+p), \qquad l \le i+n$$

$$\tag{1}$$

$$\frac{n^2(\alpha_{i+n+p+l}\alpha_{i+n-l} - \alpha_{i+n}\alpha_{i+n+p})}{\sqrt{\alpha_{i+n}}\sqrt{\alpha_{i+n+p}}\alpha_{i+n-l}} \xrightarrow[n \to \infty]{} l(l+p)$$

$$\tag{2}$$

Then

$$n^2 \Lambda_{i+n,i+n+p} \xrightarrow[n \to \infty]{} \theta_{i,i+p}.$$

Proof. We have $\sum_{l} l^2 |a_l|^2 < \infty$ since $f' \in H^2$. Using the previous lemma we have

$$n^2 \Lambda_{i+n,i+n+p} = \sum_{l \leq i+n} \frac{n^2 (\alpha_{i+n+p+l} \alpha_{i+n-l} - \alpha_{i+n} \alpha_{i+n+p}) a_l \overline{a_{l+p}}}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}} \alpha_{i+n-l}} + \sum_{l>i+n} \frac{n^2 \alpha_{i+n+p+l} a_l \overline{a_{l+p}}}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}}}.$$

Set $h_n(l) = \frac{n^2(\alpha_{i+n+p+l},\alpha_{i+n-l}-\alpha_{i+n},\alpha_{i+n+p})a_l\overline{a_{l+p}}}{\sqrt{\alpha_{i+n}}\sqrt{\alpha_{i+n+p}\alpha_{i+n-l}}}$. From (1) we have $|h_n(l)| \leq (C/2)(l^2|a_l|^2 + (l+p)^2|a_{l+p}|^2) = I(l)$ and $\int_0^\infty I(l)dv(l) < \infty$, where v is the counting measure. Using (2) and the dominated convergence theorem we obtain

$$\lim_{n\to\infty}\sum_{l\leq i+n}\frac{n^2(\alpha_{i+n+p+l}\alpha_{i+n-l}-\alpha_{i+n}\alpha_{i+n+p})a_l\overline{a_{l+p}}}{\sqrt{\alpha_{i+n}}\sqrt{\alpha_{i+n+p}}\alpha_{i+n-l}}=\sum l(l+p)a_l\overline{a_{l+p}}.$$

We also have, for l > i + n

$$\frac{|n^2 \alpha_{i+n+p+l} a_l \overline{a_{l+p}}|}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}}}| \le 1/2(l^2 |a_l|^2 + (l+p)^2 |a_{l+p}|^2).$$

.

By the dominated convergence theorem we see that

$$\sum_{l>i+n} \frac{n^2 \alpha_{i+n+p+l} a_l \overline{a_{l+p}}}{\sqrt{\alpha_{i+n}} \sqrt{\alpha_{i+n+p}}} \xrightarrow[n \to \infty]{0}$$

The result follows since $\theta_{i,i+p} = \sum_{l} l(l+p)a_l \overline{a_{l+p}}$. \Box

Remark 3.2. *Examples of weights satisfying conditions* (1) *and* (2) *of the previous lemma are* : $w(r) = r^{2s}$, $s > -\frac{1}{2}$, $w(r) = |\log r|$, and $w(r) = 1 - r^2$.

From now on we assume (α_n) satisfies the hypotheses of the previous lemma. We state our main result.

Theorem 3.3. Let f and g be bounded analytic functions on U, and assume $f' \in H^2$. If $T_{f+\overline{g}}$ is hyponormal on $L^2_{a,w}$ then $g' \in H^2$ and $|g'| \leq |f'|$ a.e on the unit circle.

Proof. Denote by $(\Gamma_{i,j})$ the matrix of $T_{\overline{g}}T_g - T_gT_{\overline{g}}$ and put $g = \sum_n b_n z^n$. Hyponormality of $T_{f+\overline{g}}$ leads to the inequality $n^2\Gamma_{i+n,i+n} \leq n^2\Lambda_{i+n,i+n}$. We deduce that

$$\sum_{l \le i+n} \frac{n^2 (\alpha_{i+n+l} \alpha_{i+n-l} - (\alpha_{i+n})^2) |b_l|^2}{\alpha_{i+n} \alpha_{i+n-l}} \le \sum_{l \le i+n} \frac{n^2 (\alpha_{i+n+l} \alpha_{i+n-l} - (\alpha_{i+n})^2) |a_l|^2}{\alpha_{i+n} \alpha_{i+n-l}} + \sum_{l > i+n} \frac{n^2 \alpha_{i+n+l} |a_l|^2}{\alpha_{i+n} \alpha_{i+n-l}} + \sum_{l < i+n} \frac{n^2 \alpha_{i+n+l} |a_l|^2}{\alpha_{i+n} \alpha_{i+n-l}}} + \sum_{l < i+n} \frac{n^2 \alpha_{i+n+l} |a_l|^2}{\alpha_{i+n} \alpha_{i+n-l}} + \sum_{l < i+n} \frac{n^2 \alpha_{i+n+l} |a_l|^2}{\alpha_{i+n} \alpha_{i+n-l}}} + \sum_{l < i+n} \frac{n^2 \alpha_{i+n+l} |a_l|^2}{\alpha_{i+n} \alpha_{i+n-l}} + \sum_{l < i+n} \frac{n^2 \alpha_{i+n} |a_l$$

Write the left hand side sum as an integral $\int u_n(l)dv(l)$. By Fatou's lemma, condition (2) of the previous lemma and taking the limit on both sides we get

$$\sum l^2 |b_l|^2 \le \sum l^2 |a_l|^2.$$

Thus $g' \in H^2$. From the previous lemma we deduce that $n^2(\Lambda_{i+n,i+n+p} - \Gamma_{i+n,i+n+p}) \xrightarrow[n \to \infty]{} \theta_{i,i+p} - \phi_{i,i+p}$ where $(\phi_{i,j})$ is the matrix of the Hardy space Toeplitz operator $T_{|g'|^2}$. Hyponormality leads to the positivity of $T_{|f'|^2 - |g'|^2}$, and a property of Toeplitz forms [7] implies that $|g'| \leq |f'|$ a.e on the unit circle. The proof is complete. \Box

Corollary 3.4. Let f and g be analytic and univalent in an open set containing U. Then $T_{f+\overline{g}}$ is normal if and only if g = cf + d for some constants c and d with |c| = 1.

Proof. if g = cf + d with |c| = 1, it is easy to see that $T_{f+\overline{g}}$ is normal. Conversely if $T_{f+\overline{g}}$ is normal then |g'| = |f'| on the circle and a maximum modulus argument shows that g' = cf' with |c| = 1. Thus g = cf + d. \Box

We now find a sufficient condition for hyponormality when
$$f = z^q$$
. We begin with the case $g = \lambda z^p$. We set $\mu_1 = \min\left\{\sqrt{\frac{\alpha_{i+p}}{\alpha_{i+q}}}, 0 \le i < q\right\}, \mu_2 = \min\left\{\sqrt{\frac{\alpha_{i+p}\alpha_{i-q}}{\alpha_{i+q}\alpha_{i-q}-\alpha_i^2}}, q \le i < p\right\}$ and $\mu_3 = \inf\left\{\sqrt{\frac{(\alpha_{i+p}\alpha_{i-p}-\alpha_i^2)\alpha_{i-q}}{(\alpha_{i+q}\alpha_{i-q}-\alpha_i^2)\alpha_{i-p}}}, p \le i\right\}$.

Proposition 3.5. Assume p > q. The operator $T_{z^q + \lambda \overline{z^p}}$ is hyponormal if and only if $|\lambda| \le \lambda_{p,q} = \min\{\mu_1, \mu_2, \mu_3\}$.

Proof. In this case hyponormality is equivalent to $|\lambda|^2 H_{\overline{z^p}}^* H_{\overline{z^p}} \leq H_{\overline{z^q}}^* H_{\overline{z^q}}$. A computation shows that the matrix of $H_{\overline{z^m}}^* H_{\overline{z^m}}$ is diagonal and its diagonal term is given by:

$$D_i = \frac{\alpha_{i+m}}{\alpha_i} \text{ if } m > i, \ D_i = \frac{\alpha_{i+m}}{\alpha_i} - \frac{\alpha_i}{\alpha_{i-m}} \text{ if } m \le i$$

Hyponormality is thus equivalent to the following inequalities:

$$\begin{split} i) |\lambda|^2 \frac{\alpha_{i+q}}{\alpha_i} &\leq \frac{\alpha_{i+p}}{\alpha_i} \quad 0 \leq i < q \\ ii) |\lambda|^2 (\frac{\alpha_{i+q}}{\alpha_i} - \frac{\alpha_i}{\alpha_{i-q}}) \leq \frac{\alpha_{i+p}}{\alpha_i} \quad q \leq i < p \\ iii) |\lambda|^2 (\frac{\alpha_{i+q}}{\alpha_i} - \frac{\alpha_i}{\alpha_{i-q}}) \leq \frac{\alpha_{i+p}}{\alpha_i} - \frac{\alpha_i}{\alpha_{i-p}} \quad p \leq i \end{split}$$

Obviously inequality i) is equivalent to $|\lambda| \le \mu_1 = \min\left\{\sqrt{\frac{\alpha_{i+p}}{\alpha_{i+q}}}, 0 \le i \le q\right\}$, and ii) is equivalent to $|\lambda| \le \mu_2 = \min\left\{\sqrt{\frac{\alpha_{i+p}\alpha_{i-q}}{\alpha_{i+q}\alpha_{i-q}-\alpha_i^2}}, q \le i < p\right\}$. The last inequality is equivalent to $|\lambda| \le \mu_3 = \inf\left\{\sqrt{\frac{(\alpha_{i+p}\alpha_{i-p}-\alpha_i^2)\alpha_{i-q}}{(\alpha_{i+q}\alpha_{i-q}-\alpha_i^2)\alpha_{i-p}}}, p \le i\right\}$. Thus hyponormality of $T_{2^q+\lambda \overline{2^p}}$ is equivalent to $|\lambda| \le \mu_{p,q} = \min\{\mu_1, \mu_2, \mu_3\}$. \Box

Remark 3.6. If p = q then clearly hyponormality of $T_{z^q + \lambda \overline{z^p}}$ is equivalent to $|\lambda| \le 1$. Thus if $p \ge q$, from the previous theorem $|\mu_{p,q}| \le \frac{q}{p}$.

In the following proposition we assume $q \ge 2$ (the case q = 1 being trivial). We set

$$\tau_1 = \min\{\sqrt{\frac{\alpha_{i+q}}{\alpha_{i+p}}}, \ 0 \le i < p\}, \tau_2 = \min\{\sqrt{\frac{\alpha_{i+q}\alpha_{i-p}}{\alpha_{i-p}\alpha_{i+p}-\alpha_i^2}}, \ p \le i < q\} \text{ and } \tau_3 = \inf\{\sqrt{\frac{(\alpha_{i+q}\alpha_{i-q}-\alpha_i^2)\alpha_{i-p}}{(\alpha_{i+p}\alpha_{i-p}-\alpha_i^2)\alpha_{i-q}}}, \ q \le i\}.$$

Proposition 3.7. Assume p < q then $T_{z^q + \lambda \overline{z^p}}$ is hyponormal if and only if $|\lambda| \le \sigma_{p,q} = \min\{\tau_1, \tau_2, \tau_3\}$.

The proof, being similar to the proof given above, is omitted. We set $\sigma_{q,q} = 1$. Note that hyponormality of $T_{f+\overline{g}}$ implies that $||g|| \le ||f||$. In particular $\sigma_{p,q} \le \sqrt{\frac{\alpha_q}{\alpha_p}}$. In what follows we give a sufficient condition for the hyponormality of $T_{z^q+\overline{g}}$. We denote by B_1 the unit ball of $L_{a,w}^{2\perp}$.

Definition 3.8. For $f \in L^2_{a,w}$, set

 $G_{f} = \left\{ g \in L^{2}_{a,w}, \sup\{| < \overline{g} \ k, u > |, \ u \in B_{1} \right\} \le \sup\{| < \overline{f} \ k, u > |, \ u \in B_{1} \} \text{ for any } k \in H^{\infty} \right\}.$

By the density of H^{∞} in $L^2_{a,w}$ we see that $g \in G_f$ is equivalent to $T_{f+\overline{g}}$ is hyponormal. We list the properties of G_f in the following proposition:

Proposition 3.9. Let $f \in L^2_{a,w}$, the following holds: *i*) G_f is convex and balanced. *ii*) If $g \in G_f$ and *c* is a constant the $g + c \in G_f$. *iii*) $f \in G_f$. *iv*) G_f is weakly closed.

Proof. i), ii) and iii) follow from the definition of G_f . For the proof of iv) assume (g_i) is a net in G_f such that $g_i \rightarrow g$. We have for $v \in B_1$ and $k \in H^{\infty}$, $| < \overline{g_i} k, v > | \le \sup\{| < \overline{f} k, u > |, u \in B_1\}$. Taking the limit we get $| < \overline{g} k, v > | \le \sup\{| < \overline{f} k, u > |, u \in B_1\}$ for any $v \in B_1$. Taking the supremum on the left hand side we get: $\sup\{| < \overline{g} k, u > |, u \in B_1\} \le \sup\{| < \overline{f} k, u > |, u \in B_1\}$ for any $k \in H^{\infty}$. This completes the proof. \Box

Corollary 3.10. Assume (λ_n) is a sequence of complex numbers satisfying $\sum |\lambda_n| \le 1$. Then $T_{z^q + \sum_{q+1}^{q} \lambda_m \sigma_{m,q} \overline{z^m} + \sum_{q+1}^{\infty} \lambda_m \mu_{m,q} \overline{z^m}}$

is hyponormal.

Proof. Set $g_N = \sum_{1}^{q} \lambda_m \sigma_{m,q} z^m + \sum_{q+1}^{N} \lambda_m \mu_{m,q} z^m$ for $N \ge q+1$ and let $h = \sum_{n} h_n z^n$ be in $L^2_{a,w}$. We have the following inequalities for $M > N \ge q+1$

$$|\langle g_M - g_N, h \rangle| \le \sum_N^M |\lambda_m| |h_m| |\alpha_m| \le (\sum_N^M |\lambda_m|^2 |\alpha_m|)^{1/2} (\sum_N^M |h_m|^2 |\alpha_m|)^{1/2}.$$

Thus (g_N) converges weakly and a similar argument shows that the limit is $\sum_{1}^{q} \lambda_m \sigma_{m,q} z^m + \sum_{q+1}^{\infty} \lambda_m \mu_{m,q} z^m$. The result follows from the previous proposition. \Box

References

- P. Ahern and Z. Cuckovic, A mean value inequality with applications to Bergman space operators, Pac.J.Math, Vol173.no2(1996) 295–305.
- [2] S. Axler, Bergman spaces and their operators, in Surveys of Some Recent results in Operator Theory, Vol.1, Pitman Research Notes in Math, Vol.171, Longman, Harlow, (1988) 1–50.
- [3] S. Axler, Bergman space, the Bloch space and commutators of multiplication operators, Duke Math.J., 53(1986)315–332.
- [4] C. Cowen, Hyponormal and subnormal Toeplitz operators, in Surveys of Some Results in Operator Theory, Vol.1, Pitman Research Notes in Math, Vol.171, Longman, Harlow, (1988) 155–167.
- [5] C. Cowen, Hyponormality of Toeplitz operators, Proc.Amer.Math.Soc., 103(1988) 809-812.
- [6] R. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc.Amer.Math.Soc., 17(1966) 21–32.
- [7] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, University of California Press, Berkeley and Los Angeles, 1958.
- [8] M. Hazarika, On hyponormality of Toeplitz operators on the weighted Bergman space, Communications in Mathematics and Applications, Vol3(2012), 2, 147–157.
- [9] S. Hwang and J. Lee, Hyponormal Toeplitz operators on the weighted Bergman spaces, Mathematical Inequalities and Applications, 15(2012) 323–330.
- [10] H. Sadraoui, Hyponormality of Toeplitz operators and composition operators, Thesis, Purdue University, 1992.
- [11] K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990.