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Abstract. In this paper, we construct an online game addiction model(including susceptible, infective,
professional and quitting compartments). We also consider that the direct transfer from the susceptible
individuals to the professional individuals. Some properties of the model are derived by the basic repro-
duction number R0 and stability of all kinds of equilibria is obtained. Then we use Pontriagin’s maximum
principle to solve the optimal control strategy. Finally, Numerical simulations are also conducted in the
analytic results.

1. Introduction

In recent years, the online game industry has developed rapidly, and the scale of online users has
continued to grow. According to the 43rd China Internet Development Statistics Report issued by China
Internet Information Center, in the first half of 2018, the number of online users in China was 829.52
million[1].

On March 13, 2019, the Statistical Classification of Sports Industry (2019) was approved by the 4th
Standing Meeting of the National Statistical Bureau of China[2]. E-sports was officially classified as a sport
event, coded 020210210.

At the same time, online games also bring some bad effects. People who are weak in self-control often
fail to distinguish between virtual reality and reality. They are easy to indulge in games and have many
social problems. On April 15, 2007, the General Administration of Press and Publication of China issued the
Real Name Certification Scheme for Online Game Anti-addiction System. In this scheme, the cumulative
game time is defined as healthy game time within 3 hours per day, fatigue game time within 3-5 hours and
unhealthy game time over 5 hours.

On June 19, 2018, the World Health Organization (WHO) officially issued a draft listing of game
addiction as a mental disorder, which is expected to be formally introduced to integrate game addiction
into the medical system[3]. Online games have a certain attractiveness, and the people who are weak in
willpower are easily affected and indulged in it. Therefore, in a sense, the behavior of indulging in online
games and infectious diseases have similar transmission mechanism, and online games are contagious.
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In the past 30 years, many scholars used biomathematical models to capture the characteristics of many
infectious diseases. The dynamic models of infectious diseases have been extensively studied with different
theories, tools and methods from different perspectives and emphases. So far, there are many rich theoretical
results[4–9] .

Many scholars applied the research methods of infectious diseases to other problems, such as smoking,
alcoholism, drug abuse, games and so on. Zaman[10] presented the optimal campaigns in the smoking
dynamics which assumed that the giving up smoking model is described by the simplified PLSQ (potential-
light-smoker-quit smoker) model. Wang[11] discussed a deterministic SATQ-type mathematical model
(including susceptible, alcoholism, treating, and quitting compartments) for the spread of alcoholism with
two control strategies to gain insights into this increasingly concerned about health and social phenomenon.
Firster[12] studied the optimizing chemotherapy in an HIV model. Weinstein[13] used phenomenology
and epidemiology to diagnose game addiction by comparing players with non-players. Jiang[14] discussed
the dynamics of game transmission on complex networks, with dividing the total population into four
compartments. The threshold of the model and the stability of the positive equilibrium were obtained.
Wang[15] studied the dynamic analysis of the mathematical model of online game addiction with age
structure.

Optimal control theory and method are more and more widely used in biomathematics. Many biomath-
ematical scientists and technicians devote themselves to this burgeoning field. Khan et al.[19] formulated
a dynamical model of asymptomatic carrier zika virus with optimal control strategies, and considered that
the asymptomatic carrier individuals have the abilities to take part in the infection generation. The opti-
mal control model and the model without controls are solved numerically by the forward and backward
Runge-Kutta method. Cholera-schistosomiasis coinfection dynamics is analyzed in [20], where the authors
explored the dynamics of both diseases and their coinfection and provided effective control strategies for
disease elimination. Mathematical formulation of hepatitis B virus with optimal control analysis is in-
vestigated in [21]. Modelling the effects of heavy alcohol consumption on the transmission dynamics of
gonorrhea with optimal control is presented in [22]. Optimal control strategies for dengue transmission
in Pakistan is studied in [23], where the authors studied the impact of an imperfect vaccine in the bid to
control dengue. And there are still a lot of useful references cited therein.

In this paper, we will formulate a reasonable mathematical model of online game addiction. The fact
that our model is reasonable is embodied from the following some aspects.

(1)With the continuous development of e-sports, more and more professionals engaged in e-sports,
such as professional contestants, game developers, e-sports media organization planning, e-sports hosts,
game commentaries and so on. They have gradually become an important group that can not be ignored.
Although they spend more than five hours a day playing games, they are different from the traditional
game addicts. Therefore, we set up a storehouse for the professional group of e-sports, which is recorded
as P.

(2)In China, America and other countries, many universities have gradually opened e-sports specialty
to cultivate talents in e-sports. Since they have changed from susceptible people to professional people
directly and do not need to go through the stage of game addiction, we establish a direct transfer from S to
P.

(3)After education and treatment from hospitals or psychologists, people addicted may choose to
become professionals or quit permanently. Some professionals will opt out at a certain age because of
physical reasons. So we set up an quitting warehouse, named Q.

(4)Online game addiction is similar to infectious diseases, and it can also be prevented by certain ways,
such as propaganda and education, online game supervision and other measures to regulate and control.
Therefore, the number of people addicted to games can be controlled by some measures.

Based on the above considerations and inspired by the existing literature, we apply epidemiological
dynamics to simulate the spread process of online game addiction according to the characteristics of online
games. The population is divided into four compartments, namely, susceptible(S), infective(I), profes-
sional(P) and quitting(Q). On the one hand, qualitative analysis and quantitative numerical simulation
of the model using classical biomathematics theory and tools are helpful to predict the development of
online game addiction. On the other hand, adopting the optimal control strategy can help management to
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formulate reasonable policies to deal with the problem.

2. The Model Formulation

2.1. System Description
The total population denoted by N(t) is partitioned into four compartments, namely, the susceptible

individuals whose gaming time is less than 5 hours per day, denoted by S(t); the infective individuals whose
gaming time is more than 5 hours per day and who lack a proper job, denoted by I(t); the professional
individuals whose gaming time is more than 5 hours per day and who have a proper job, denoted by P(t);
the quitting individuals who quit playing game, denoted by Q(t). Thus, the total population is given by:

N(t) = S(t) + I(t) + P(t) + Q(t). (1)

The population flow among those compartments is shown in Figure 1.

Fig.1. Transfer diagram of model

The transfer diagram leads to the following system of ordinary differential equations:

S′ = µ(N − S) − S
αI + βP

N

I′ = (1 − u1)S
αI + βP

N
− (u2 + µ)I (2)

P′ = u1S
αI + βP

N
+ (1 − γ)u2I − (δ + µ)P

Q′ = γu2I + δP − µQ

where µ is the nature birth rate and death rate; α denotes the transmission coefficient for the addictive
individuals ; β is the transmission coefficient for the professional individuals; u1 represents the probability
of people who become professionals directly without indulgence; u2 represents the proportion of people
who are no longer addicted to games; γ denotes the ratio of withdrawal from addiction; δ denotes the
quitting rate of P.

2.2. Positivity and Boundedness of Solutions
For system (2), to ensure that the solutions of the system with positive initial conditions remain positive

for all t > 0, it is necessary to prove that all the state variables are nonnegative. System (2) can be put into
the matrix form

X′ = G(X) (3)
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where X = (S, I,P,Q)T
∈ R4 and G(X) is given by

G(X) =


G1(X)
G2(X)
G3(X)
G4(X)


=


µ(N − S) − SαI+βP

N
(1 − u1)SαI+βP

N − (u2 + µ)I
u1SαI+βP

N + (1 − γ)u2I − (δ + µ)P
γu2I + δP − µQ

 . (4)

It is easy to know that

Gi(X)|Xi(t)=0,Xt∈C+
≥ 0, i = 1, 2, 3, 4. (5)

Because of Σ4
i=1Gi(x) = 0, N(t) is a constant denoted by N. Due to Lemma 2 in [4], all feasible solutions of

the system (2) are bounded and belong to the set:

Ω = {(S, I,P,Q) ∈ R4
+ : S + I + P + Q ≤ N}. (6)

3. The Basic Reproduction Number and Existence of Disease Equilibrium

3.1. The Basic Reproduction Number
The model has a disease-free equilibrium E0 given by

E0 = (N, 0, 0, 0). (7)

In the following, the basic reproduction number of system (2) will be obtained by the next generation matrix
method. Let x = (I,P,Q,S)T, then system(2) can be written as

dx
dt

= F (x) − V (x). (8)

where

F (x) =


(1 − u1)SαI+βP

N
u1SαI+βP

N
0
0

 , V (x) =


(u2 + µ)I

(δ + µ)P − (1 − γ)u2I
µQ − γu2I − δP
µ(S −N) + SαI+βP

N

 .
The Jacobian matrices of F (x) and V (x) at the disease-free equilibrium E0 are

DF (E0) =

(
F3×3 0

0 0

)
, DV (E0) =

(
V3×3 0

α β 0 µ

)
.

where

F3×3 =

 (1 − u1)α (1 − u1)β 0
u1α u1β 0

0 0 0

 , V3×3 =

 u2 + µ 0 0
(γ − 1)u2 δ + µ 0
−γu2 −δ µ

 .
The basic reproduction number, denoted by R0, is given by

R0 = ρ(FV−1) =
(1 − u1)α(δ + µ) + βu2(1 − γ + u1γ) + u1βµ

(u2 + µ)(δ + µ)
. (9)
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3.2. Existence of Disease Equilibrium
The disease equilibrium E∗(S∗, I∗,P∗,Q∗) of system (2) is determined by equations:

µ(N − S) − S
αI + βP

N
= 0 (10)

(1 − u1)S
αI + βP

N
− (u2 + µ)I = 0 (11)

u1S
αI + βP

N
+ (1 − γ)u2I − (δ + µ)P = 0 (12)

γu2I + δP − µQ = 0 (13)

Through equations (10-12), we have

S = N −
u2 + µ

(1 − u1)µ
I (14)

P =
u1(u2 + µ) + (1 − γ)(1 − u1)u2

(δ + µ)(1 − u1)
I (15)

From equations (10),(14),(15), we can get

I =
N(1 − u1)µ

u2 + µ
(1 −

1
R0

) (16)

Theorem 1 In the system (2), there is always a disease-free equilibrium E0 = (N, 0, 0, 0). When R0 > 1, the
system has a unique disease equilibrium E∗ = (S∗, I∗,P∗,Q∗), where

S∗ =
N
R0

I∗ =
N(1 − u1)µ

u2 + µ
(1 −

1
R0

)

P∗ =
u1(u2 + µ) + (1 − γ)(1 − u1)u2

(δ + µ)(1 − u1)
I∗

Q∗ =
γu2(δ + µ)(1 − u1) + δu1(u2 + µ) + δu2(1 − γ)(1 − u1)

µ(δ + µ)(1 − u1)
I∗

4. Stability Analysis of Equilibria

We denote a vector X = (I,P,Q,S)T and

f (X) =


(1 − u1)SαI+βP

N − (u2 + µ)I
u1SαI+βP

N + (1 − γ)u2I − (δ + µ)P
γu2I + δP − µQ
µ(N − S) − SαI+βP

N

 . (17)

So the Jacobian matrix of f (X) about vector X is as the following:

J =
∂ f (X)
∂X

=


(1 − u1)S α

N − (u2 + µ) (1 − u1)S β
N 0 (1 − u1)αI+βP

N
u1S α

N + (1 − γ)u2 u1S β
N − (δ + µ) 0 u1

αI+βP
N

γu2 δ −µ 0
−S α

N −S β
N 0 −µ

 .
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Theorem 2 For the system (2), the disease-free equilibrium E0 is locally asymptotically stable if R0 < 1.

Proof. Since

J(E0) =


(1 − u1)α − (u2 + µ) (1 − u1)β 0 0

u1α + (1 − γ)u2 u1β − (δ + µ) 0 0
γu2 δ −µ 0
−α −β 0 −µ

 .
It is known that two of the eigenvalues are λ1 = λ2 = −µ < 0, and λ3, λ4 satisfy

λ3 + λ4 = (1 − u1)α − (u2 + µ) + u1β − (δ + µ)
λ3λ4 = (u2 + µ)(δ + µ) − βu2(1 − (1 − u1)γ) − βµu1 − (1 − u1)α(δ + µ)

Since R0 < 1, λ3λ4 > 0.
Though

0 < R0 =
(1 − u1)α

u2 + µ
+
βu1

δ + µ
+
βu2(1 − γ)(1 − u1)

(δ + µ)(u2 + µ)
< 1

Thus,

0 <
(1 − u1)α

u2 + µ
< 1, 0 <

βu1

δ + µ
< 1

we can get

λ3 + λ4 < 0

Hence, Re(λ3) < 0, Re(λ4) < 0. The proof is completed. �

Theorem 3 For the system (2), the disease-free equilibrium E0 is globally asymptotically stable if R0 < 1.

Proof. Consider the subsystem of (2) as follows:

I′ = (1 − u1)S
αI + βP

N
− (u2 + µ)I

P′ = u1S
αI + βP

N
+ (1 − γ)u2I − (δ + µ)P (18)

Q′ = γu2I + δP − µQ

For S ≤ N, I′

P′

Q′

 ≤

 ((1 − u1)α − (u2 + µ))I + (1 − u1)βP
(u1α + (1 − γ)u2)I + (u1β − (δ + µ))P

γu2I + δP − µQ


= (F − V)

 I
P
Q


Since the eigenvalues of the matrix F − V all have negative real parts, then system (2) is stable when

R0 < 1. So (I,P,Q) → (0, 0, 0) as t → ∞. By the comparison theorem, it follows that (I,P,Q) → (0, 0, 0) and
S→ N as t→∞. So E0 is globally asymptotically stable for R0 < 1. �

Theorem 4 For the system (2), the disease equilibrium E∗ = (S∗, I∗,P∗,Q∗) is globally asymptotically stable if
R0 > 1.
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Proof. Because N = S + I + P + Q is a constant, we introduce the fractions of them:

s =
S
N
, i =

I
N
, p =

P
N
, q =

Q
N
.

with s + i + p + q = 1. Thus, the system (2) becomes:

s′ = µ(1 − s) − s(αi + βp)
i′ = (1 − u1)s(αi + βp) − (u2 + µ)i (19)
p′ = u1s(αi + βp) + (1 − γ)u2i − (δ + µ)p
q′ = γu2i + δp − µq.

And the disease equilibrium E∗ = (S∗, I∗,P∗,Q∗) becomes E∗∗ = (s∗, i∗, p∗, q∗), where

s∗ =
1

R0

i∗ =
(1 − u1)µ

u2 + µ
(1 −

1
R0

)

p∗ =
u1(u2 + µ) + (1 − γ)(1 − u1)u2

(δ + µ)(1 − u1)
i∗

q∗ =
γu2(δ + µ)(1 − u1) + δu1(u2 + µ) + δu2(1 − γ)(1 − u1)

µ(δ + µ)(1 − u1)
i∗

We introduce the Lyapunov function V as follows:

V = x1(s − s∗lns) + x2(i − i∗lni) + x3(p − p∗lnp) + x4(q − q∗lnq) (20)

Applying the identity µ = µs∗ + s∗(αi∗ + βp∗), the derivative of V is given by

V′ = x1(1 −
s∗

s
)s′ + x2(1 −

i∗

i
)i′ + x3(1 −

p∗

p
)p′ + x4(1 −

q∗

q
)q′

= x1[µ − µs − s(αi + βp) −
s∗µ
s

+ µs∗ + s∗(αi + βp)]

+x2[(1 − u1)s(αi + βp) − (u2 + µ)i −
i∗

i
(1 − u1)s(αi + βp) + (u2 + µ)i∗]

+x3[u1s(αi + βp) + (1 − γ)u2i − (δ + µ)p −
p∗

p
u1s(αi + βp) −

p∗

p
(1 − γ)u2i + p∗(δ + µ)]

+x4[γu2i + δp − µq −
q∗

q
γu2i −

q∗

q
δp + q∗µ]

= x1[µs∗ + s∗(αi∗ + βp∗) − µs − s(αi + βp) −
s∗µs∗

s
−

s∗s∗

s
(αi∗ + βp∗) + µs∗ + s∗(αi + βp)]

+x2[(1 − u1)s(αi + βp) − (u2 + µ)i −
i∗

i
(1 − u1)s(αi + βp) + (u2 + µ)i∗]

+x3[u1s(αi + βp) + (1 − γ)u2i − (δ + µ)p −
p∗

p
u1s(αi + βp) −

p∗

p
(1 − γ)u2i + p∗(δ + µ)]

+x4[γu2i + δp − µq −
q∗

q
γu2i −

q∗

q
δp + q∗µ]
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= x1µs∗(2 −
s
s∗
−

s∗

s
) + si[−x1α + x2(1 − u1)α + x3u1α] + sp[−x1β + x2(1 − u1)β + x3u1β]

+i[x1αs∗ − x2(u2 + µ) + x3(1 − γ)u2 + x4γu2] + p[x1s∗β − x3(δ + µ) + x4δ] + q(−x4µ)

+[x1s∗(αi∗ + βp∗) + x2(u2 + µ)i∗ + x3(δ + µ)p∗ + x4µq∗] − [x1
s∗s∗

s
(αi∗ + βp∗)

+x2
i∗

i
(1 − u1)s(αi + βp) + x3

p∗

p
u1s(αi + βp) + x3

p∗

p
(1 − γ)u2i + x4

q∗

q
γu2i + x4

q∗

q
δp]

The positive constants x1, x2, x3, x4 are chosen such that the coefficients of si, sp, i, p, q are equal to zero,
that is,

−x1α + x2(1 − u1)α + x3u1α = 0
−x1β + x2(1 − u1)β + x3u1β = 0
x1αs∗ − x2(u2 + µ) + x3(1 − γ)u2 + x4γu2 = 0
x1s∗β − x3(δ + µ) + x4δ = 0
−x4µ = 0

So we have

x1 = 1, x2 =
δ + µ − u1s∗β

(1 − u1)(δ + µ)
, x3 =

s∗β
δ + µ

, x4 = 0

Next, we let

V′1 = x1s∗(αi∗ + βp∗) + x2(u2 + µ)i∗ + x3(δ + µ)p∗ + x4µq∗

V′2 = x1
s∗s∗

s
(αi∗ + βp∗) + x2

i∗

i
(1 − u1)s(αi + βp) + x3

p∗

p
u1s(αi + βp) + x3

p∗

p
(1 − γ)u2i + x4

q∗

q
γu2i + x4

q∗

q
δp

Then

V′ = x1µs∗(2 −
s
s∗
−

s∗

s
) + V′1 − V′2

Due to

x2(1 − u1)s∗βp∗ = x3(1 − γ)u2i∗ + x3u1s∗αi∗ (21)

x3(1 − γ)u2i∗ =
(1 − u1)βu2(1 − γ)s∗p∗

u2(1 − (1 − u1)γ) + µu1
(22)

So

V′1 = s∗(αi∗ + βp∗) + x2(u2 + µ)i∗ + x3(δ + µ)p∗

= [x2(1 − u1) + x3u1]s∗(αi∗ + βp∗) + x2(1 − u1)s∗(αi∗ + βp∗) + x3u1s∗(αi∗ + βp∗) + x3(1 − γ)u2i∗

= 2x2(1 − u1)s∗αi∗ + 2x3u1s∗βp∗ + 3x3(1 − γ)u2i∗ + 4x3u1s∗αi∗

= V′11 + V′12 + V′13 + V′14

where

V′11 = 2x2(1 − u1)s∗αi∗, V′12 = 2x3u1s∗βp∗, V′13 = 3x3(1 − γ)u2i∗, V′14 = 4x3u1s∗αi∗
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and

V′2 = x2(1 − u1)
(s∗)2

s
αi∗ + x3u1

(s∗)2

s
αi∗ + x2(1 − u1)

(s∗)2

s
βp∗ + x3u1

(s∗)2

s
βp∗ + x2(1 − u1)αi∗s

+x2(1 − u1)β
i∗

i
sp + x3u1α

p∗

p
si + x3u1βp∗s + x3(1 − γ)u2

p∗

p
i

= x2(1 − u1)
(s∗)2

s
αi∗ + x3u1

(s∗)2

s
αi∗ + θx2(1 − u1)

(s∗)2

s
βp∗ + (1 − θ)x2(1 − u1)

(s∗)2

s
βp∗

+x3u1
(s∗)2

s
βp∗ + x2(1 − u1)αi∗s + θx2(1 − u1)β

i∗

i
sp + (1 − θ)x2(1 − u1)β

i∗

i
sp

+x3u1α
p∗

p
si + x3u1βp∗s + x3(1 − γ)u2

p∗

p
i

where

θ =
x2(1 − u1)(αi∗ + βp∗) − αi∗

x2(1 − u1)βp∗
, 1 − θ =

x3u1αi∗

x2(1 − u1)βp∗

So we have

V′2 = [x2(1 − u1)
(s∗)2

s
αi∗ + x2(1 − u1)αi∗s] + [x3u1

(s∗)2

s
βp∗ + x3u1βp∗s]

+[θx2(1 − u1)
(s∗)2

s
βp∗ + θx2(1 − u1)β

i∗

i
sp + x3(1 − γ)u2

p∗

p
i]

+[x3u1
(s∗)2

s
αi∗ + (1 − θ)x2(1 − u1)

(s∗)2

s
βp∗ + (1 − θ)x2(1 − u1)β

i∗

i
sp + x3u1α

p∗

p
si]

= V′21 + V′22 + V′23 + V′24

Using the arithmetic-geometric mean inequality, we obtain

V′21 ≥ 2[x2(1 − u1)
(s∗)2

s
αi∗x2(1 − u1)αi∗s]

1
2 = 2x2(1 − u1)s∗αi∗ = V′11

V′22 ≥ 2[x3u1
(s∗)2

s
βp∗x3u1βp∗s]

1
2 = 2x3u1s∗βp∗ = V′12

Due to

x3 =
s∗β
δ + µ

, i∗ =
(δ + µ)(1 − u1)

u1(u2 + µ) + (1 − γ)(1 − u1)u2
p∗

Let K = u1µ + (1 − (1 − u1)γ)u2, so

V′23 ≥ 3(β2u2)
1
3 [θ2x2

2x3(1 − u1)2(s∗)2(1 − γ)(p∗)2i∗]
1
3

= 3(β2u2)
1
3

s∗(1 − u1)p∗

K
{β(1 − γ)[

K − u1(u2 + µ)
(1 − u1)

]2
}

1
3

= 3
s∗(1 − u1)p∗βu2(1 − γ)

K
= 3x3(1 − γ)u2i∗

= V′13

V′24 ≥ 4s∗[x3(1 − θ)u1x2(1 − u1)βαi∗p∗]
1
2

= 4s∗x3u1αi∗

= V′14
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Hence,

V′ = x1µs∗(2 −
s
s∗
−

s∗

s
) + V′1 − V′2

≤ 0

V′ = 0 if and only if s = s∗, i = i∗, p = p∗, q = q∗. According to LaSalle’s invariance principle, we can derive
the conclusion that the disease equilibrium E∗ = (S∗, I∗,P∗,Q∗) is globally asymptotically stable. �

5. Optimal Control Problem

5.1. The Existence of Optimal Control
In order to investigate an effective campaign to control the problem of online game addiction, we will

reconsider the system (2) which pursue the goals of the minimized infective compartment and use two
variables to reduce it. the system (2) is:

S′ = µ(N − S) − S
αI + βP

N

I′ = (1 − u1)S
αI + βP

N
− (u2 + µ)I

P′ = u1S
αI + βP

N
+ (1 − γ)u2I − (δ + µ)P

Q′ = γu2I + δP − µQ

u1(t) is used to limit the proportion of the susceptible individual who contact with infective individual,
usually by propaganda and education. The control variable u2(t) is used to limit the infective individual
turn into others compartments, and what we want is the fewer infective people, the better . In view of this,
our optimal control problem to minimize the objective function is given by

J(u1,u2) =

∫ t f

0
[I(t) +

c1

2
u2

1(t) +
c2

2
u2

2(t)] dt (23)

With initial conditions

S(0) = S0, I(0) = I0, P(0) = P0, Q(0) = Q0. (24)

Here,ui(t) ∈ (0, 1), for all t ∈ [0, t f ], i = 1, 2. ci are weight factors(positive constants) that adjust the intensity
of two different control measures.

Theorem 5 There exists an optimal control pair u∗ = (u∗1,u
∗

2) ∈ U such that

J(u∗1,u
∗

2) = min J(u1,u2), u1(t),u2(t) ∈ U (25)

subjects to the control system (2) with initial conditions (24).

Proof. To prove the existence of an optimal control, according to the classic literature[18], we have to show
the following.

(1) The control and state variables are nonnegative values.
(2) The control set U is convex and closed.
(3) The integrand of the objective function is concave on U.
(4)The right side of the state system is bounded by linear functions in the state and control variables.
(5) There exist constants d1, d2 > 0 and α > 1 such that the integrand L(t; u1,u2) , I(t) + c1

2 u2
1(t) + c2

2 u2
2(t)

of the objective function satisfies

L(t; u1,u2) ≥ d1(|u1|
2 + |u2|

2)α/2 − d2 (26)
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The statements (1), (2) and (3) are obviously satisfied, we only need to test the latter two. Since

S′ ≤ µN, I′ ≤ (1 − u1)S
αI + βP

N
, P′ ≤ u1S

αI + βP
N

+ (1 − γ)u2I, Q′ ≤ γu2I + δP

the fourth condition is set up. As the last condition,

L(t; u1,u2) ≥ d1(|u1|
2 + |u2|

2)α/2 − d2

is also true, when we choose α = 2, d1 = min{c1/2, c2/2}. Then the proof is completed. �

5.2. The Characterization of Optimal Control
We have just known the existence of the optimal control pairs. Next we begin by defining an augmented

Hamiltonian H with penalty terms for the control constraints as follows:

H = I(t) +
c1

2
u2

1(t) +
c2

2
u2

2(t) + λ1[µ(N − S) − S
αI + βP

N
] + λ2[(1 − u1)S

αI + βP
N

− (u2 + µ)I]

+λ3[u1S
αI + βP

N
+ (1 − γ)u2I − (δ + µ)P] + λ4[u2γI + δP − µQ]

−w11u1(t) − w12(1 − u1(t)) − w21u2(t) − w22(1 − u2(t))

where wi j(t) ≥ 0 are the penalty multipliers satisfying

w11(t)u∗1(t) = w12(1 − u∗1(t)) = 0, w21(t)u∗2(t) = w22(1 − u∗2(t)) = 0

Theorem 6 Given optimal control pairs (u∗1,u
∗

2) and solutions S(t), I(t),P(t),Q(t) of the corresponding state
system (23), there exist adjoint variables λi, i = 1, 2, 3, 4, satisfying

λ′1 = λ1µ + λ1
αI + βP

N
− λ2(1 − u1)

αI + βP
N

− λ3u1
αI + βP

N

λ′2 = −1 + λ1(t)
S(t)α

N
+ λ2(1 − u1)

Sα
N

+ λ2(u2 + µ) − λ3u1
Sα
N
− λ3(1 − γ)u2 − λ4γu2

λ′3 = λ1
Sβ
N
− λ2(1 − u1)

Sβ
N
− λ3u1

Sβ
N

+ λ3(δ + µ) − λ4δ (27)

λ′4 = µλ4

with the terminal conditions

λi(t f ) = 0, i = 1, 2, 3, 4. (28)

and (u∗1,u
∗

2) are represented by

u∗1 = min{1,max{0,
1
c1

(λ2 − λ3)S
αI + βP

N
}} (29)

u∗2 = min{1,max{0,
1
c2

[(λ2 − λ3)I + (λ3 − λ4)γI]}} (30)

Proof. According to Pontryagin Maximum Principle, we differentiate the Hamiltonian operator H, with
respect to state. The adjoint system can be written as

λ′1 = −
∂H
∂S
, λ′2 = −

∂H
∂I
, λ′3 = −

∂H
∂P
, λ′4 = −

∂H
∂Q

and the terminal condition of adjoint equations is given by

λi(t f ) = 0, i = 1, 2, 3, 4.
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Let

∂H
∂u1

= c1u1(t) − λ2S
αI + βP

N
+ λ3S

αI + βP
N

− w11 + w12 = 0

∂H
∂u2

= c2u2(t) − λ2I + λ3(1 − γ)I + λ4γI − w21 + w22 = 0

By solving the optimal control, we obtain

u∗1 =
1
c1

[(λ2 − λ3)S
αI + βP

N
+ w11 − w12] (31)

u∗2 =
1
c2

[(λ2 − λ3)I + (λ3 − λ4)γI + w21 − w22] (32)

In order to express the optimal control without w11 and w12, the main aim is to standardise, take u∗1(t) as an
example.

(1) On the set {t|0 < u∗1(t) < 1}, let w11(t) = w12(t) = 0. So the optimal control is

u∗1 =
1
c1

[(λ2 − λ3)S
αI + βP

N
]. (33)

(2) On the set {t|u∗1(t) = 1}, let w11(t) = 0. So

1 = u∗1(t) =
1
c1

[(λ2 − λ3)S
αI + βP

N
− w12]. (34)

This implies that

1
c1

[(λ2 − λ3)S
αI + βP

N
] ≥ 1 since w12 ≥ 0 (35)

(3) On the set {t|u∗1(t) = 0}, let w12(t) = 0. So

0 = u∗1(t) =
1
c1

[(λ2 − λ3)S
αI + βP

N
+ w11]. (36)

This implies that

1
c1

[(λ2 − λ3)S
αI + βP

N
] ≤ 0 since w11 ≥ 0 (37)

To summarize,

u∗1(t) = min{1,max{0,
1
c1

(λ2 − λ3)S
αI + βP

N
}}

Using the similar arguments, we can slso obtain the other optimal control function

u∗2(t) = min{1,max{0,
1
c2

(λ2 − λ3)I + (λ3 − λ4)γI}}.

Then the proof is completed. �

We point out that the optimal system consists of the state system with the initial conditions, the adjoint
system with the terminal conditions and the optimal condition. Any optimal control pairs must satisfy this
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optimal system as follow:

S′ = µ(N − S) − S
αI + βP

N

I′ = (1 −min{1,max{0,
1
c1

(λ2 − λ3)S
αI + βP

N
}})S

αI + βP
N

−(min{1,max{0,
1
c2

(λ2 − λ3)I + (λ3 − λ4)γI}} + µ)I

P′ = min{1,max{0,
1
c1

(λ2 − λ3)S
αI + βP

N
}}S
αI + βP

N

+min{1,max{0,
1
c2

(λ2 − λ3)I + (λ3 − λ4)γI}}(1 − γ)I − (δ + µ)P

Q′ = min{1,max{0,
1
c2

(λ2 − λ3)I + (λ3 − λ4)γI}}γI + δP − µQ

λ′1 = λ1µ + λ1
αI + βP

N
− λ2(1 −min{1,max{0,

1
c1

(λ2 − λ3)S
αI + βP

N
}})

αI + βP
N

− λ3min{1,max{0,
1
c1

(λ2 − λ3)S
αI + βP

N
}}
αI + βP

N

λ′2 = −1 + λ1
Sα
N
− λ2(1 −min{1,max{0,

1
c1

(λ2 − λ3)S
αI + βP

N
}})

Sα
N

+λ2(min{1,max{0,
1
c2

(λ2 − λ3)I + (λ3 − λ4)γI}} + µ)

−λ3min{1,max{0,
1
c1

(λ2 − λ3)S
αI + βP

N
}}

Sα
N

−λ3(1 − γ)min{1,max{0,
1
c2

(λ2 − λ3)I + (λ3 − λ4)γI}}

−λ4γmin{1,max{0,
1
c2

(λ2 − λ3)I + (λ3 − λ4)γI}}

λ′3 = λ1
Sβ
N
− λ2(1 −min{1,max{0,

1
c1

(λ2 − λ3)S
αI + βP

N
}})

Sβ
N

−λ3min{1,max{0,
1
c1

(λ2 − λ3)S
αI + βP

N
}}

Sβ
N

+λ3(δ + µ) − λ4δ (38)
λ′4 = µλ4

S(0) = S0, I(0) = I0, P(0) = P0, Q(0) = Q0.

λi(t f ) = 0, i = 1, 2, 3, 4. (39)

5.3. The Uniqueness of Optimal Control

Lemma 7 (see [12]) The function u∗(s) = min(b,max(s, a)) is Lipschitz continuous at s, where a < b are some
fixed positive constants.

Theorem 8 For all t ∈ [0, t f ], the solution to the optimal system (39) is unique.
Proof. Suppose (S, I,P,Q, λ1, λ2, λ3, λ4) and (S̄, Ī, P̄, Q̄, λ̄1, λ̄2, λ̄3, λ̄4) are two different solutions of our
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optimal system (39). Let

S = eλtm I = eλtn P = eλtp Q = eλtq
λ1 = e−λtr λ2 = e−λts λ3 = e−λtw λ4 = e−λtv
S̄ = eλtm̄ Ī = eλtn̄ P̄ = eλtp̄ Q̄ = eλtq̄
λ̄1 = e−λtr̄ λ̄2 = e−λts̄ λ̄3 = e−λtw̄ λ̄4 = e−λtv̄

where λ > 0 is to be chosen. Accordingly, we have

u∗1(t) = min{1,max{0,
m(αn + βp)(s − w)eλt

c1N
}}

u∗2(t) = min{1,max{0,
n(s − w + wγ − vγ)

c2
}}

ū∗1(t) = min{1,max{0,
m̄(αn̄ + βp̄)(s̄ − w̄)eλt

c1N
}}

ū∗2(t) = min{1,max{0,
n̄(s̄ − w̄ + w̄γ − v̄γ)

c2
}}

Now we substitute above equations into the first ODE of (39), we can obtain

m′ + λm = µNe−λt
− µm −

meλt(αn + βp)
N

m̄′ + λm̄ = µNe−λt
− µm̄ −

m̄eλt(αn̄ + βp̄)
N

Similarly, we can derive the rest of the formula of n′ +λn, p′ +λp, q′ +λq, r′ +λr, s′ +λs,w′ +λw, v′ +λv.
By Lemma 7, we can get

|u∗1(t) − ū∗1(t)| ≤
meλt

c1N
|(αn + βp)(s − w) − (αn̄ + βp̄)(s̄ − w̄)|

|u∗2(t) − ū∗2(t)| ≤
1
c2
|n(s − w + wγ − vγ) − n̄(s̄ − w̄ + w̄γ − v̄γ)|

As the following calculation is similar, we only take m and m̄ for an example:

m′ − m̄′ + (µ + λ)(m − m̄) =
eλt

N
[m(αn + βp) − m̄(αn̄ + βp̄)]

Multiplying both sides of the above equation by (m − m̄) and integrating from 0 to t f gives

1
2

(m − m̄)2(t f ) + (µ + λ)
∫ t f

0
(m − m̄)2dt

=
eλt

N

∫ t f

0
(m − m̄)[m(αn + βp) − m̄(αn̄ + βp̄)]dt

=
eλt

N

∫ t f

0
(m − m̄)[α(mn − m̄n̄) + β(mp − m̄p̄)]dt

=
eλt

N

∫ t f

0
(m − m̄)[αn(m − m̄)2 + αm̄(m − m̄)(n − n̄) + βp(m − m̄)2 + βm̄(m − m̄)(p − p̄)]dt

≤
eλt

N

∫ t f

0
{|αn|(m − m̄)2 +

|αm̄|
2

[(m − m̄)2 + (n − n̄)2] + |βp|(m − m̄)2 +
|βm̄|

2
[(m − m̄)2 + (p − p̄)2]}dt
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Because |αn|, |αm̄|
2 , |βp|, |βm̄|

2 are nonnegative and bounded, there exists a positive constant k1 such that

1
2

(m − m̄)2(t f ) + (µ + λ)
∫ t f

0
(m − m̄)2dt ≤ k1

eλt

N

∫ t f

0
[(m − m̄)2 + (n − n̄)2 + (p − p̄)2]dt

Use the similar way on the other seven equations, then

1
2

[(m − m̄)2(t f ) + (n − n̄)2(t f ) + (p − p̄)2(t f ) + (q − q̄)2(t f ) + (r − r̄)2(0) + (s − s̄)2(0) + (w − w̄)2(0) + (v − v̄)2(0)]

+(µ + λ)
∫ t f

0
[(m − m̄)2 + (n − n̄)2 + (p − p̄)2 + (q − q̄)2 + (r − r̄)2 + (s − s̄)2 + (w − w̄)2 + (v − v̄)2]dt

≤ k2

∫ t f

0
[(m − m̄)2 + (n − n̄)2 + (p − p̄)2 + (q − q̄)2 + (r − r̄)2 + (s − s̄)2 + (w − w̄)2 + (v − v̄)2]dt

Thus, we can obtain that

(µ + λ − k2)
∫ t f

0
[(m − m̄)2 + (n − n̄)2 + (p − p̄)2 + (q − q̄)2 + (r − r̄)2 + (s − s̄)2 + (w − w̄)2 + (v − v̄)2]dt ≤ 0

where k2 depends on the coefficients and the bounds depend on m,n, p, q, r, s,w, v. If we choose λ such that
µ + λ ≥ k2, m = m̄,n = n̄, p = p̄, q = q̄, r = r̄, s = s̄,w = w̄ and v = v̄, then the proof is completed. �

6. Numerical Simulation

6.1. The Simulation of State System without Control
In this part, numerical simulation will be used to study the stability of the solution of the model without

human intervention. We give some simulations using the parameter values in Table 1. Considering that the
control measures can not be 100% effective[16], the values of u1 and u2 are selected in the range of [0, 0.8][17].
If both u1 and u2 are 0, this is in contradiction with the fact that the susceptible people become professional
directly through education, and some of the infective people choose to quit. In order to compare with the
optimal control, in the case of natural development we choose that the value of u1 is 0.1 and that of u2 is 0.1.

Table 1: Estimation of parameters

Parameter Estimated value Date source
µ 0.2 year−1 [3]
α 0.2 year−1 Estimate

β 0.3 year−1 Estimate

δ 0.3 year−1 [11]

γ 0.2 year−1 [11]

u1 Variable

u2 Variable

We consider the population in mainland China. According to [1], the initial population as N = 829, unit
(million). We assume that the initial population of infective individuals I(0) = 138; the initial population of
professionals is given as P(0) = 40; the initial quitting population is Q(0) = 71. Hence, the initial susceptible
population is given as S(0) = N − I(0) − P(0) − Q(0) = 580. It should be noted that the initial number of
professionals we selected include e-sports athletes, game developers, e-sports media organization planning,
e-sports hosts, game commentaries and so on.

Numerical results are displayed in the following figures.
First, we choose α = 0.2, β = 0.3, numerical simulation gives R0 = 0.804 < 1. Then the disease-free

equilibrium E0 = {829, 0, 0, 0} is globally asymptotically stable (Figure 2).
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Fig.2. The disease-free equilibrium E0 = {829, 0, 0, 0} is globally asymptotically stable.

Next, we choose α = 0.3, β = 0.35, numerical simulation gives R0 = 1.138 > 1. Then the disease
equilibrium E∗ = {721, 64, 14, 29} is globally asymptotically stable (Figure 3).
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Fig.3. The disease equilibrium E∗ = {721, 64, 14, 29} is globally asymptotically stable.
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6.2. The Sensitivity of R0 about Two Control Parameters

We simulate the three-dimensional curves of R0 about u1 and u2 with MATLAB, see Fig.4. It is easy to
see that R0 decreases with respect to these two variables from the graph, so some preventive measures and
education measures are taken to control the problem of game addiction. This is also the significance of this
paper’s control strategy.
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Fig.4. When the relationship between R0 and two control parameters u1,u2.

6.3. The Simulation of Optimal System

In this part, we will use the forward and backward Runge-Kutta method to solve the optimal system in
[16, 19]. First, the fourth order Runge-Kutta iteration method is used to solve the state system, and then the
state values obtained are to solve the adjoint variables by backward Runge-Kutta method. The obtained
state values are used to update the control solution. When the state value in the previous iteration is very
close to that in the current iteration, the iteration terminates.

In application, it is difficult to obtain the ideal weight, which requires a lot of data mining, analysis and
fitting work, and it still needs further study. The costs associated with I and u1 are mainly caused by the
dangerous behavior of addicted players and the cost of public education. The costs associated with u2 are
mental health treatment, etc. Considering these, after many experiments, the final weight coefficients are
C1 = 15, C2 = 30.

In this simulation, the time level is chosen in weeks up to 52. The figures from simulating the model,
given below, help to compare the susceptible individuals, the infective individuals, the professional indi-
viduals and the quitting individuals at different control levels, that is, (1)optimal control: u1 = u∗1,u2 = u∗2;
(2)u1 = u2 = 0; (3)u1 = 0,u2 = 0.4; (4)u1 = 0.4,u2 = 0.4; (5)u1 = 0.4,u2 = 0.8. It should be pointed out that we
do not consider the maximum control strategy, because maintaining the maximum control strategy from
beginning to end will lead to excessive cost consumption.
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Fig.5. Number of the susceptible compartment under different control strategies.
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Fig.6. Number of the infective compartment under different control strategies.
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Fig.7. Number of the professional compartment under different control strategies.
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Fig.8. Number of the quitting compartment under different control strategies.

The number of susceptible people at different control levels is given in Fig.5; The number of people who
indulge in games at different control levels is given in Fig.6. Fig.7 and Fig.8 show that the number of the
professional and quitting individuals at different control levels.

The result that we want is that the fewer the addicts, the better, and the more susceptible people, the
better. From the Figure 5 and 6, we can see that the optimal control strategy outperforms other control
strategies in terms of the number of susceptible and infective compartment. There is a significant difference
between the optimal control case and other control case, as observed in above figures. The difference
suggests a very positive impact on reducing the number of infective population if we adopt the optimal
control strategy. The variation of the optimal control pairs is shown in Fig.9 and Fig.10.
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Fig.9. u1 of the optimal control strategies.
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Fig.10. u2 of the optimal control strategies.

Fig.9 describes the time-varying curves of the optimal control for u1. At the beginning of the simulation,
u1 gradually changed from 0.1 to 0.8 in the first two weeks. This suggests that in the early stages of
control efforts should be made to prevent the growth of infective groups and to maximize the proportion
of professionals. It can be achieved by increasing media publicity and policy control of game operators by
national regulatory department. By the fifth week, it was gradually reduced to 0.4, then keep to the end. It
shows that addiction has been mitigated. There is no need to maintain maximum control, only 0.4 control
level can be maintained.

In Fig.10, as for the control u2, it changed from 0.1 to 0.8 in the first two weeks too. It indicates that
the intensity of treatment should be maximized at the early stage of control and let the infected population
drop rapidly. With the effective treatment measures, only 0.1 of the intensity of u2 can be controlled in the
third week. In order to consolidate the effect of treatment and prevent possible rebound, the control of u2
should gradually increase to 0.34 before the 5th week and keep to the end.

It should also be pointed out: when replacing different weight coefficients, the results are not sensitive
to the weight coefficients. The reason is that the two control measures here are almost equally important,
so the weight coefficients basically do not distinguish.

7. Conclusions

In this paper, we constructed an online game addiction model(including susceptible, infective, pro-
fessional and quitting compartments). We also considered that the direct transfer from the susceptible
individuals to the professional individuals. The basic reproduction number of the model was derived
through the method of next generation regeneration matrix. The global stability of the two equilibria is
given by constructing a suitable Lyapunov function. After completing the mathematical analysis of the
model, we used the Pontriagin’s maximum principle to solve the optimal control strategy that included two
control measures(i.e., prevention and treatment). Using the forward and backward Runge-Kutta method,
we solved the optimal control model with control and without control in the numerical simulation. From
the results, we can see that in the early stage of indulgence outbreak, the two control forces should be
rapidly increased to the maximum. When the situation has been alleviated, it is not necessary to maintain
the maximum control intensity, which can be reduced to a certain extent. The optimal control strategy can
not only save the cost of treatment, but also effectively inhibit the development of addiction.
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