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Abstract. The exponential distribution is commonly used to model different phenomena in statistics and
reliability engineering. A new extension of exponential distribution known as the Nadarajah and Haghighi
[An extension of the exponential distribution, Statistics: A Journal of Theoretical and Applied Statistics 45 (2011)
543-558.] distribution was introduced in the literature to accommodate the inflation of zero in the data.
In practice, however, discrete data are easy to collect as compared to continuous data. Discrete bivariate
distributions play important roles in modeling bivariate lifetime count data. Thus focusing on the utility of
discrete data, this study presents a new bivariate discrete Nadarajah and Haghighi distribution. We discuss
some basic properties of the proposed distribution and study seven different methods of estimation for the
unknown parameters to assess the performance of the proposed bivariate discrete model. Two data sets
are also analyzed to demonstrate how the proposed model may work in practice. Results show that the
proposed model is very flexible and performs better than some of the existing models.

1. Introduction

Weibull and gamma distributions are commonly used to analyze monotonic hazard rates. The Weibull
distribution has an advantage of having closed form survival function over the gamma distribution and
is suitable to model constant, increasing and decreasing failure rates. Although Weibull and gamma
distributions are generalized forms of the exponential model, the popularity of the exponential distribution
is still undoubted. This distribution has also a special relationship with the Poisson point process. In fact,
this is time-between-events distribution that is used to characterize the point process. There are many
studies that extend the existing probability models, see, for instance, [6, 9, 11, 12, 14, 16, 17, 19, 21, 26, 29],
and references cited therein.

Researchers in many fields encounter discrete data, for example, the marks obtained by students in
an examination, the number of goals scored by a football team, the number of cycles prior to the first
failure when devices work in cycles, etc. Although discrete data is as important as continuous, studies
on discrete distributions are less common than continuous distributions. To bridge this gap, this study
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aims to introduce a new bivariate discrete probability model from the extension of exponential distribution
introduced by Nadarajah and Haghighi[20] and to derive some of its basic properties. The survival function
of the Nadarajah and Haghighi (NH) distribution is:

S(t) = exp(1 − (1 + λt)α) (1)

where α, λ > 0 are the shape and the rate parameters, respectively, of the NH distribution. The resulting
cumulative distribution function (CDF), probability density function (PDF) and hazard rate function (HRF)
are given as follows:

F(t) = 1 − exp (1 − (1 + λt)α), (2)
f (t) = αλ(1 + λt)α−1 exp (1 − (1 + λt)α) (3)
h(t) = αλ(1 + λt)α−1 (4)

The hazard rate function (HRF) of NH distribution has a closed form (Equation 4) as in the case of
Weibull distribution and the generalized exponential distribution. Equation (3) reduces to the exponential
distribution for α = 1, and has an interesting property of having zero mode yet allowing increasing,
decreasing and constant HRFs.

Discretization of continuous distribution can be done by using different methodologies. For instance,
Nekoukhou et al. [22] used a technique to convert a continuous distribution into discrete analogue. To this
end, for any continuous distribution on <+ = [0,+∞) with f(t), one can construct a discrete distribution
supported on the set of integers, N0 = 0, 1, 2, · · · whose probability mass function (pmf) is of the form

Pt = P(T = t) = s(t) − s(t + 1), t = 0, 1, 2, 3, · · · . (5)

where s(t) is the survival function of f (t). Substituting Equation (1) in Equation (5), the pmf of the resulting
discrete NH distribution is given by

P(T = t) = exp(1)(θ( 1
λ+t)α
− θ( 1

λ+t+1)α ), t = 0, 1, 2, 3, · · · (6)

where θ = exp(−λα) and 0 < θ < 1. The new distribution is named as the discrete NH (DNH) distribution
denoted by the DNH(α, λ, θ) with parameters α, λ > 0 and 0 < θ < 1.

Generally, bivariate distributions are better suited for practical use of both, simple and compact sta-
tistical expressions. In real life, many phenomena occur in two dimensions whereas in statistics, models
that describe such phenomena are called the bivariate probability distributions. In many different real
world applications, bivariate distributions have been applied to model dependent random quantities. As
continuous random variables are commonly encountered in practice, discrete random quantities can also
be observed in several different practical experiments. For example, in lifetime analysis and modeling,
the failure of the items is generally collected and reported hourly, daily, weekly, and so forth. Similarly,
the number of goals scored by two competing teams or the number of insurance claims for two different
causes is purely discrete in nature. In the literature, there are many bivariate distributions, e.g., Sarhan and
Balakrishnan[27] developed a bivariate distribution using the generalized exponential (GE) distribution.
Gupta and Kundu[10] introduced a four-parameter bivariate generalized exponential (BVGE) distribution
with GE marginals. Another bivariate extension of the GE was introduced by Nekoukhou and Kundu[23].
Later, Ashour et al.[2] obtained joint moments and the moment generating function for the bivariate general-
ized exponential distribution in closed form. Freund[8] introduced a bivariate extension of the exponential
distribution. Block and Basu[3] used an absolutely continuous bivariate extension of the exponential distri-
bution and discussed its properties. Some more recent contributions can be seen in [5, 13–15, 18, 24, 25], and
references cited therein. Before proceeding further, it is worth mentioning that the cited literature does not
account the inflation of zero. Therefore, the unique focus of this article is to introduce a bivariate discrete
distribution suitable for accommodating the inflation of zero.

The first objective of this paper is to propose a new discrete bivariate Nadarajah and Haghighi (BDNH)
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distribution and to derive some of its basic properties. The second objective is to consider seven different
methods of estimation for the unknown parameters of the proposed bivariate discrete Nadarajah Haghighi
(BDNH) distribution. In particular, we compare the maximum likelihood estimators, least-squares esti-
mators, weighted least-squares estimators, maximum product of spacings estimators, Cramér-von Mises
estimators, Anderson-Darling estimators, and Right-tail Anderson-Darling estimators. Further, we study
the behavior of these estimators for different sample sizes and for different parameter values. Sinces it
is difficult to compare theoretically the performances of the different estimators, we perform extensive
simulation studies to compare the performances of the different estimation methods based on bias and root
mean squared error (RMSE).

The rest of the study is arranged as follows. Section 2 discusses some important features and properties
of the proposed model, including, probability mass function (PMF), cumulative distribution function
(CDF), conditional probability mass function and cumulative function, Survival function (SF) and stochastic
ordering. Estimation of the parameters of the bivariate discrete Nadarajah Haghighi (BDNH) distribution
based on seven different methods is discussed in Section 3. To assess the performance of different estimation
methods, a simulation study is conducted in Section 4. Two applications of the BDNH distribution and a
comparison to the bivariate discrete Weibull (BDW) and bivariate discrete generalized exponential (BDGE)
distributions are presented in Section 5. At the end, some concluding remarks are given in Section 6.

2. BDNH distribution and its properties

Suppose U1 ∼ DNH(α1, λ, θ) , U2 ∼ DNH(α2, λ, θ) and U3 ∼ DNH(α3, λ, θ) and they are independent.
If T1 = max (U1,U2) and T2 = max (U2,U3), then we say that the bivariate vector (T1,T2) has a BDNH
distribution with parameters vector Ψ = (α1, α2, α3, λ, θ)T. From now on, we will denote this discrete
bivariate distribution by BDNH(α1, α2, α3, λ, θ).

If (T1,T2) ∼ BDNH(α1, α2, α3, λ, θ), then CDF of (T1,T2) for t1 ∈ N0, t2 ∈ N0 and z = min{t1, t2} is

FT1,T2 (t1, t2) = (1 − exp(1)θ(1+t1)α1 )(1 − exp(1)θ(1+t2)α2 )(1 − exp(1)θ(1+Z)α3 )
= FDNH(t1;α1, λ, θ)FDNH(t2;α2, λ, θ)FDNH(z;α3, λ, θ) (7)

=


FDNH(t1;α1, λ, θ)FDNH(t2;α2, λ, θ)FDNH(t1;α3, λ, θ) if t1 < t2

FDNH(t1;α1, λ, θ)FDNH(t2;α2, λ, θ)FDNH(t2;α3, λ, θ) if t2 < t1

FDNH(t;α1, λ, θ)FDNH(t;α2, λ, θ)FDNH(t;α3, λ, θ) if t1 = t2 = t

The corresponding joint PMF of (T1,T2) for t1, t2 ∈ N0 is given by

ft1,t2 (t1, t2) =


f1(t1, t2) if 0 ≤ t1 < t2

f2(t1, t2) if 0 ≤ t2 < t1

f0(t1, t2) if 0 ≤ t1 = t2 = t

Note that the expression f1(t1, t2), f2(t1, t2) and f3(t1, t2) for t1, t2 ∈ N0 can easily be obtained by using the
relation

fT1,T2 (t1, t2) = FT1,T2 (t1, t2) − FT1,T2 (t1 − 1, t2) − FT1,T2 (t1, t2 − 1) + FT1,T2 (t1 − 1, t2 − 1) (8)

If (T1,T2) ∼ BDNH(α1, α2, α3, λ, θ), then the joint survival function (SF) of the vector (T1,T2) can also be
expressed in a compact form using the following relationship

ST1,T2 (t1, t2) = 1 − FT1 (t1) − FT2 (t2) + FT1,T2 (t1, t2). (9)
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The conditional PMF and CDF of the BDNH distribution are given as the conditional distribution of T1
given T2. If (T1,T2) ∼ BDNH(α1, α2, α3, λ, θ), then the conditional PMF of T1 given T2 = t2, say, fT1 |T2=t2 (t1|t2)
is given by

fT1 |T2=t2 (t1|t2) =


f1(t1|t2) if 0 ≤ t1 < t2

f2(t1|t2) if 0 ≤ t2 < t1

f0(t|t) if 0 ≤ t1 = t2 = t

where

fi(t1|t2) =
fi(t1, t2)

fDNH(t2, α2, λ, θ) fDNH(t2, α3, λ, θ)
(10)

and

f0(t|t) =
f0(t)

fDNH(t, α2, λ, θ) fDNH(t, α3, λ, θ)
(11)

The conditional CDF of T1 given T2 = t2, say, FT1 |T2=t2 (t1) is given by
FT1 |T2=t2 (t1) = P(T1 ≤ t1|T2 = t2)

=


FDNH(t1;α1,α3,λ,θ) fDNH(t2;α2,λ,θ)

fDNH(t2;α2,α3) if 0 ≤ t1 < t2

FDNH(t1;α1, λ, θ) if 0 ≤ t2 < t1
FDNH(t;α1+α2+α3,λ,θ)−FDNH(t;α1)FDNH(t−1;α2+α3)

fDNH(t;α2+α3,λ,θ) if 0 ≤ t1 = t2 = t.

Suppose (T1,T2) ∼ BDNH(α1, α2, α3, λ, θ), then T2 is left-tail decreasing in T1, and T2 is stochastically
increasing in T1. Let (T1,T2) be a pair of random variables, then (i) T2 is said to be left-tail decreasing in
T1 if and only if P(T2 ≤ t2|T1 ≤ t1) is a non-increasing function of t1 for every t2, and (ii) T2 is said to be
stochastically increasing in T1 if and only if P(T2 ≤ t2|T1 = t1) is a non-increasing function of t1 for every t2.
Suppose (T1,T2) is a pair of discrete random variables having support on N0 × N0, then we define a total
positivity of order two property (TP2) when the joint PMF f (t1, t2) satisfies

f (t11, t21) f (t12, t22, ) ≥ f (t12, t21) f (t11, t22) (12)

3. Parameter Estimation

This section considers different methods of parameter estimation for BDNH(α1, α2, α3, λ, θ) assuming a
bivariate sample vector of n observations.

3.1. Maximum Likelihood Estimation Method

This method is extensively used in statistics to estimate parameters [4] and has very nice properties.
Assuming a bivariate random vector D = {(t11, t21), · · · , (t1n, t2n)} of size n from the BDNH distribution,
we are interested in to estimate the parameters α1, α2, α3, λ and θ using the information of the observed
bivariate sample vector D. To proceed further, we use the following notations:

l1 = {i : t1i < t2i}, l2 = {i : t1i > t2i}, l0 = {i : t1i = t2i = ti}, (13)

and n1=|l1|, n2 = |l2|. Then, the log-likelihood function can be written as

l(α1, α2, α3, λ, θ|D) = l1 ∪ l2 ∪ l0 (14)
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where

l1 = n1 log(α1 + α2 + α3) + (α1 − 1)
n1∑
i=1

log(1 + t2i) +

n1∑
i=1

(1 + t2i)α2 log(θ)

+n1 log((log(θ))2) + (α2 + α3 − 2)
n1∑
i=1

log(1 + t1i)

+2
n1∑
i=1

(1 + t1i)α1 log(θ) + 2
n1∑
i=1

(1 + t1i)α3 log(θ)

(15)

l2 = n2 log(α1 + α2 + α3) + (α1 − 1)
n2∑
i=1

log(1 + t1i) +

n2∑
i=1

(1 + t1i)α1 log(θ)

+n2 log((log(θ))2) + (α2 + α3 − 2)
n2∑
i=1

log(1 + t2i)

+2
n2∑
i=1

(1 + t2i)α3 log(θ) + 2
n2∑
i=1

(1 + t2i)α2 log(θ)

(16)

l0 = n0 log(α1 + α2 + α3) + 3n0 log(log(
1
θ

)) + 3
n0∑
i=1

(1 + ti)α2 log(θ)

+3
n0∑
i=1

(1 + ti)α1 log(θ) + 2
n0∑
i=1

(1 + ti)α3 log(θ)

+(α1 + α2 + α3 − 3)
n0∑
i=1

log(1 + ti) − 2n0

(17)

The maximum likelihood estimators of the unknown parameters can be obtained by maximizing the
Equation (14) with respect to the unknown parameters. To this end, the parameters can be obtained by
solving five non-linear equations simultaneously with the help of an iterative procedure like, the Newton-
Raphson method.

3.2. Least Squares Estimation Method

The method of least squares estimate parameters by minimizing the squared discrepancies between
the observed data and their expected values [28]. Under this method, the estimators of the unknown
parameters α1, α2, α3, λ and θ of BDNH distribution can be obtained by minimizing

n∑
i=1

[
F j(T(i)) −

i
n j + 1

]2

, j = 0, 1, 2 (18)

with respect to unknown parameters α1, α2, α3, λ and θ.
Suppose F1(T(i)) denote the distribution function of the ordered random variables T(1) < T(2) < · · · <

T(n1), where {T1,T2, · · · ,Tn1 } is a random sample of size n1 from distribution function F(.) when t1 < t2,
F2(T(i)) denote the distribution function of the ordered random variables T(1) < T(2) < · · · < T(n2), where
{T1,T2, · · · ,Tn2 } is a random sample of size n2 from distribution function F(.) when t2 < t1 and F0(T(i)) denote
the distribution function of the ordered random variables T(1) < T(2) < · · · < T(n0), where {T1,T2, · · · ,Tn0 }

is a random sample of size n0 from distribution function F(.) when t1 = t2 = t. In this settings, the least
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squares estimators of α1, α2, α3, λ and θ, say α̂1LSE, α̂2LSE, α̂3LSE λ̂LSE and θ̂LSE respectively, can be obtained
by minimizing

n1∑
i=1

[
F1(T(i)) −

i
n1 + 1

]2

It1<t2 +

n2∑
i=1

[
F2(T(i)) −

i
n2 + 1

]2

It2<t1 +

n0∑
i=1

[
F0(T(i)) −

i
n0 + 1

]2

It1=t2 (19)

The weighted least squares estimators of the unknown parameters can be obtained by minimizing

n1∑
i=1

wi

[
F1(T(i)) −

i
n1 + 1

]2

It1<t2

+

n2∑
i=1

wi

[
F2(T(i)) −

i
n2 + 1

]2

It2<t1

+

n0∑
i=1

wi

[
F0(T(i)) −

i
n0 + 1

]2

It1=t2

(20)

where, I(·) is the indicator function and

F1(T(i)) = (1 − exp(1)θ(1+t1(i))α1 )(1 − exp(1)θ(1+t2(i))α2 )(1 − exp(1)θ(1+t1(i))α3 ) if 0 ≤ t1 < t2 (21)

F2(T(i)) = (1 − exp(1)θ(1+t1(i))α1 )(1 − exp(1)θ(1+t2(i))α2 )(1 − exp(1)θ(1+t2(i))α3 ) if 0 ≤ t2 < t1 (22)

F0(T(i)) = (1 − exp(1)θ(1+t(i))α1 )(1 − exp(1)θ(1+t(i))α2 )(1 − exp(1)θ(1+t(i))α3 ) if 0 ≤ t1 = t1 = t (23)

with respect to α1, α2, α3, λ and θ. The weights wi are equal to 1
V(Ti)

=
(n+1)2(n+2)

i(n−i+1) .

3.3. Maximum Product of Spacings Method

The maximum product of spacings (MPS) method is an alternate to MLEs for the estimation of pa-
rameters. With this method, first we define the uniform spacings of a random sample from the BDNH
distribution as follows:

D(t1, t2;α1, α2, α3, λ, θ) = D1i(t1;α1, λ, θ)It1<t2 + D2i(t2;α2, λ, θ)It2<t1 + D0i(t0;α3, λ, θ)It2=t1 (24)

where, I(·) is an indicator function and

D1i(t1;α1, λ, θ) = F(t1i:n1 |α1, λ, θ) − F(t1i−1:n1 |α1, λ, θ), if 0 ≤ t1 < t2 (25)
D2i(t2;α2, λ, θ) = F(t2i:n2 |α2, λ, θ) − F(t2i−1:n2 |α2, λ, θ), if 0 ≤ t2 < t1 (26)
D0i(t0;α3, λ, θ) = F(t0i:n0 |α3, λ, θ) − F(t0i−1:n0 |α3, λ, θ), if 0 ≤ t1 = t2 = t (27)

where i = 1, 2, · · · ,n, F(t j0|α1, α2, α3, λ, θ) = 0 and F(t jn|α1, α2, α3, λ, θ) = 1, j = 0, 1, 2. The MPS estimators
α̂1MPS, α̂2MPS, α̂3MPS, λ̂MPS and θ̂MPS, of the parameters α1, α2, α3, λ and θ are obtained by maximizing with
respect to α1, α2, α3, λ and θ.

3.4. Cramer-Von-Mises Method

The Cramer-Von-Mises type minimum distance estimator has empirical evidence in the literature that
the bias of the estimator is smaller than the other minimum distance type estimators. Thus, the Cramer-
Von-Mises estimates for BDNH distribution are α̂1CME, α̂2CME, α̂3CME, λ̂CME, and θ̂CME of the parameters and
are obtained by minimizing the following function with respect to parameters.

C(t1, t2;α1, α2, α3λ, θ) = C1(t1;α1, λ, θ)It1<t2 + C2(t2;α2, λ, θ)It2<t1 + C0(t;α3, λ, θ)It2=t1 (28)
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where, I(·) is an indicator function and

C1(t1;α1, λ, θ) =
1

12n1
+

n1∑
i=1

(
F(t1i:n1 |α1, λ, θ) −

2i − 1
2n1

)2

(29)

C2(t1;α2, λ, θ) =
1

12n2
+

n2∑
i=1

(
F(t2i:n2 |α2, λ, θ) −

2i − 1
2n2

)2

(30)

C0(t;α3, λ, θ) =
1

12n0
+

n0∑
i=1

(
F(ti:n1 |α3, λ, θ) −

2i − 1
2n0

)2

(31)

The estimators can be obtained by solving the above non-linear equations.

3.5. Anderson-Darling and Right-Tail Anderson-Darling Method
The Anderson-Darling (AD) test is used to detect departure of sample distribution from the assumed

theoretical distribution. Furthermore, the AD test converges to asymptote very quickly. The Anderson-
Darling estimators α̂1ADE, α̂2ADE, α̂3ADE, λ̂ADE and θ̂ADE of the parameters α1, α2, α3, λ and θ are obtained by
minimizing the following function with respect to α1, α2, α3, λ and θ.

A(t1, t2;α1, α2, α3λ, θ) = A1(t1;α1, λ, θ)It1<t2 + A2(t2;α2, λ, θ)It2<t1 + A0(t;α3, λ, θ)It1=t2 (32)

where, I(·) is an indicator function and

A1(t1;α1, λ, θ) = −n1 −
1
n1

n1∑
i=1

(2i − 1){log F(t1i:n1 |α1, λ, θ) + log F̄(t1n1+1−i:n1 |α1, λ, θ)} (33)

A2(t2;α2, λ, θ) = −n2 −
1
n2

n2∑
i=1

(2i − 1){log F(t2i:n2 |α2, λ, θ) + log F̄(t1n2+1−i:n2 |α2, λ, θ)} (34)

A0(t;α3, λ, θ) = −n0 −
1
n0

n0∑
i=1

(2i − 1){log F(ti:n0 |α3, λ, θ) + log F̄(t1n0+1−i:n0 |α3, λ, θ)} (35)

These estimators can also be obtained by solving the non-linear equations iteratively.
The Right-tail Anderson-Darling (RAD) estimators α̂1RADE, α̂2RAD, α̂3RAD, λ̂RAD and θ̂RAD of the param-

eters α1, α2, α3, λ and θ are obtained by minimizing the following function with respect to the respective
parameters.

R(t1, t2;α1, α2, α3λ, θ) = R1(t1;α1, λ, θ)It1<t2 + R2(t2;α2, λ, θ)It2<t1 + R0(t;α3, λ, θ)It1=t2 (36)

where, I(·) is an indicator function and

R1(t1;α1, λ, θ) =
n1

2
− 2

n1∑
i=1

F(t1i:n1 |α1, λ, θ) −
1
n1

n1∑
i=1

(2i − 1) log F̄(t1n1+1−i:n1 |α1, λ, θ) (37)

R2(t2;α2, λ, θ) =
n2

2
− 2

n2∑
i=1

F(t2i:n2 |α2, λ, θ) −
1
n2

n2∑
i=1

(2i − 1) log F̄(t2n2+1−i:n2 |α2, λ, θ) (38)

R0(t;α3, λ, θ) =
n0

2
− 2

n0∑
i=1

F(ti:n0 |α3, λ, θ) −
1
n0

n0∑
i=1

(2i − 1) log F̄(tn0+1−i:n0 |α3, λ, θ) (39)

4. Monte Carlo Simulation Study

This section assesses the performance of different estimation methods used to estimate the unknown
parameters of the proposed distribution. To this end, we conduct a simulation study to compare the
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different estimation methods stated in the previous section. Simulation study provides a powerful technique
for answering a broad set of questions and flexible framework to answer some specific questions. We
evaluate the performance of the maximum likelihood estimation, the least squared estimation, weighted
least squared estimation, maximum product spacing, Cramér-Von-Mises, Anderson-Darling, and Right-tail
Anderson-Darling estimation given by Equations (14), (18), (20), (24), (28), (32) and (36), respectively.

To assess the performance, we compared different estimation methods on the basis of biases, RMSE,
overall and sum of ranks assuming n = {10, 20, 50, 75, 100}. The results of simulation study are depicted in
Figures (1) to (9). In terms of performance, it is observed that Anderson-Darling estimators are the best
as these estimators produce the least biases with least RMSE for most of the configurations considered in
our studies. The next best method is the Right-Tail Anderson-Darling, followed by least square estimators.
The Cramér-Von-Mises method ranked 4th, while weighted least square estimators ranked 5th, method of
maximum product spacing ranked 6th among the seven methods of estimation.

It is worth mentioning that to calculate biases and RMSEs for different estimators, we first obtained the
MLEs and then these estimates were used as the initial values for the other estimation methods. To obtain
the MLEs, we have selected initial values very closed to the nominal values and to confirm the accuracy
of the Monte Carlo simulations, we also re-run the computational code by changing the starting values
for different parameter settings. It is observed that if the initial values are closed to the nominal value,
the computational time is minimum as compared to the case where initial values were far away from the
nominal values. However, it is also observed that despite the time of calculation, the final estimates were
almost the same. In other words, to verify whether global maxima has been attained by the computer code
for obtaining the estimates, different starting values have been used.

Assuming α1 = 1, α2 = 1.5, α3 = 1.2, λ1 = 1, λ2 = 0.5, λ3 = 1.5 and θ = 0.4, the results of biases, RMSEs,
and the sum of ranks are depicted in Figures (1-3). Figure (1) shows the biases of the parameters across
different sample sizes. Overall, the biases decrease by increasing sample size. In Figure (2), the RMSE of
the parameters are presented. Figure (2) also shows the relation between RMSE and sample size, i.e., the
RMSE decreases with increasing the sample size.

Assuming α1 = 1.5, α2 = 2, α3 = 1.2, λ1 = 1.5, λ2 = 0.5, λ3 = 2 and θ = 0.4, the results of biases, RMSEs
and ranks are depicted in Figures (4-6). Figure (4) shows the biases of the parameters across different
estimation methods and sample sizes. Overall, the biases decrease by increasing the sample size which
is similar to the results shown in Figure (1). To be more specific, consider Figure (4) where the red line
indicates the method of WLS while blue, black and green lines indicate the LSE, MLE and MPS, respectively.
These lines show the biases of the different methods of estimation on the basis of different sample sizes. In
Figure (4) and Figure (5), the RMSE is depicted and it is noticed that it decreases with increasing the sample
size.

Next, we calculate the biases, RMSEs, and ranks assuming α1 = 1.5, α2 = 2, α3 = 1.2, λ = 1.5 and θ = 0.6
for different methods of estimation and the results are plotted in Figures (7-9). In particular, Figure (7)
shows the simulation results for biases across different estimation methods and sample sizes. It can be seen
from the figures that overall biases decrease by increasing sample size. In Figure (8) RMSE is shown while
Figure (9) depicts overall and sum of ranks for the above parameters configuration. Figure (8) also shows
the relation between RMSE and sample size, i.e., the RMSE decrease by increasing the sample size.
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Figure 1: Bias(α̂1, α̂2, α̂3), Bias(λ̂1, λ̂2, λ̂3) and Bias(θ̂) for n = 10, 20, 50, 75, 100,
α1 = 1, α2 = 1.5, α3 = 1.2, λ1 = 1, λ2,= 0.5, λ3 = 1.5 and θ = 0.4
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Figure 2: RMSE(α̂1, α̂2, α̂3), RMSE(λ̂1, λ̂2, λ̂3) and RMSE(θ̂) for n = 10, 20, 50, 75, 100,
α1 = 1, α2 = 1.5, α3 = 1.2, λ1 = 1, λ2,= 0.5, λ3 = 1.5 and θ = 0.4
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Figure 3: Overall Ranks, Sum of ranks versus n = 10, 20, 50, 75, 100 for
α1 = 1, α2 = 1.5, α3 = 1.2, λ1 = 1, λ2,= 0.5, λ3 = 1.5 and θ = 0.4
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Figure 4: Bias(α̂1, α̂2, α̂3), Bias(λ̂1, λ̂2, λ̂3) and Bias(θ̂) versus n = 10, 20, 50, 75, 100 for
α1 = 1.5, α2 = 2, α3 = 1.2, λ1 = 1.5, λ2,= 0.5, λ3 = 2 and θ = 0.4
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Figure 5: RMSE(α̂1, α̂2, α̂3), RMSE(λ̂1, λ̂2, λ̂3) and RMSE(θ̂) for n = 10, 20, 50, 75, 100.
α1 = 1.5, α2 = 2, α3 = 1.2, λ1 = 1.5, λ2,= 0.5, λ3 = 2 and θ = 0.4
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Figure 6: Overall Ranks, Sum of ranks for n = 10, 20, 50, 75, 100.
α1 = 1.5, α2 = 2, α3 = 1.2, λ1 = 1.5, λ2,= 0.5, λ3 = 2 and θ = 0.4
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Figure 7: Bias(α̂1, α̂2, α̂3), Bias(λ̂) and Bias(θ̂) versus n = 10, 20, 50, 75, 100. α1 = 1.5, α2 = 2, α3 = 1.5, λ = 1.5
and θ = 0.6
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Figure 8: RMSE(α̂1, α̂2, α̂3), RMSE(λ̂1, λ̂2, λ̂3) and RMSE(θ̂) for n = 10, 20, 50, 75, 100.
α1 = 1.5, α2 = 2, α3 = 1.5, λ = 1.5 and θ = 0.6
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Figure 9: Overall Ranks, Sum of ranks for n = 10, 20, 50, 75, 100. α1 = 1.5, α2 = 2, α3 = 1.5, λ = 1.5 and
θ = 0.6
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5. Real Data Analysis

Here, the analysis of two data sets is presented to show how the BDNH can be applied in practice.
Further, a comparison with two existing competing discrete bivariate distributions is also given in this
section. First, we check whether the considered data sets actually come from the BDNH distribution or
not by model selection tests and compare the fits with the bivariate discrete Weibull (BDW) and bivariate
discrete generalized exponential. In order to compare the distributions, we consider Akaike Information
Criterion (AIC) [1], Bayesian information criterion (BIC) and log-likelihood. To estimate the parameters
using real data sets, we set the initial values very close to the estimated parameter values of the BDW [14].
The reason of considering BDW is the closeness between BDW and BDNH distributions. After estimating
the parameters, we considered them as the true values and then by taking parametric bootstrap [7] samples
of size (n), where n is the size of data. We have calculated the Bias and RMSE of the estimates. The steps to
calculate the Bias and RMSE are as follows.

1. Let X∗1,X
∗

2, · · · ,X
∗
n denote the bootstrap samples of size n from BDNH(α̂1, α̂2, α̂3, λ̂, θ̂).

2. Compute the MLEs denoted by α̂∗1, α̂
∗

2, α̂
∗

3, λ̂
∗, θ̂∗

3. Using the results of Step 2 as the initial values, compute the estimators for other considered methods.
4. Repeat Steps 1-3 R times to obtain a set of bootstrap samples to estimate the desired parameters, say,
{Θ̂∗i , i = 1, 2, · · · ,R}.

5. In the case of an arbitrary parameter Θ̂, the estimated bias and RMSE are computed as:

Bias(Θ̂∗) =
1
R

R∑
i=1

(Θ̂∗i − Θ̂), RMSE(Θ̂∗) =

√√
1
R

R∑
i=1

(Θ̂∗i − Θ̂)2 (40)

where Θ̂∗i is the estimated parameter value from the i-th bootstrap sample, generated from BDNH(α̂1,
α̂2, α̂3, λ̂, θ̂) and Θ̂ as the true value.

5.1. Football Data
The first data set to be analyzed represents the Italian Series A football match score played between two

Italian football giants, ACF Fiorentina (T1) and Juventus (T2) during the period 1996 to 2011 [14]. The data
set is given in Table (1).

Table 1: UEFA Champion’s League data

Obs. ACF Juventus Obs. ACF Juventus
Firontina Firontina

(T1) (T2) (T1) (T2)
1 1 2 2 0 0
3 1 1 4 2 2
5 1 1 6 0 1
7 1 1 8 3 2
9 1 1 10 2 1
11 1 2 12 3 3
13 0 1 14 1 2
15 1 1 16 1 3
17 3 3 18 0 1
19 1 1 20 1 1
21 1 0 22 3 0
23 1 2 24 1 1
25 0 1 26 0 1
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On football data set, we fit the bivariate discrete Nadarajah and Haghighi (BDNH) distribution, bivariate
discrete Weibull (BDW) distribution, and bivariate generalized exponential (BDGE) distribution and the
results are tabulated in Table (2).

To select the most suitable estimation method for the football data set, we have calculated the Bias and
RMSEs of different parameters of the model assuming different methods of estimation discussed previously.
From the results tabulated in Table (2), it is noticed that the AD method is the best parameter estimation
method, as it has the lowest bias and RMSE. Furthermore, the proposed model is the best fitted as compared
to other assumed distributions, because BDNH has the lowest AIC and BIC values. Furthermore, the AD
is the best method for the parameter estimation of the BDW distribution while the CVM for the BDGE
distribution. It is also noticed that the BDW distribution fits better to the football data than the BDGE
distribution.

Table 2: Estimate of the parameters of BDNH, BDW and BDGE Distributions for the football data.

Est. MLE LSE WLS MPS CVM AD RAD
BDNH (λ , 1)

Bias(α̂1) 0.231 0.252 0.222 0.235 0.231 0.229 0.236
RMSE(α̂1) 0.825 0.765 0.736 0.725 0.722 0.719 0.725
Bias(α̂2) 0.220 0.191 0.195 0.191 0.186 0.185 0.182

RMSE(α̂2) 0.864 0.242 0.231 0.220 0.218 0.219 0.228
Bias(α̂3) 1.090 0.900 0.916 0.863 0.843 0.841 0.837

RMSE(α̂3) 1.362 0.313 0.310 0.311 0.310 0.308 0.380
Bias(λ̂1) 0.960 1.061 1.161 1.088 1.077 1.074 1.075

RMSE(λ̂1) 0.552 0.450 0.439 0.440 0.437 0.436 0.454
Bias(λ̂2) 0.671 0.652 0.671 0.649 0.637 0.635 0.633

RMSE(λ̂2) 0.233 0.184 0.180 0.188 0.186 0.185 0.197
Bias(λ̂3) 0.251 0.202 0.211 0.208 0.210 0.208 0.204

RMSE(λ̂3) 0.356 0.300 0.310 0.320 0.318 0.318 0.380
Bias(θ̂) 0.344 0.335 0.350 0.336 0.337 0.336 0.337

RMSE(θ̂) 1.633 0.652 0.632 0.624 0.622 0.620 0.641
AIC 655.632 650.631 651.623 652.563 650.321 650.319 652.391
BIC 654.241 651.251 651.861 653.091 650.411 650.409 653.400

Log-like -432.637 -431.357 -430.372 -429.896 -425.367 -432.873 -432.764
BDNH (λ = 1)

Bias(α̂1) 0.783 0.864 0.861 0.728 0.758 0.775 0.774
RMSE(α̂1) 0.227 1.197 1.195 1.190 1.220 1.217 1.218
Bias(α̂2) 1.633 0.835 0.781 0.687 0.665 0.675 0.678

RMSE(α̂2) 1.735 0.701 0.690 0.682 0.677 0.675 0.679
Bias(α̂3) 1.486 0.766 0.701 0.847 0.817 0.806 0.817

RMSE(α̂3) 1.736 0.700 0.703 0.695 0.678 0.677 0.686
Bias(θ̂) 0.399 0.407 0.401 0.389 0.378 0.388 0.385

RMSE(θ̂) 1.659 0.642 0.640 0.638 0.628 0.619 0.625
AIC 685.642 679.662 679.891 676.746 674.746 673.762 674.753
BIC 678.561 681.580 681.738 679.568 679.568 678.577 677.587

Log-like -389.738 -390.161 -390.193 -389.536 -389.536 -385.567 -387.573
BDW

Bias(α̂) 0.979 0.901 0.913 0.925 0.901 0.893 0.913
RMSE(α̂) 0.811 0.810 0.807 0.806 0.805 0.806 0.842
Bias(p̂0) 0.001 0.002 0.003 0.002 0.003 0.002 0.004

RMSE(p̂0) 0.001 0.000 0.000 0.000 0.000 0.000 0.001
Bias(p̂1) 0.247 0.247 0.231 0.210 0.208 0.207 0.212
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RMSE(p̂1) 0.051 0.051 0.050 0.048 0.045 0.042 0.046
Bias(p̂2) 0.049 0.050 0.053 0.057 0.054 0.053 0.057

RMSE(p̂2) 0.009 0.008 0.008 0.007 0.006 0.005 0.009
AIC 710.616 709.461 708.536 709.531 708.372 708.677 711.785
BIC 713.637 711.352 710.336 711.006 709.262 709.265 712.671

Log-like -430.342 -429.234 -424.563 -425.635 -423.466 -423.487 -424.437
BDGE

Bias(α̂1) 0.283 1.273 1.272 1.275 1.277 1.276 1.278
RMSE(α̂1) 0.845 0.842 0.846 0.847 0.801 0.800 0.821
Bias(α̂2) 0.771 0.568 0.565 0.545 0.542 0.556 0.558

RMSE(α̂2) 0.536 0.537 0.534 0.532 0.528 0.529 0.532
Bias(α̂3) 0.036 1.046 0.043 0.041 0.039 0.040 0.042

RMSE(α̂3) 0.647 0.648 0.644 0.644 0.610 0.609 0.612
Bias(p̂) 0.341 0.336 0.338 0.337 0.336 0.339 0.337

RMSE(p̂) 0.746 0.743 0.740 0.738 0.732 0.731 0.734
AIC 712.646 711.687 710.896 710.736 709.124 709.147 712.536
BIC 714.638 713.647 712.637 712.746 710.362 710.367 712.377

Log-like -397.647 -390.648 -391.654 -392.637 -390.237 -390.234 -395.355

In Table (3) we tabulated the sum of ranks and overall ranks to evaluate the performance of different
estimation methods. One can notice that for the BDNH and BDW, the AD is the most appropriate method
of estimation while CVM for the BDGE. It is also noticed that the BDGE distribution fits better to the nasal
drainage severity data than the BDW distribution.

Table 3: Sum of ranks and overall ranks for the football data set

MLE LSE WLS MPS CVM AD RAD
BDNH (λ , 1)∑

Ranks 74 56 59 55 42 29 54
Overall ranks 7 5 6 4 2 1 3

BDNH (λ = 1)∑
Ranks 45 42 38 28 22 20 26

Overall ranks 7 6 5 4 2 1 3
BDW∑

Ranks 32 28 28 24 17 12 34
Overall ranks 6 4 4 3 2 1 7

BDGE∑
Ranks 39 40 38 31 17 22 31

Overall ranks 6 7 5 3 1 2 3

5.2. Nasal Drainage Severity Score
The second data set represents the efficacy of steam inhalation in the treatment of common cold symp-

toms of recent onset [14]. We analyze the data for the first two days, which are presented in Table (4).
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Table 4: Nasal drainage severity score for 30 patients

Obs. Day 1 DAy 2 Obs. Day 1 Day 2
(T1) (T2) (T1) (T2)

1 1 1 2 0 0
3 1 1 4 1 1
5 0 2 6 2 0
7 2 2 8 1 1
9 3 2 10 2 2

11 1 0 12 2 3
13 1 3 14 2 1
15 2 3 16 2 1
17 1 1 18 2 2
19 3 1 20 1 1
21 2 1 22 2 2
23 1 1 24 2 2
25 2 0 26 1 1
27 0 1 28 1 1
29 1 1 30 3 3

On Nasal drainage severity score data set [14], we fit the BDNH distribution, BDW distribution, and
BDGE distribution and the results are listed in Table (5).

To assess the fitness of the proposed and other related models for this data set and to evaluate the
performance of the different estimation methods, we calculate the bias, RMSE, AIC, BIC and log-likelihood
reported in Table (5). It is observed from the table that the proposed model is the best as compared to other
models, as BDNH has the lowest AIC and BIC compared to BDW and BDGE distributions.

Table 5: Estimate of the parameters of BDNH, BDW and BDGE distributions for the Nasal Drainage
Severity Score data

Est. MLE LSE WLS MPS CVM AD RAD
BDNH (λ , 1)

Bias(α̂1) 0.361 0.401 0.410 0.409 0.407 0.405 0.411
RMSE(α̂1) 0.639 0.631 0.629 0.627 0.625 0.624 0.627
Bias(α̂2) 0.632 0.645 0.640 0.637 0.638 0.634 0.632

RMSE(α̂2) 0.652 0.650 0.647 0.647 0.645 0.648 0.651
Bias(α̂3) 0.083 0.035 0.029 0.026 0.024 0.021 0.023

RMSE(α̂3) 0.037 0.039 0.037 0.038 0.036 0.037 0.039
Bias(λ̂1) 0.775 0.538 0.536 0.532 0.530 0.527 0.526

RMSE(λ̂1) 0.546 0.538 0.536 0.536 0.534 0.539 0.541
Bias(λ̂2) 0.863 0.765 0.764 0.759 0.756 0.758 0.756

RMSE(λ̂2) 0.663 0.657 0.655 0.653 0.650 0.653 0.652
Bias(λ̂3) 0.585 0.573 0.570 0.567 0.564 0.565 0.563

RMSE(λ̂3) 0.434 0.430 0.429 0.424 0.421 0.422 0.424
Bias(θ̂) 0.537 0.539 0.536 0.534 0.535 0.533 0.532

RMSE(θ̂) 0.356 0.353 0.349 0.347 0.345 0.346 0.347
AIC 633.522 632.637 631.837 630.478 629.543 628.987 629.564
BIC 634.637 6733.638 632.837 631.568 630.642 629.742 629.987

Log-like -389.672 -388.892 -387.368 -386.674 -385.656 -386.748 -386.865
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BDNH (λ = 1)
Bias(α̂1) 0.056 0.055 0.057 0.055 0.054 0.053 0.055

RMSE(α̂1) 0.017 0.016 0.014 0.012 0.011 0.01 0.011
Bias(α̂2) 0.002 0.004 0.005 0.004 0.003 0.002 0.004

RMSE(α̂2) 0.000 0.001 0.000 0.002 0.001 0.001 0.002
Bias(α̂3) 0.054 0.058 0.059 0.057 0.055 0.053 0.052

RMSE(α̂3) 0.015 0.014 0.012 0.010 0.009 0.008 0.010
Bias(θ̂) 2.356 2.348 2.351 2.348 2.347 2.348 2.350

RMSE(θ̂) 0.852 0.850 0.848 0.847 0.845 0.839 0.840
AIC 713.638 712.874 711.091 711.001 710.01 709.847 710.043
BIC 714.452 713.485 712.647 712.234 711.526 710.098 710.798

Log-like -352.526 -351.647 -350.672 -350.125 -350.000 -349.847 -350.035
BDW

Bias(α̂) 0.657 0.650 0.649 0.652 0.649 0.662 0.660
RMSE(α̂) 0.579 0.564 0.556 0.553 0.551 0.553 0.552
Bias(p̂0) 0.069 0.071 0.073 0.075 0.074 0.077 0.075

RMSE(p̂0) 0.018 0.016 0.013 0.012 0.011 0.010 0.012
Bias(p̂1) 0.003 0.002 0.004 0.007 0.008 0.009 0.007

RMSE(p̂1) 0.001 0.000 0.001 0.002 0.003 0.004 0.006
Bias(p̂2) 0.069 0.07 0.069 0.072 0.073 0.07 0.065

RMSE(p̂2) 0.016 0.018 0.017 0.014 0.013 0.011 0.012
AIC 710.617 709.678 708.676 707.728 706.537 705.978 707.784
BIC 713.637 712.891 711.637 710.618 709.547 707.467 707.986

Log-like -330.342 -329.897 -329.019 -328.26 -327.732 -326.684 -327.647
BDGE

Bias(α̂1) 0.876 0.870 0.862 0.861 0.842 0.837 0.826
RMSE(α̂1) 0.638 0.611 0.516 0.506 0.496 0.495 0.512
Bias(α̂2) 0.632 0.628 0.626 0.624 0.582 0.567 0.568

RMSE(α̂2) 0.472 0.470 0.447 0.439 0.432 0.431 0.435
Bias(α̂3) 0.078 0.075 0.072 0.071 0.067 0.065 0.065

RMSE(α̂3) 0.021 0.020 0.019 0.018 0.016 0.017 0.018
Bias(p̂) 0.134 0.132 0.129 0.127 0.126 0.123 0.113

RMSE(p̂) 0.114 0.113 0.112 0.111 0.109 0.108 0.107
AIC 710.564 709.638 709.627 708.637 706.676 707.766 708.627
BIC 712.535 711.627 710.736 709.637 707.623 707.736 708.003

Log-like -334.764 -332.627 -331.627 -330.672 -328.697 -328.376 -329.627

In Table (6), we have tabulated the sum of ranks and overall ranks to evaluate the performance of
different estimation methods. The results show that for BDNH, depending on the value of λ, CVM and
AD are the best estimation methods. For the BDW, the WLS is the most considered appropriate methods of
estimation while AD for the BDGE.

Table 6: Sum of ranks and overall ranks for the Nasal Drainage Severity Score data set

MLE LSE WLS MPS CVM AD RAD
BDNH (λ , 1)∑

Ranks 80 79 63 49 30 36 43
Overall ranks 7 6 5 4 1 2 3

BDNH (λ = 1)∑
Ranks 39 36 43 31 20 12 26

Overall ranks 6 5 7 4 2 1 3
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BDW∑
Ranks 31 30 27 33 29 36 30

Overall ranks 5 3 1 6 2 7 3
BDGE∑

Ranks 56 47 41 30 20 12 16
Overall ranks 7 6 5 4 3 1 2

5.3. Model Comparison

Previously, different estimation methods are explored to select the most appropriate estimation method
for the BDW distribution. This section provides a summary of model comparisons of the BDNH, BDW, and
BDGE distributions using the real data sets. To this end, we compare the AIC, BIC, and log-likelihood of
these models. From Table-7, one can say that the BDNH distribution may be used to analyze the data sets
more appropriately than the BDW and BDGE distributions.

Table 7: A Comparison of BDNH, BDW, and BDGE for the Real Data Sets

Data Model AIC BIC Log-likelihood

Football
BDNH 650.319 650.409 -432.873
BDW 708.677 709.265 -423.487
BDGE 709.147 710.367 -390.234

Nasal
BDNH 629.543 630.642 -385.656
BDW 708.676 711.637 -329.019
BDGE 707.766 707.736 -328.376

6. Conclusion

This study introduced a new bivariate discrete distribution, the BDNH distribution, along with some
of its statistical properties. To evaluate the performance of the newly proposed bivariate discrete model, a
simulation study is conducted assuming seven different methods of estimation, namely, maximum likeli-
hood, the least squares, weighted least squares, maximum product spacing, Cramér-Von Mises, Anderson-
Darling, and right tailed Anderson-Darling. The results show that the performance of our proposed model
is quite satisfactory. To show practical applications of the proposed distribution, two real world data sets
are considered and different accuracy measures, the bias, RMSE, AIC, BIC and log-likelihood are calculated.
The results are compared with existing bivariate discrete models namely, bivariate discrete Weibull distri-
bution and bivariate discrete generalized exponential distribution. It is observed that the new distribution
is quite flexible to fit different practical applications. We also noticed that the method of maximum likeli-
hood estimator is not performing upto expectations and therefore, biased corrected maximum likelihood
estimators may be studied in the future. Further, one can extend this study by investigating other properties
of the DNH and BDNH distributions that have not been discussed in this study, such as hypothesis testing
and parameter estimation through Bayesian approach.
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[26] M.M. Ristić, D. Kundu, Generalized exponential geometric extreme distribution, Journal of Statistical Theory and Practice 10(1)

(2016) 179–201.
[27] A.M. Sarhan, N. Balakrishnan, A new class of bivariate distributions and its mixture, Journal of Multivariate Analysis 98(7) (2007)

1508–1527.
[28] J.J. Swain, S. Venkatraman, J.R. Wilson, Least-squares estimation of distribution functions in Johnson’s translation system, Journal

of Statistical Computation and Simulation 29(4) (1988) 271–297.
[29] M.H. Tahir, S. Nadarajah, Parameter induction in continuous univariate distributions: Well-established g families, Anais da

Academia Brasileira de Ciências 87(2) (2015) 539–568.


	Introduction
	BDNH distribution and its properties
	Parameter Estimation
	Maximum Likelihood Estimation Method
	Least Squares Estimation Method
	Maximum Product of Spacings Method
	Cramer-Von-Mises Method
	Anderson-Darling and Right-Tail Anderson-Darling Method

	Monte Carlo Simulation Study
	Real Data Analysis
	Football Data
	Nasal Drainage Severity Score
	Model Comparison

	Conclusion

