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Global Stability in a Diffusive Beddington-Deangelis and Tanner
Predator-Prey Model
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Abstract. Our goal is to study a diffusive Beddington-DeAngelis and Tanner predator-prey system with
no-flux boundary condition. It is proved that the unique constant equilibrium is globally asymptotically
stable under a new simpler parameter condition.

1. Introduction

In this article, we consider the following Beddington-DeAngelis and Tanner reaction-diffusion system
of predator-prey model:

∂u
∂t

= d1∆u + au − u2
−

uv
u + v + m

, x ∈ Ω, t > 0,

∂v
∂t

= d2∆v + bv −
v2

γu
, x ∈ Ω, t > 0,

∂u(x, t)
∂ν

=
∂v(x, t)
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (.)0, x ∈ Ω.

(1)

where Ω is a bounded domain in RN(N = 1, 2, 3) with smooth boundary ∂Ω, 0 < T ≤ +∞, initial condition
u0(x) and v0(x) are continuous functions on Ω and compatible on ∂Ω, constants d1, d2, a, b,m, γ > 0, and ν is
the outward directional derivative normal to ∂Ω.

There are the Beddington-DeAngelis and Tanner type functional response contained in the first and
second equation of model (1), respectively, where u(x, t) and v(x, t) represent the population density of
the predator and the prey at time t with diffusion rates d1 and d2, respectively. We suppose that the two
diffusion rate are positive and equal, but not necessary constants. a denote the death rate of the predator u.
The constant r is called the intrinsic growth rate of the prey v. The constants δ is the conversion rate of the
predator. The term βu measures the mutual interference between predators.
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The Beddington-DeAngelis type functional response term δuv
βu+v+α was proposed by Beddington [2] and

DeAngelis [3]. They introduced the following predator-prey model with this functional response term
ẋ = rx − θx2

−
γxy

a + bx + cy
,

ẏ = −dy +
δxy

a + bx + cy
.

(2)

Huang et al. [4, 5] introduced a class of virus dynamics model with intracellular delay and nonlinear
Beddington-DeAngelis infection rate. Liu and Kong [6] considered the dynamics of a predator-prey system
with Beddington-DeAngelis functional response and delays.

Besides the Beddington-DeAngelis and Tanner type functional responses term mentioned above, there
exist several other famous functional responses, such as well-known Holling type (I, II, III, IV), Hassel-Verley
type and Monod-Haldane type functional responses and so on. Some researchers investigated and raised
some well-known open questions for structured predator-prey models with different types of functional
responses. Particularly, Peng and Wang [7] studied the steady states of a diffusive Holling-Tanner type
predator-prey system

ut − d1∆u = au − u2
−

uv
u + m

, x ∈ Ω, t ∈ (0,∞),

vt − d2∆v = rv −
v2

γu
, x ∈ Ω, t ∈ (0,∞),

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t ∈ (0,∞),

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(3)

They proved the existence and non-existence of positive non-constant steady solutions for (3), and argued
that (3) possesses no positive non-constant steady solution under a certain condition. In the another paper
[8], the authors studied the stability of diffusive predator-prey model of Holling-Tanner type (3) by the
construction of a standard linearization procedure and a Lyapunov function. Chen and Shi [26] focused
attention on the steady states of (3). They applied the defined iteration and comparison principle sequences
to prove the global asymptotic stability. Their scientific research achievement improves the earlier one
proposed by Wang and Peng [8] which used Lyapunov method. We also note here that the (non-spatial)
kinetic equation of system (3) was first introduced by May [11] and Tanner [10], see also [12, 13] and
references therein.

Recently, Qi and Zhu [14] studied the global stability of a reaction-diffusion system of predator-prey
model (3). Indeed, they established improved global asymptotic stability of the unique positive equilibrium
solution in [14]. Besides the papers mentioned above, one can see [15–23] for more detailed information
and biological significances of the studied system.

In the present paper by incorporating the ratio-dependent Beddington-DeAngelis functional response
and diffusion term into system (3), motivated by the previous works [1], we will study the global stability
of the positive equilibrium solution. Therefore, we argue that it is interesting, beneficial and significant to
study the global asymptotic stability of (1) since it possesses biological implications and extends the former
researches.

2. The main results

It is effortless to verify that model (1) possesses a unique positive equilibrium (u∗, v∗), where

u∗ =
a
(
1 + bγ

)
−m − bγ +

√(
a
(
1 + bγ

)
−m − bγ

)2 + 4am
(
1 + bγ

)
2
(
1 + bγ

) ,

v∗ = bγu∗.
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Our proof is based on the upper and lower solution method in [24, 25]. Our main theorem is stated as:

Theorem 2.1. Suppose that the parameters m, a, b, γ, d1, d2 are all positive. Then for system (1), the positive
equilibrium (u∗, v∗) is globally asymptotically stable, that is, for any initial values u0(x) > 0, v0(x) ≥ (.)0,

lim
t→∞

(u(t, x), v(t, x)) = (u∗, v∗),

uniformly for x ∈ Ω, if

m > bγ. (4)

Proof. It is well known that if c > 0, and w(x, t) > 0 satisfies the equation
∂u
∂t

= D∆w + w(c − w) x ∈ Ω, t > 0,

∂w(x, t)
∂ν

= 0, x ∈ ∂Ω, t > 0,

v(x, 0) ≥ (.)0, x ∈ Ω,

then w(x, t)→ c uniformly for x ∈ Ω as t→∞.
Since (4) holds, we can choose an ε0 satisfying

0 < ε0 <
bγ(m − bγ)a

bγ(bγ + 1) + mbγ + m
. (5)

Since u(x, t) satisfies

∂u
∂t

= d1∆u + au − u2
−

uv
u + v + m

≤ d1∆u + au − u2,

and the Neumann boundary condition, then from comparison principle of parabolic equations, there exists
t1 such that for any t > t1, u(x, t) ≤ c1, where c1 = a + ε0. This in turn implies

∂v
∂t

= d2∆v + bv −
v2

γu
≤ d2∆v + v

(
b −

v
γ(a + ε0)

)
for t > t1. Hence there exists t2 > t1 such that for any t > t2, v(x, t) ≤ c2, where c2 = bγ(a + ε0) + ε0. Again
this implies

∂u
∂t

=d1∆u + au − u2
−

uv
u + v + m

≥d1∆u + au − u2
−

bγ(a + ε0) + ε0

m
u,

for t > t2. Since m > bγ, then for ε0 chosen as in (5),

a −
bγ(a + ε0) + ε0

m
> 0,

and

a −
bγ(a + ε0) + ε0

m
− ε0 > 0.

Hence there exists t3 > t2 such that for any t > t3, u(x, t) ≥ c1 > 0, where

c1 = a −
bγ(a + ε0) + ε0

m
− ε0.
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Finally we apply the lower bound of u considered two lines above to the equation of v, and we have

∂v
∂t

= d2∆v + bv −
v2

γu
≥ d2∆v + v

(
b −

v
γc1

)
for t > t3. Since for the ε0 chosen above in (5),

bγ
(
a −

bγ(a + ε0) + ε0

m
− ε0

)
− ε0 > 0,

then there exists t4 > t3 such that for any t > t4, v(x, t) ≥ c2 > 0, where

c2 = bγ
(
a −

bγ(a + ε0) + ε0

m
− ε0

)
− ε0.

Therefore for t > t4 we obtain that

c1 ≤ u(x, t) ≤ c1, c2 ≤ u(x, t) ≤ c2,

and c1, c1, c2, c2 satisfy

0 ≥ a − c1 −
c2

m + c1 + c2
,

0 ≥ b −
c2

γc1
,

0 ≤ a − c1 −
c2

m + c1 + c2
,

0 ≥ b −
c2

γc1
.

(6)

The inequalities (6) show that (c1, c2) and (c1, c2) are a pair of coupled lower and upper solutions of system
(1) as in the definition in [24, 25](see also [26]), as the nonlinearities in (1) are mixed quasimonotone. It is
clear that there exists K > 0 such that for any (c1, c2) ≤ (u1, v1), (u2, v2) ≤ (c1, c2),∣∣∣∣∣au1 − u2

1 −
u1v1

u1 + v1 + m
− au2 + u2

2 +
u2v2

u2 + v2 + m

∣∣∣∣∣ ≤ K(|u1 − u2| + |v1 − v2|),∣∣∣∣∣∣bv1 −
v2

1

γu1
− bv2 +

v2
2

γu2

∣∣∣∣∣∣ ≤ K(|u1 − u2| + |v1 − v2|).

We define two iteration sequences (c(n)
1 , c

(n)
2 ) and (c(n)

1 , c
(n)
2 ) as follows: for n ≥ 1,

c(n)
1 = c(n−1)

1 +
1
K

ac(n−1)
1 − (c(n−1)

1 )2
−

c(n−1)
1 c(n−1)

2

c(n−1)
1 + c(n−1)

2 + m

 ,
c(n)

2 = c(n−1)
2 +

1
K

bc(n−1)
2 −

(c(n−1)
2 )2

γc(n−1)
1

 ,
c(n)

1 = c(n−1)
1 +

1
K

ac(n−1)
1 − (c(n−1)

1 )2
−

c(n−1)
1 c(n−1)

2

c(n−1)
1 + c(n−1)

2 + m

 ,
c(n)

2 = c(n−1)
2 +

1
K

bc(n−1)
2 −

(c(n−1)
2 )2

γc(n−1)
1

 .
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where (c0
1, c

0
2) = (c1, c2) and (c0

1, c
0
2) = (c1, c2). Then for n ≥ 1,

(c1, c2) ≤ (c(n)
1 , c

(n)
2 ) ≤ (c(n+1)

1 , c(n+1)
2 ) ≤ (c(n+1)

1 , c(n+1)
2 ) ≤ (c(n)

1 , c
(n)
2 ) ≤ (c1, c2).

and there exists (c̃1, c̃2) and (ĉ1, ĉ2) such that

(c1, c2) ≤ (ĉ1, ĉ2) ≤ (c̃1, c̃2) ≤ (c1, c2),

so lim
n→∞

cn
1 = c̃1, lim

n→∞
cn

2 = c̃2, lim
n→∞

cn
1 = ĉ1, lim

n→∞
cn

2 = ĉ2 and

0 = a − c̃1 −
ĉ2

m + c̃1 + c̃2
, 0 = b −

c̃2

γc̃1
, 0 = a − ĉ1 −

c̃2

m + ĉ1 + ĉ2
, 0 = b −

ĉ2

γĉ1
. (7)

Simplifying (7) we obtain

(a − c̃1)
(
m +

(
1 + bγ

)
c̃1

)
= bγĉ1, (a − ĉ1)

(
m +

(
1 + bγ

)
ĉ1

)
= bγc̃1. (8)

Subtracting the first equation of (8) from the second equation, we have

(c̃1 − ĉ1)
(
a
(
1 + bγ

)
−m + bγ −

(
1 + bγ

)
(c̃1 + ĉ1)

)
= 0. (9)

If we suppose that c̃1 , ĉ1, then

a
(
1 + bγ

)
−m + bγ

1 + bγ
= (c̃1 + ĉ1) . (10)

Substituting equation (10) into (8), we have

(a − c̃1)
(
m +

(
1 + bγ

)
c̃1

)
= bγ

(
a
(
1 + bγ

)
−m + bγ

1 + bγ
− c̃1

)
,

(a − ĉ1)
(
m +

(
1 + bγ

)
ĉ1

)
= bγ

(
a
(
1 + bγ

)
−m + bγ

1 + bγ
− ĉ1

)
.

(11)

Therefore, the following equation:

(a − x)
(
m +

(
1 + bγ

)
x
)

= bγ
(

a
(
1 + bγ

)
−m + bγ

1 + bγ
− x

)
(12)

possesses two positive roots c̃1 and ĉ1. Eq. (12) can be written as follows:(
1 + bγ

)
x2 +

(
m − a

(
1 + bγ

)
− bγ

)
x + bγ

(
a
(
1 + bγ

)
−m + bγ

1 + bγ

)
− am = 0.

Since Eq. (12) cannot have two positive roots, then

bγ
(

a(1+bγ)−m+bγ
1+bγ

)
− am

1 + bγ
< 0

⇐⇒bγ
(

a
(
1 + bγ

)
−m + bγ

1 + bγ

)
− am < 0

⇐⇒
a
(
1 + bγ

)
−m + bγ

1 + bγ
−

am
bγ

< 0

⇐⇒a
(
1 + bγ

)
−m + bγ −

(
1 + bγ

)
am

bγ
< 0

⇐⇒a
(
1 + bγ

)
bγ −mbγ + b2γ2

−
(
1 + bγ

)
am < 0

⇐⇒
(
a + bγ + abγ

)
bγ −

(
a + bγ + abγ

)
m < 0

⇐⇒bγ < m.
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Hence c̃1 = ĉ1, and consequently c̃2 = ĉ2. Then from the results in [24, 25], the solution (u(x, t), v(x, t)) of
system (1) satisfies

lim
t→∞

(u(t, x), v(t, x)) = (u∗, v∗),

uniformly for x ∈ Ω. Hence from the above analysis, we can obtain that the constant equilibrium (u∗, v∗) is
globally asymptotically stable for system (1) if (4) holds.

For the diffusive Beddington-DeAngelis and Tanner system with same kinetic equations, there are one
other version of nondimensionalized equations in [1]. Our main result can be used to this kind of equation
with a conversion of the parameters.

∂u
∂t

= d1∆u + u(1 − u) −
uv

a + u + v
, x ∈ Ω, t > 0,

∂v
∂t

= d2∆v + v
(
δ − β

v
u

)
, x ∈ Ω, t > 0,

∂u(x, t)
∂ν

=
∂v(x, t)
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (.)0, x ∈ Ω.

(13)
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