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Abstract. We treat the logarithmic derivative model and Schwarzian derivative model of the Dirichlet-
Morrey Teichmiiller space. It is shown that the higher Bers maps, induced by the higher Schwarzian
differential operators, are holomorphic in Dirichlet-Morrey Teichmiiller space. It is also shown that the
logarithmic derivative model of this Teichmiiller space is connected.

1. Introduction

Let D = {z : |z| < 1} be the unit disc in the extended complex plane C. Let ID* be the exterior of D
and S' = JD be the boundary of ID. Denote by M(ID*) the open unit ball of the Banach space L*(ID*) of
all Beltrami differentials p(z) on ID*. It is well konwn that for each u(z) € M(ID*), there exists a unique

quasiconformal mapping f* : C — C whose complex dilatation is equal to u in ID* and is zero in D,
normalized by

fHO) = (f*)(0) -1 =(f)"(0) =0, 1)

(see [1] [3]). Two Beltrami coefficients yq and i, in M(ID*) are said to be Teichmiiller equivalent, denoted
by p1 ~ o, if f#1(ID) = f#2(ID). The universal Teichmiiller space T is defined as T = M(ID*)/ ~, where [u] is
the Teichmiiller equivalent class containing u € M(ID").

The Schwarzian derivative Sy of a conformal mapping f in D is defined by

ro 1 2 .
sz(Nf) _E(Nf) , where Ny = (log f)'.

Denote by B,,(ID) the Banach space of all holomorphic functions ¢ in ID with the following finite norm
lpll, = sup lp@)|(1 - z7)", n=1,2,---. 2
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It is well known that the Bers projection

Bs : M(ID") — Bo(D),  B3(p) = Sy,

is a holomorphic split submersion from M(ID*) onto its image, which descends down to the Bers embedding
B : T — By(ID). Via the Bers embedding, T carries a natural complex Banach manifold structure so that
@ : M(ID*) — T is a holomorphic split submersion which seeds u to the equivalent class [p] (see [17], [18]).

It is of interest to embed the universal Teichmiiller space onto an open subset of some complex Banach
space of holomorphic functions in D in terms of some general differential operators. Krushkal considered
in [16] some nonlinear differential operators of higher order of the form

E f”(Z) fm(z) N f(n)(z)
f@" f@" " fe

where F is an analytic function of its arguments(n > 2). It was proved [16] that the map P, : M(ID*) —

B,-1(ID), which is defined by the correspondence of u € M(ID*) to P,(f") € B,—1(ID), n > 3, is holomorphic.

Schippers considered in [20] some other nonlinear differential operators. Let n > 3, define o3(f) = Sy
and

Pn(f)= ,f”(Z),”',f(n)(Z) , z€D,

an+1(f)(2) = 0,(f)(2) = (1 = DN¢(2)ou(f)(2). €)

For more general differential operators, we refer the reader to [2], [13], [15], [23] and references therein.
Buss [7] proved that the higher Bers map §,, : M(ID*) — B,—1(ID), which is defined by the correspondence
of u € M(ID*) to 0,(f*) € B,-1(ID), n > 3, is holomorphic.

Theorem 1.1. [7] Let n > 3. The higher Bers map p, : M(ID*) — B,,_1(ID) is holomorphic. The differential Do, at
the origin is given by the following correspondence

= ], et

which induces a bounded surjective operator from L*(ID*) onto B,_1(ID).

It should be pointed out that the case n = 3 is the classical result of Bers [6]. The higher Bers maps on
Weil-Petersson and BMO Teichmidiller space were also investigated recently by the authors (see [25] [26]).
In this paper, we will treat the higher Bers maps on the Dirichlet-Morrey Teichmdiller space.
Let
Sp)={rCeD:1-|l|<r<1,Cel}

denote the Carleson square in ID and
Sp()={rCeD" :1<r<1+]|l|Cel}

denote the Carleson square in ID*, where I be an open sub-arc of S'. For 0 < g < o, a non-negative Borel
measure u on D is called g-Carleson measure if

p(Sp())
Ic&]D |I|q

Il =

Replacing Sp(I) by Sp+(I), we can define g-Carleson measure on ID* similarly. Clearly, p is the classical
Carleson measure for the case 4 = 1. Denote by CM,(ID) the set of all g-Carleson measures on ID and
CM,(ID%) the set of all g-Carleson measures on ID*. It is well known that a non-negative Borel measure u
belongs to CM,(ID) if and only if

(1 - [wP)

wzlerq dtu(z) < 0o, (4)

weD JID |1 -
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where p € (0, c0) (see [30]).
The Bloch space B consists of all analytic functions f in ID so that

I flls = sup |f' (@)I(1 = |z1*) < oo.

zeD

The little Bloch space By, a closed subspace of B, consists of functions f € B such that
Jim 1)1~ =) = 0

Let 0 < p < oo, the weighted Dirichlet space DF(ID) is the set of all analytic functions f in ID for which

IR, = IFO)P + fD I @R~ 2PV dm(z) < oo,

where dm(z) denotes the normalized Lebesgue area measure.
For 0 < A,p <1, the Dirichlet-Morrey space Dﬁ(]D), introduced recently in [12], consists of those analytic
functions f in D such that

IIfIIDP(D)—sup((l—Ial )=f 0 g - f(a)llzy)<oo,

where @,(z) =
[12].
The authors obtained in [24] the following result.

1 az’

Theorem 1.2. [24] Suppose that f is a bounded univalent function in D and log f' € By, 0 <A <1land0<p < 1.
Then the following statements are equivalent:

(1) log f' € D (D);

(2) 1S£(2)P(1 = [zP)P*?dm(z) € CMpp(D);

(3) f can be extended to a quasiconformal mapping in the extended plane C such that its complex dilatation u
satisfies el dm(z) € CMp (D).

(lz-1)>

Denote by L(ID*) the Banach space of all essentially bounded measurable functions 1 on ID* each of

which induces a pA-Carleson measure 1, = (lzllfizl)ﬁ,p dm(z). The norm on £(ID*) is defined as

llellz = llplleo + lImulipepa < .

Let M(D*) = M(ID*) n L(ID*). Dirichlet-Morrey Teichmiiller space Tpy is defined as M(ID*)/ ~, where ~
denotes the Teichmiiller equivalent relation defined as above.
We use Np),(ID) (n > 3) to denote the space of all analytic functions f in ID with the norm

2 _ 1412\p(1=1) 201 _ 1512\2n—4+ 1 |ﬂ|2) o
If1R,,, = sup(1 ~laPY fD PP k() |2) m(z) < oo.

In this paper, we shall prove the following

Theorem 1.3. Let n > 3. The higher Bers map p, : M(ID*) — Ny .(ID) is well defined and holomorphic. The
differential Dop,, at the origin is given by the following correspondence

H= (—1)”n!f (@) dudv.

T D (z — w)r+l
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We also consider the pre-logarithmic derivative model of the Dirichlet-Morrey Teichmdiller space. Let
us first recall some notions and definitions.
Let S be the class of all univalent analytic functions f in ID, which can be extended to a quasiconformal

mapping in E, normalized by f(0) = f’(0) — 1 = 0. Then the universal Teichmdiller space can be described
as T(1) = {log f’ : f belongs to Sp}. It is well known that T(1) is a disconnected subset of Bloch space B,
and T, = {log f* € T(1) : f(D)isbounded}, Ty = {log f’ € T(1) : f(¢) = oo}, 6 € [0,2m) are connected
components of T(1) (see [32]).

Inrecent years, the pre-logarithmic derivative model of the universal Teichmdiller space and its subspaces
have been much investigated (See [4] [5] [8] [9] [10] [14] [21] [22] [11] [27] [28] [29] [32]).

We consider the pre-logarithmic derivative model T%, (1) of Dirichlet-Morrey Teichmiiller space, which
is defined as

Tom(1) = {log f' : f € Sg and log f* € By N D (D)}.

We endow the space By N Z)ﬁ(]D) the following norm

Il g = Il + ¢l oy
Let T%Mrb(l) ={log f' € T%,,(1) : f(ID) is bounded }. We obtain the following
Theorem 1.4. T%Mb(l) is connected in By N Z)’;t(]D).

Throughout this paper, we use the notation a < b to denote that there is a constant C > 0 such that
a < Cb, and the notation a = b to indicate thata < b < a.

2. Proof of Theorem 1.3

We shall prove Theorem 1.3 in this section. Some lemmas are needed. The following result gives some
higher derivative characterizations of Z)ﬁ(]D) (see [12]).

Lemma 2.1. [12] Let f be an analytic function on D and 0 < p, A < 1. Then du(z) = |f@)*(1 — |zI*)Pdm(z) is a
pA-Carleson measure if and only if dv(z) = |f'(z)P(1 — |zI*)P*2dm(z) is a pA-Carleson measure. Furthermore,

(1 - laP)
|1 —az?

mﬂﬂ#WWfVMM—wM fmwz
D

aeD

(1 - laP)
11— azP?

14
1 — 1al2y-» PN 112\ +2 d _
sup(l — aP) ‘vau m>( )m@

aeD
We also need the following result (see [31]).

Lemma 2.2. [31] Suppose that k > =1, ,t > 0, and r +t —k > 2. Ift < k+ 2 < r, then there exists a universal
constant C > 0 such that for all z,C € D,

1— 2\k 1— 2\2+k—r
f (_lwl)_ tdmw SCHL_),
pll-wz||1l-wl] |1-Cz |t

where w = u + iv.

We now show that the higher Bers map is well defined on Dirichlet-Morrey Teichmdiller space.

Lemma 2.3. Let n > 3. If u € M(ID*), then o,(f*) € Nyr.(ID).
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Proof. We will prove this Lemma by using mathematical induction. It follows from Corollary 2.5 in [24]
that if u € M(ID*), then o3(f*)(z) € Npr3. Now suppose that o,(f*) € Nyrn,n > 3, we shall prove that

0n+1(f#) € NpA,nJrl'

Indeed, by Lemma 2.1, we have

sup(1 — [ay1-Y f (1"“'2 )p|o,;<f“><z>|2<1—|z|2>2"-2+Pdm<z><oo.
D

aeD |1 - EZ|2
Observing that
on1(f¥)(2) = 0,(f)2) — (n = DNgpu(2)ou(f*)(z),n = 3,
we deduce that
lonr1(p (@) < 1oy, (f)@)] + (n = DN o, (f1)()I-

Noting that f* is a univalent analytic function in ID, we conclude from [19] that

sup INp(2)I(1 - [zI7) < 6.
zelD

Consequently, combing (5), (6) with (7) gives

sup(l _ |a|2)p(1—A) f ( 1- |11|2 )p|0n+1(fy)(z)|2(1 _ |Z|2)2n—2+pdm(z)
D

acD |1 - Ezlz

<sup iy [ (LYo 9P - R ran

aelD |1 - EZ|2

—1al2 \P
+ sup(1 - laPyiD f () @R~ Py
2€D p \[1 —az|

< 00,

This implies that 0,+1(f*) € Npan+1. The proof of Lemma 2.3 is completed. [

The following result shows that the Bers map g3 : M(ID*) — N, 3(ID) is Lipschitz continuous.

Lemma 2.4. Let 0 < p,A < 1. Forany u,v € MM(ID"), the following inequality holds.
1Bs (1) = Bs(W)lIn s Sl = Vg
Proof. In [4], it is proved that for any two elements u,v € M(ID"),

— VP + lp = vIZIu©P
IC —zl*

i) - a1 - e 5 [ O (@),

Therefore,

1—af

r
1B3(u) = BsWlly, ,, = sup(l - Jaf?y = fD ( T az|2) IBs(1) = Bs(WP(1 = |22+ dm(2)

— 2 _
<sup -yt [ ([ S ano)a - ey (5 o) e

2eD |C—z[* 11 —az

2 —1Al2 \P
+ 1l = vIE, sup(1 — [aPyi-Y fD ( fD O am(© )t ~ 22y (=2 e

S| —z* |1 —az]?

acD
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1
T

Consequently, by a change of variable C = =, we get

@) —vEP 1 -1
- 2 1Ry T T
IBs(k) = Balvlly, = sup(L— 1oyt | Sy (| - ale) dudo
(- PP A - TP 7L —arf?
8 fD T a——
pw@P  (1-1aP Y
— IR 1~ laP p(l—/\)f T ( )
+llp = vils igg( lal) AP\ TE dudo
Q- 2Py - IP)* P —ar
dxd
8 L 1 —7z*1 — azf? e (8)
In [24], we have proved that if the complex dilatation y satisfies
| u(z) P .
(lﬂf_wdm(z) € CM,(ID"),
then
| P
de(z) € CMpA(D) (9)

Therefore, combing (4), (8) with (9) and using Lemma 2.2 yields

1B3 (1) = BaW)lIngs < llu = vllg-
This completes the proof of Lemma 2.4. [

It should be pointed out that the case p = 1, A = 1 has been proved in [22].
We are now in a position to prove Theomren 1.3.

Proof. We first show that the higher Bers map g, : M(ID*) — N, .(ID) is continuous. For simplicity of
notations, for any y,v € M(ID*), we use f to denote the quasiconformal mapping whose complex dilatation
is equal to u in ID* and is zero in D, and g to denote the quasiconformal mapping whose complex dilatation
is equal to v in D" and is zero in ID, both normalized

fO)=fF(©O)~1=f"(©0)=0 and g(0)=g(0)~1=g"(©0)=0.

By the definition of the higher Schwarzian derivative, we have

11(F) = Ot @lngn < 155(F) = TH@Dly (19
+ (1= DIINfou(f) = Nyou(@)lIny -

It follows from Lemma 2.1 that

low(f) = 0 DlINu s = Nou(f) — an(@lIn,y,- (11)
Note that
|Nfan(f) - Nan(!])| < |Nf||an(f) - Un(g)l + IGn(g)HNf - Ng|' (12)

We conclude from (11) and (12) that

INf0u(f) = Ngou(@lInys,a < INFllsllon(f) = 0u(@lIn,
+ 100 (@DlIn,, INf = Nylls. (13)
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By Theorem 3.1 in Chapter Il in [17], there is a constant C > 0 such that
INf = Nylls < Cllgt — vllo- (14)
Consequently, combing (7), (10), (13) with (14) yields
15,261 (f) = Gr @lIn s < lon(F) = u(@lIng, + i = Vil

Repeating this process n — 3 times gives

lon1(f) = One1(@DlINgrn S 1103(F) = a3(@DlIn,. + I = Vileo.

By Lemma 2.4, we get
lon1(f) = Tns1(DlINp s S llpt =Vl

This implies that the higher Bers map g, : M(ID*) — N,,»(ID) is continuous.

We now turn to show that the higher Bers map g, : M(ID*) — N, ,(ID) is holomorphic. Since we have
proved that 8, is continuous, it is sufficient to show that for any y € MM(ID*) and v € L(ID*), Bu(u + tv) is
holomorphic in a small neighborhood of ¢ = 0 in the complex plane. Since u € M(ID*), there exists a positive
constant € such that for any t with |¢| < 2e,

lu+tllo <1 and |lp+tvlz < oo.

For simplicity of notations, we use {(t) to denote ,,(1 +tv). For fixed z € ID, the function ¢ (t) is holomorphic
in [t| < 2e. For |t| < €, |ty| < €, it follows from Cauchy formula that

YOO - PE)E)  d ot $()(@)
F—h a =¥ O " L:ze G0N - to)zds‘
|t —t0|
<G [ o (15)

Using Fubini theorem yields
POE) - Pl d

e Al i 4

(1 =y f]D(H —Ezlz) t—tg i =¥ 06
2

<(- lalz)p(l_A)f ( 1 —|_a|2 )F’It — tol? L( B |¢(s)(z)||d5|) (1 = |22 dxdy

2
(1 - |zPP)y*"**Pdxdy

p\[1—az2) 4m2ed

— lal® \*
< It = o1 = Jaf?y f f |¢(s)(z)|2|ds|(1—|z|2)2”-4+p(1 |_a|2)dxdy
D Jsi=2¢ 11— az|

— 1t~ fo? f| -y fD (Il '“'Z)hp( Y21 — 2P+ dxcdy|ds|

S It = tol.
This implies that the limit

YOy _d
lim = = )

exists in Ny, ,(ID). Thus, we conclude that g, : M(ID*) — N,,»(ID) is holomorphic.
Furthermore, Buss proved in Theorem 3.4 in [7] that

Lleope = X f .

D (Z — w)n+1

The proof follows. [
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3. The connectivity of T° (1)
DM,b

In this section, we shall prove Theorem 1.4. Letr > 1 and A, = {z : |z] < r}. A Beltrami differential
u(z) € M(ID") is called a vanishing Beltrami differential if for any € > 0, there exists ¥ > 1 such that ||ua, |l < €.
Denote by M°(ID*) the collection of all vanishing Beltrami differentials.

Let MO(D* = M(D*) N M*(D*). For each u(z) € MO(D*, there exists a unique quasiconformal mapping
f# : €C — C defined as in the introduction such that f*(ID) is bounded. Define the pre-Bers projection
mapping L, on MO(ID*) by setting L, (1) = log(f*)’. To prove Theorem 1.4, we need the following result
which has its own interest.

Proposition 3.1. The pre-Bers projection mapping L, : M°(D*) — Z)’;(]D) is well defined and holomorphic.

Proof. For any u € MY(D*) ¢ M°(ID"), it follows from [5] that log(f#)" € By. It also follows from Theorem 1.2
that log(f*)" € Dﬁ(]D). Therefore, the pre-Bers projection mapping L, : M°(D*) — D’i(]D) is well defined.
To prove that Ly, : mo(D*) — Z)ﬁ(lD) is holomorphic, we first show that it is continuous. For p,v € MO(D*),
it follows from Theorem 3.1 in Chapter Il in [17] that

Y
oy Yy

By Lemma 2.4, we have

sup(1 - |zI*)
zeD

S My = Vlleo-

1B5(1) = Bs¥)lIngs < Nt = Vil

Therefore, from Lemma 2.1, we get

. 1—laf Y
los(FY — loa( Y12 ~ sup(l — Zp(w)f( )
IHog(f*) = 10g(f") llyy i, > sup =1y | {770

y (fy)// ~ (fv)// 2
fvy oy

~supet -y [ (B () - ()

1—laP Y
< sup(l — af?y=" f ( al )|sﬂ,_sfv|2(1—|z|2)P+2dxdy
D

(1 - 2P dxdy

2
(1 - 2P *2dxdy

2
(1 = 2Py +2dxdy

a€D [1-az?
N 1 —laf \P |/ (f*)” 2_ ()" \2
esuptt—iaby ' [ (=20 ) (G ) - ()
_ > e YY)

S 1Bs (1) = By, ., +i161]]1)3{(1 IzI) 7y~ Py }
_1.2yp(1-A) 1—laf Y (f4)” (fv)”2 2
supa =y | (G=5) [y + Gy - e
< =915, + s = VIR OB Iy g + 110B(FY Iy )

S llu =il

This implies that L, : M*(D*) — Z)’A’(]D) is continuous.

Similar to the proof of Theorem 1.3, it remains to show that for any u € M%(ID*) and v € L(ID*), Ly(u + tv)
is holomorphic in a small neighborhood of ¢ = 0 in the complex plane. Chose a positive constant € such
that for any t with |f| < 2¢, ||u + tV]lo < 1 and ||p + tv]|z < co. We abbreviate the function L,(u + tv) by ¢(#).
For fixed z € ID, the function ¢(¢) is holomorphic in [t| < 2¢ (see [18]) and (15) still holds for ¢(t).
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Thus, by Fubini theorem, we deduce that

H(z) — ot d 2 2
1- |a|2)p(1—A)f %2(0)@ _ Eh:toqb(t)(z) 1=z )P(( —la ||2)) dx dy
iyl tol ’ (1~ laf)
< (1= jaPy N =% ( f| i 2€|¢(s><z>||ds|) (1- ||)”( |2)ddy

2
< (1= Py Dl = toP f f| D) @PIsI(1 - (i "lz))ddy

2
== [ a-upr [ ooera- ey | adyias
|s|=2¢
< |t = tol*.
Therefore, we deduce that the limit

f - d
i S = 0

exists in Z)ﬁ(]D). This implies that L, : M(ID*) — Z)ﬁ(ID) is holomorphic and the proof follows. [
We now start our proof of Theorem 1.4.

Proof. Letlog f* € T%, (1). By Theorem 1.2, f can be extended to a quasiconformal mapping to the whole

plane such that its complex dilatation u satisfies lu@)P ndxdy € CMp\(ID7). Let f' be the quasiconformal

(z*-1
mapping in C with f~!(c0) = (f!)"!(c0) and df' = tudf!. We now prove the path t —> log(f'),0 < t < 1is
continuous in By N 2 (D).
For ", f2, we conclude from Proposition 3.1 that

1og(f")" = 1og(f*) llpym) S It = tal - llpllc-
On the other hand, by (14) (see Theorem 3.1 in Chapter Il in [17]), we get

llog(f")" —~log(f)'lls < It = ta - ligtllo-

Thus, we deduce that
lIlog(f")" - log(ftz)'llg,@i < |ty —tol - [lullg.

This means that the path t — log(f*)’,0 < t < 1 is continuous in By N Z)’}’\(ID).

Therefore, each log f* € TY, (1) can be connected by a continuous path in By N Z)’;(ID) to a Mobius
transformation y with logy” € T ,(1). Observe that y(ID) is bounded, it follows that the path p — log Vo
connects the point log)” to the point 0 in T}, (1), where y,, = y(pz). This implies that T Mh(l) {log f" €
T%M(l) : f(ID) is bounded } is connected in By N Z)’;(]D). O

References

[1] L. V. Ahlfors, Lecture on quasiconformal mappings, Princeton-New Jersey: D Van Nostrand, 1966.

[2] D. Aharonov, A necessary and sufficient condition for univalence of a meromorphic function, Duke Math. J. 36 (1969) 599-604.
[3] L. V. Ahlfors, L. Bers, Riemann’s mapping theorem for variable metrics, Ann of Math. 72 (1960) 385-404.

[4] K. Astala, M. Zinsmeister, Teichmdiller spaces and BMOA, Math. Ann. 289 (1991) 613-625.

[5] J. Becker, C. Pommerenke, Uber die quasikonforme Fortsetzung schlicgter Funktionen, Math. Z. 161 (1978) 69-80.

[6] L.Bers, A non-standard integral equation with applications to quasiconformal mappings, Acta Math. 116 (1966) 113-134.

[7] G. Buss, Higher Bers maps, Asian. ]. Math. 16 (2012) 103-140.



S. Tang et al. / Filomat 33:17 (2019), 5489-5498 5498

[8] T. Chen, J. Chen, Some characterizations of the logarithmic derivative model of universal Teichmiiller space, Chin Ann of
Math.(Chinese) 28 (2007) 395-402.

[9] J. Chen, H. Wei, Some Geometric Properties on a Model of Universal Teichmiiller Spaces, Chin Ann of Math. 18 (1997) 309-314.
[10] G. Cui, Integrably asymptotic affine homeomorphisms of the circle and Teichmiiller spaces, Sci. China Ser. A. 43 (2000) 267-279.
[11] X.Feng, S. Huo, S. Tang, Universal Teichmiiller spaces and F(p, g, s) space, Ann. Acad. Sci. Fenn. Math. 42 (2017) 105-118.

[12] P. Galanopoulos, N. Merchén, A. G. Siskakis, A family of Dirichlet-Morrey spaces, Complex Variables and Elliptic Equations
doi:10.1080/17476933.2018.1549036.

[13] R. Harmelin, Aharonov invariants and univalent functions, Israel . Math. 43 (1982) 244-254.

[14] J. Jin, S. Tang, On Qk-Teichmiiller spaces, ]. Math. Anal. Appl. 467 (2018) 622-637.

[15] S. A.Kim, T. Sugawa, Invariant Schwarzian derivatives of higher order, Complex Anal. Oper. Theory 5 (2011) 659-670.

[16] S. L. Krushkal, Differential operators and univalent functions, Complex Var. Theory Appl. 7 (1986) 107-127.

[17] O. Lehto, Univalent functions and Teichmiiller spaces, New York: Springer-Verlag, 1987.

[18] S.Nag, The complex analytic theory of Teichmdiller space, Wiley-Interscience, New York, 1988.

[19] C. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992.

[20] E. Schippers, Distortion theorems for higher order Schwarzian derivatives of univalent functions, Proc. Amer. Math. Soc. 128
(2000) 3241-3249.

[21] Y. Shen, Weil-Petersson Teichmiiller space, Amer. J. Math. 140 (2018) 1041-1074.

[22] Y. Shen, H. Wei, Universal Teichmdiller space and BMO, Adv. Math. 234 (2013) 129-148.

[23] H. Tamanoi, Higher Schwarzian operators and combinatorics of the Schwarzian derivative, Math. Ann. 305 (1996) 127-151.

[24] S. Tang, G. Hu, Q. Shi, J. Jin, Univalent functions and Dirichlet-Morrey space, preprint.

[25] S.Tang, J. Jin, Higher Bers maps and BMO-Teichmdiller space, J. Math. Anal. Appl. 460 (2018) 63-75.

[26] S.Tang, J. Jin, Higher Bers maps and Weil-Petersson Teichmiiller space, Kodai Math. J. 41 (2018) 554-565.

[27] S.Tang, Y. Shen, Integrable Teichmiiller space, ]. Math. Anal. Appl. 465 (2018) 658-672.

[28] Z. Wang, The distance between different components of the universal Teichmdiller space. Chin Ann of Math. 26 (2005) 537-542.

[29] H. Wulan, F. Ye, Universal Teichmiiller space and Qx spaces, Ann. Acad. Sci. Fenn. Math. 39 (2014) 691-709.

[30] J. Xiao, Geometric Q Functions, Frontiers in Mathematics, Birkh&duser, Basel, 2006.

[31] R. Zhao, Distances from Bloch functions to some Mobius invariant spaces, Ann. Acad. Sci. Fenn. Math. 33 (2008) 303-313.

[32] 1. Zhuravlev, Model of the universal Teichmiiller space, Siberian Math. J. 27 (1986) 691-697.



