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Abstract. In the present article, we propose the new class positive linear operators, which discrete type
depending on a real parameters. These operators are similar to Jain operators but its approximation prop-
erties are different then Jain operators. Theorems of degree of approximation, direct results, Voronovskaya
Asymptotic formula and statistical convergence are discussed.

1. Introduction

During the last decade two types of generalizations of the classical Poisson, binomial and negative
binomial distribution, useful in biology, ecology and medicine have been introduced by considering the
two basic forms of Lagrange series
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and expanding suitable function φ(z) into powers of
z

f (z)
for suitably chosen function f (z).

By putting φ(z) = eαz and f (z) = eβz in formulas (1) and (2), we achieved Generalized Poisson Distribution
(GPD) studied by Consul and Jain [1, 2] and Linear Function Poisson Distribution(LFPD) was introduced
and studied by Jain [3].

Since 1912, Bernstein Polynomial and its various generalization have been studied by Bernstein [4],
Szász [5], Meyer-Konig and Zeller [6], Cheney and Sharma [7], Stancu [8]. Bernstein polynomials are based
on binomial and negative binomial distributions. In 1941, Szász and Mirakyan [9] have introduced operator
using the Poisson distribution. We mention that rate of convergence developed by Rempulska and Walczak
[10], asymptotic expansion introduced by Abel et al. [11]. In 1976, May [12] showed that the Baskakov
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operators can reduces to the Szász-Mirakyan operators.
The Lagrange formula (1) was used to established the Jain operators [13], which are as follows

J[β]
n ( f , x) =

∞∑
k=0

ωβ(k,nx) f
(

k
n

)
, (3)

where ωβ(k,nx) = nx(nx + kβ)k−1 e−(nx+kβ)

k!
; 0 ≤ β < 1 and f ∈ C[0,∞).

The operators (3) are generalization of well known the Szàsz-Mirakyan operators. In 2013, Agratini [14]
discussed the relation between the local smoothness of function and local approximation. Also, the degree
of approximation and the statistical convergence of the sequence (3) was studied in [14]. We mention that
a Kantorovich-type extension of the Jain operators was given in [15]. Additionally, the Durrmeyer type
generalization of the Jain operators was established in [16–19]. The Jain operators was also developed in
two variables in [20]. The Jain type variant of Lupas operators [21] was studied by Patel and Mishra in [22].
Due to their properties, the operators J[β]

n and J[0]
n have been intensively studied by many mathematicians.

Thus, in our opinion, the class P[β]
n defined in (7) should deeper investigate.

In this manuscript, we use Lagrange formula (2) to establish new sequence of positive linear operators.
The approximation properties establish in this manuscript are different then the Jain operators (3). Local
approximation properties, the rate of convergence, weighted approximation, asymptotic formula and
statistical convergence are investigated for the sequence of the operators (7).
For 0 < α < ∞ and |β| < 1, proceed by setting φ(z) = eαz and f (z) = eβz, in Lagrange formula (2), we get
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Therefore, we shall have
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; u = ze−βz, (4)

where z and u are sufficiently small such that |βu| < a−1 and |βz| < 1.
By taking z = 1, we have

1 = (1 − β)
∞∑
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1
k!

(α + βk)ke−(α+βk). (5)

Define

pβ(k, α) = (1 − β)
1
k!

(α + βk)ke−(α+βk). (6)

Now, form equality (5), we can write

∞∑
k=0

pβ(k, α) = 1,

for 0 < α < ∞ and |β| < 1.

2. Construction of the Operators

We may now define the operator as

P[β]
n ( f , x) =

∞∑
k=0

pβ(k,nx) f
(

k
n

)
, (7)
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where 0 ≤ β < 1 and pβ(k,nx) is as defined in (6).

Lemma 2.1. Let 0 < α < ∞, |β| < 1 and r ∈N,
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By a repeated use of (8), the proof of the lemma is archived.
Now when |β| < 1 , we have
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3. Estimation of Moments

We should note that, the first moment of the operators (3) gives J[β]
n (t, x) = ax, for some real constant a,

but for the operators (7), we have P[β]
n (t, x) = cx + b for some real constants b and c. Due to this operators (3)

and (7) have different approximation properties. We required following results to prove main results.

Lemma 3.1. The operators P[β]
n n ≥ 1, defined by (7) satisfy the following relations

1. P[β]
n (1, x) = 1;
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2. P[β]
n (t, x) =
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Proof: By the relation (5), it clear that P[β]
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By the simple computation, we get
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The proof of Lemma 3.1 is complete.
We also introduce the s-th order central moment of the operator P[β]

n , that is P[β]
n (ϕs

x, x), whereϕx(t) = t−x,
(x, t) ∈ R+

× R+. On the basis of above lemma and by linearity of operators (7), by a straightforward
calculation, we obtain
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Lemma 3.2. Let the operator P[β]
n be defined by relation as (7) and let ϕx = t − x be given by

1. P[β]
n (ϕx, x) =

xβ
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+
β
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2. P[β]
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x
(
1 + 5β + 3β2 + 6β3

)
n2(1 − β)5 +

β
(
1 + 8β + 6β2

)
n3(1 − β)6 ;

4. P[β]
n (ϕ4

x, x) =
x4β4

(1 − β)4 +
2x3β2

(
3 + 2β2

)
n(1 − β)5 +

x2
(
3 + 4β + 20β2 + 6β3 + 12β4

)
n2(1 − β)6

+
x
(
1 + 18β + 30β2 + 32β3 + 24β4

)
n3(1 − β)7 +

β
(
1 + 22β + 58β2 + 24β3

)
n4(1 − β)8 .

Lemma 3.3. Let n > 1 be a given number. For every 0 < β < 1, one has
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(
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1
n

)
,

where φ2(x) = x(1 + x), x ∈ [0,∞).

Proof: Since, max{x, x2
} ≤ x + x2, 0 < β < 1 and (1 − β)−3

≤ (1 − β)−4, we have

P[β]
n (ϕ2

x, x) = (x2 + x)

 β2

(1 − β)2 +

(
1 + 2β2

)
n(1 − β)3

 +
β(1 + 2β)
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≤ φ2(x)
(

1 + (2 + n)β2
− nβ3

n(1 − β)3

)
+
β(1 + 2β)
n2(1 − β)4 ;

≤ φ2(x)
(

1 + (2 + n)β2

n(1 − β)3
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+
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(
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1
n

)
,

which is required.

4. Approximation Properties

The convergence property of the operators (7) is proved in the following theorem:

Theorem 4.1. Let f be a continuous function on [0,∞) and βn → 0 as n → ∞, then the sequence P[βn]
n converges

uniformly to f on [a, b], where 0 ≤ a < b < ∞.

Proof: Since P[βn]
n is a positive linear operator for 0 ≤ βn < 1, it is sufficient, by Korovkin’s result [23], to

verify the uniform convergence for test functions f (t) = 1, t and t2.
It is clear that P[βn]

n (1, x) = 1.
Going to f (t) = t,

lim
n→∞

P[βn]
n (t, x) = lim

n→∞

[
x

(1 − βn)
+

βn

n(1 − βn)2

]
= x, as βn → 0.

Proceeding to the function f (t) = t2, it can easily be shown that

lim
n→∞

P[βn]
n (t2, x) = lim

n→∞

[
x2

(1 − βn)2 +
x(1 + 2βn)
n(1 − βn)3 +

βn(1 + 2βn)
n2(1 − βn)4

]
= x2, as βn → 0.

The proof of theorem 4.1 is complete.



P. G. Patel / Filomat 33:17 (2019), 5477–5488 5482

4.1. Local Approximation

Let CB[0,∞) be denote the set of all bounded continuous real-valued functions on [0,∞). The space is
endowed with sup-norm ‖ · ‖, where ‖ f ‖ = sup

x∈[0,∞)
| f (x)|, f ∈ CB[0,∞). In connection with the estimation of

the degree of approximation, the so called moduli of smoothness play important role.
Further, let us consider the following K-functional:

K2( f , δ) = inf
1∈W2
{‖ f − 1‖ + δ‖1′′‖},

where δ > 0 and W2 = {1 ∈ CB[0,∞) : 1′; 1′′ ∈ [0,∞)}. By [24, 14, p. 177,Theorem 2.4] there exists an absolute
constant C > 0 such that

K2( f , δ) ≤ Cω2( f ,
√

δ), (13)

where

ω2( f ,
√

δ) = sup
0<h≤

√
δ

sup
x∈[0,∞)

| f (x + 2h) − 2 f (x + h) + f (x)|

is the second order modulus of smoothness of f ∈ CB[0,∞).By

ω( f , δ) = sup
0<h≤δ

sup
x∈[0,∞)

| f (x + h) − f (x)|

we denote the usual modulus of continuity of f ∈ CB[0,∞). In what follows we shall use the notations
φ(x) =

√
x(1 + x) and δ2(x) = φ2(x) + 1

n , where x ∈ [0,∞) and n ≥ 1.
Now, we establish local approximation theorems in connection with the operators P[β]

n .

Theorem 4.2. Let P[β]
n , n ∈N, be given by (7). For every f ∈ CB[0,∞), one has

|P[β]
n ( f , x) − f (x)| ≤ Cω2

 f ,
1
2

√
1 + (2 + n)β2

n(1 − β)4 δ2(x) +

(
β(1 + nx(1 − β))

n(1 − β)2

)2
 + ω

(
f ,
β(1 + nx(1 − β))

n(1 − β)2

)
. (14)

Proof: Let us introduce the auxiliary operators P̃[β]
n defined by

P̃[β]
n ( f , x) = P[β]

n ( f , x) − f
(
β + nx(1 − β)

n(1 − β)2

)
+ f (x), (15)

for x ∈ [0,∞). The operators P̃[β]
n are linear. By Lemma 3.2, we have

P̃[β]
n (t − x, x) = 0. (16)

Let 1 ∈W2. From Taylor’s expansion

1(t) = 1(x) + 1′(x)(t − x) +

∫ t

x
(t − u)1′′(u)du, t ∈ [0,∞). (17)
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Applying the linear operator P̃[β]
n and taking in view (15) and (16), we can write

|P̃[β]
n (1, x) − 1(x)| = |P̃[β]

n (1 − 1(x), x)| =
∣∣∣∣∣1′(x)P̃[β]

n (t − x, x) + P̃[β]
n

(∫ t

x
(t − u)1′′(u)du, x

) ∣∣∣∣∣
≤

∣∣∣∣∣P[β]
n

(∫ t

x
(t − u)1′′(u)du, x

)
−

∫ β+nx(1−β)
n(1−β)2

x

(
β + nx(1 − β)

n(1 − β)2 − u
)
1′′(u)du

∣∣∣∣∣
≤ P[β]

n

(∣∣∣∣∣ ∫ t

x
(t − u)1′′(u)du

∣∣∣∣∣, x) +

∣∣∣∣∣ ∫ β+nx(1−β)
n(1−β)2

x

(
β + nx(1 − β)

n(1 − β)2 − u
)
|1′′(u)|du

∣∣∣∣∣
≤ P[β]

n

(
(t − x)2 ‖1

′′
‖

2
, x

)
+ ‖1′′‖

∣∣∣∣∣ ∫ β+nx(1−β)
n(1−β)2

x

(
β + nx(1 − β)

n(1 − β)2 − u
)

du
∣∣∣∣∣

≤
‖1′′‖

2
P[β]

n

(
ϕ2

x, x
)

+
‖1′′‖

2

(
β(1 + nx(1 − β))

n(1 − β)2

)2

≤ ‖1′′‖

1 + (2 + n)β2

n(1 − β)4 δ2(x) +

(
β(1 + nx(1 − β))

n(1 − β)2

)2 . (18)

Let f ∈ CB[0,∞), Further on, taking in view that

|P[β]
n ( f − 1, x)| ≤ ‖ f − 1‖, |P̃[β]

n ( f − 1, x)| ≤ 3‖ f − 1‖ (19)

and by definition of modulus of continuity, we have∣∣∣∣∣ f (
β + nx(1 − β)

n(1 − β)2

)
− f (x)

∣∣∣∣∣ ≤ ω (
f ,
β(1 + nx(1 − β))

n(1 − β)2

)
. (20)

Now, (18), (19) and (20) imply

|P[β]
n ( f , x) − f (x)| ≤ |P̃[β]

n ( f − 1, x) − ( f − 1)(x)| + |P̃[β]
n (1, x) − 1(x)| +

∣∣∣∣∣ f (
β + nx(1 − β)

n(1 − β)2

)
− f (x)

∣∣∣∣∣
≤ 4

‖ f − 1‖ +
‖1′′‖

4

1 + (2 + n)β2

n(1 − β)4 δ2(x) +

(
β(1 + nx(1 − β))

n(1 − β)2

)2
+ω

(
f ,
β(1 + nx(1 − β))

n(1 − β)2

)
.

Hence, taking infimum on the right hand side over all 1 ∈W2, we get

|P[β]
n ( f , x) − f (x)| ≤ 4K2

 f ,
1
4

1 + (2 + n)β2

n(1 − β)4 δ2(x) +

(
β(1 + nx(1 − β))

n(1 − β)2

)2 + ω

(
f ,
β(1 + nx(1 − β))

n(1 − β)2

)
.

In view of (13), we get

|P[β]
n ( f , x) − f (x)| ≤ Cω2

 f ,
1
2

√
1 + (2 + n)β2

n(1 − β)4 δ2(x) +

(
β(1 + nx(1 − β))

n(1 − β)2

)2
 + ω

(
f ,
β(1 + nx(1 − β))

n(1 − β)2

)
.

This completes the proof of the theorem.
We recall that a continuous function f defined on J is locally Lip α on E (0 < α ≤ 1), if it satisfies the condition

| f (x) − f (y)| ≤M f |x − y|α, (x, y) ∈ J × E, (21)

where M f is a constant depending only on f .
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Theorem 4.3. Let P[β]
n , n ∈ N, be given by (7), 0 < α ≤ 1 and E be any subset of [0,∞). If f is locally Lip α on E,

then we have

|P[β]
n ( f , x) − f (x)| ≤M f

(1 + (2 + n)β2

n(1 − β)4 δ2(x)
)α/2

+ 2dα(x,E)

 , x ≥ 0,

where d(x,E) is the distance between x and E defined as

d(x,E) = inf{|x − y| : y ∈ E}.

Proof: By using the continuity of f , it is obvious that (21) holds for any x ≥ 0 and y ∈ Ē , Ē being the closure
in R of the set E. Let (x, x0) ∈ [0,∞) × Ē be such that |x − x0| = d(x,E).
On the other hand, we can write | f (t) − f (x0)| ≤ | f (t) − f (x0)| + | f (x0) − f (x)| and applying the linear positive
operators P[βn]

n , we have

|P[β]
n ( f , x) − f (x)| ≤ |P[β]

n (| f (t) − f (x0)|, x) − f (x)| + | f (x0) − f (x)|

≤ |P[β]
n (M f |t − x0|

α, x)| + M f |x0 − x|α.

Note that P[β]
n is positive, so it is monotone.

In the inequality (A + B)α ≤ Aα + Bα (A ≥ 0,B ≥ 0, 0 < α ≤ 1), we put A = |t − x|, B = |x − x0| and using
Holder’s inequality, we get

|P[β]
n ( f , x) − f (x)| ≤ M f P

[β]
n (|(t − x) + (x − x0)|α, x) + M f |x0 − x|α

≤ M f

(
P[β]

n (|t − x|α, x) + |x − x0|
α
)

+ M f |x0 − x|α

≤ M f

((
P[β]

n ((t − x)2, x)
)α/2

+ 2|x − x0|
α
)

≤ M f

(1 + (2 + n)β2

n(1 − β)4

(
φ(x) +

1
n

))α/2
+ 2|x − x0|

α

 ,
which is required results.

4.2. Rate of convergence
Let Bx2 [0;∞) be the set of all functions f defined on [0,∞) satisfying the condition | f (x)| ≤ M f (1 + x2),

where M f is a constant depending only on f . By Cx2 [0,∞), we denote the subspace of all continuous
functions belonging to Bx2 [0,∞). Also, let C∗x2 [0,∞) be the subspace of all functions f ∈ Cx2 [0,∞), for which

lim
x→∞

f (x)
1 + x2 is finite. The norm on Cx2 [0∞) is ‖ f ‖x2 = sup

x∈[0,∞)

| f (x)|
1 + x2 . For any positive a, by

ωa( f , δ) = sup
|t−x|≤δ

sup
x,t∈[0,a]

| f (t) − f (x)|,

we denote the usual modulus of continuity of f on the closed interval [0, a]. We know that for a function
f ∈ Cx2 [0,∞), the modulus of continuity ωa( f , δ) tends to zero. Now, we give a rate of convergence theorem
for the operator P[β]

n :

Theorem 4.4. Let f ∈ Cx2 [0,∞) and let the operator P[β]
n be defined as in (7), where 0 ≤ β < 1 and ωa( f , δ) be its

modulus of continuity on the finite interval [0, a] ⊂ [0,∞), where a > 0. Then for every n ≥ 1,

‖P[β]
n ( f , ·) − f ‖ ≤

(1 + (2 + n)β2)K
n(1 − β)4 + 2ωa+1

 f ,

√
(1 + (2 + n)β2)K

n(1 − β)4

 ,
where K = 6M f (1 + a2)(1 + a + a2).
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Proof: For x ∈ [0, a] and t > a + 1, since t − x > 1, we have

| f (t) − f (x)| ≤ M f (2 + x2 + t2)

≤ M f

(
2 + 3x2 + 2(t − x)2

)
≤ 6M f (1 + a2)(t − x)2. (22)

For x ∈ [0, a] and t ≤ a + 1, we have

| f (t) − f (x)| ≤ ωa+1( f , |t − x|) +
(
1 +
|t − x|
δ

)
ωa+1( f , δ), (23)

with δ > 0. Form (22) and (23), we have

| f (t) − f (x)| ≤ 6M f (1 + a2)(t − x)2 +
(
1 +
|t − x|
δ

)
ωa+1( f , δ), (24)

for x ∈ [0, a] and t ≥ 0. Thus

|P[β]
n ( f , x) − f (x)| ≤ 6M f (1 + a2)P[β]

n ((t − x)2, x) + ωa+1( f , δ)
(
1 +

1
δ

P[β]
n

(
(t − x)2, x)

) 1
2
)
. (25)

Hence, by Schwarz’s inequality and Lemma 3.3, for 0 < β < 1 and x ∈ [0, a]

|P[β]
n ( f , x) − f (x)| ≤

6M f (1 + a2)(1 + (2 + n)β2)

n(1 − β)4

(
φ(x) +

1
n

)
+ωa+1( f , δ)

1 +
1
δ

√
(1 + (2 + n)β2)

n(1 − β)4

(
φ(x) +

1
n

)
≤

(1 + (2 + n)β2)K
n(1 − β)4 + ωa+1( f , δ)

1 +
1
δ

√
(1 + (2 + n)β2)K

n(1 − β)4

 . (26)

By taking δ =

√
(1 + (2 + n)β2)K

n(1 − β)4 , we get the assertion of theorem.

4.3. Weighted approximation
Now, we shall discuss the weighted approximation theorem, where the approximation formula holds

true on the interval [0,∞).

Theorem 4.5. Let the operator P[βn]
n be defined as in (7), where (βn)n≥1, 0 ≤ βn < 1, satisfies lim

n
βn = 0. For each

f ∈ C∗x2 [0,∞), we have

lim
n→∞
‖P[βn]

n ( f , ·) − f ‖x2 = 0.

Proof: Using the theorem in [25], we see that it is sufficient to verify the following three conditions

lim
n→∞
‖P[βn]

n (tv, ·) − xv
‖x2 = 0, for v = 0, 1, 2, (27)

for every x ∈ [0,∞).
Since P[βn]

n (1, x) = 1, the first condition of (27) is fulfilled for v = 0. By Lemma 3.1 we have for n ≥ 1

‖P[βn]
n (t, x) − x‖x2 = sup

x∈[0,∞)

|P[βn]
n (t, x) − x|

1 + x2

≤
β

(1 − β)
sup

x∈[0,∞)

x
1 + x2 +

β

n(1 − β)2 ≤
β

(1 − β)
+

β

n(1 − β)2
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and the second condition of (27) holds for v = 1 as n→∞with βn → 0.
Similarly, we can write for n ≥ 1

‖P[βn]
n (t2, x) − x2

‖x2 ≤
(2 − βn)βn

(1 − βn)2 sup
x∈[0,∞)

(
x2

1 + x2

)
+

(1 + 2βn)
n(1 − βn)3 sup

x∈[0,∞)

(
x2

1 + x2

)
+
βn(1 + 2βn)
n2(1 − βn)4

≤
(2 − βn)βn

(1 − βn)2 +
(1 + 2βn)
n(1 − βn)3 +

βn(1 + 2βn)
n2(1 − βn)4 ,

which implies that
lim
n→∞
‖P[βn]

n (t2, x) − x2
‖x2 = 0 with βn →∞.

Thus the proof is completed.

4.4. Asymptotic Formula

In order to present asymptotic formula, we need the following lemma.

Lemma 4.6. Let P[β]
n be defined as (7). In addition, 0 < β < 1, then

P[β]
n ((t − x)4, x) ≤

267(x + x2 + x3 + x4)
n4(1 − β)8 .

Proof: Since max{x, x2, x3, x4
} ≤ x + x2 + x3 + x4, (1 − β)2

≤ 1 and (1 − β)−i
≤ (1 − β)−(i+1), for i ∈N,

P[β]
n ((t − x)4, x) ≤

x4

(1 − β)4 +
10x3

n(1 − β)5 +
45x2

n2(1 − β)6 +
105x

n3(1 − β)7 +
105

n4(1 − β)8

≤
267(x + x2 + x3 + x4)

n4(1 − β)8 ,

we obtain claim inequality.
Notice that, lim

n→∞
n2P[βn]

n ((t − x)4, x) = 3x2 with βn → 0.

Theorem 4.7. Let f , f ′, f ′′ ∈ C[0,∞) and let the operator P[βn]
n be defined as in (7), where (βn)n≥1, 0 ≤ βn < 1,

satisfies lim
n
βn = 0. then

lim
n→∞

n
(
P[βn]

n ( f , x) − f (x)
)

=
x
2

f ′′(x), ∀ x > 0.

Proof: Let f , f ′, f ′′ ∈ C[0,∞) and x ∈ [0,∞) be fixed. By the Taylor formula, we have

f (t) = f (x) + f ′(x)(t − x) +
1
2

f ′′(x)(t − x)2 + r(t; x)(t − x)2, (28)

where r(·; x) is the Peano form of the remainder and lim
t→x

r(t; x) = 0.

We apply P[βn]
n to equation (28), we get

P[βn]
n ( f , x) − f (x) = f ′(x)P[βn]

n ((t − x), x) +
1
2

f ′′(x)P[βn]
n ((t − x)2, x) + P[βn]

n (r(t; x)(t − x)2, x)

= f ′(x)
[

xβn

(1 − βn)
+

βn

n(1 − βn)2

]
+ P[βn]

n (r(t; x)(t − x)2, x)

+
f ′′(x)

2

 x2β2
n

(1 − βn)2 +
x
(
1 + 2β2

n

)
n(1 − βn)3 +

βn(1 + 2βn)
n2(1 − βn)4

 .
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In the second term P[βn]
n (r(t; x)(t − x)2, x) applying the Cauchy-Schwartz inequality, we have

0 ≤ |nP[βn]
n (r(t; x)(t − x)2, x)| ≤

√
n2P[βn]

n ((t − x)4, x)
√

P[βn]
n (r(t; x)2, x). (29)

Observe that r2(x, x) = 0 and r2(·, x) ∈ C∗x2 [0,∞). Then, it follows that

lim
t→x

nP[βn]
n (r(t, x)2, x) = r2(x, x) = 0 (30)

uniformly with respect to x ∈ [0,A] for any A > 0 .
On the basis of (29), (30) and Lemma 4.6 , we get

lim
n→∞

n
(
P[βn]

n ( f , x) − f (x)
)

= f ′(x) lim
n→∞

n
[

xβn

(1 − βn)
+

βn

n(1 − βn)2

]

+
f ′′(x)

2
lim
n→∞

n

 x2β2
n

(1 − βn)2 +
x
(
1 + 2β2

n

)
n(1 − βn)3 +

βn(1 + 2βn)
n2(1 − βn)4


=

x
2

f ′′(x) with βn → 0,

which completes the proof.

Acknowledgements

The authors are thankful to the referees for valuable suggestions, leading to an overall improvement in
the paper.

References

[1] P. C. Consul, G. C. Jain, A generalization of the poisson distribution, Technometrics 15 (4) (1973) 791–799.
[2] P. C. Consul, G. C. Jain, On some interesting properties of the generalized poisson distribution, Biometrische Zeitschrift 15 (7)

(1973) 495–500.
[3] G. C. Jain, A linear function poisson distribution, Biometrische Zeitschrift 17 (8) (1975) 501–506.
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