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Abstract. For solving rank deficient linear least squares problems, unsymmetric successive overrelaxation
(USSOR) type methods are investigated by some researchers recently. In this note, we continue to study
the USSOR method for solving rank deficient linear least squares problems and obtain the optimal iteration
parameters and the corresponding optimal convergence factors. Numerical experiments are given to

examine the feasibility and effectiveness of the USSOR method with optimal parameters.

1. Introduction
Consider the least squares solution
g = By lla= minser: || g = B |l2,

where B € RI™", with m > n and rank(B) =r <n,q € R™.
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It is well-known that the least square solution of minimal norm to (1) is Bfg, here Bt is the Moore-Penrose

generalized inverse of B, and y is the least squares solution to (1), if and only if

X =q- By,
satisfies
BTx =0,

where BT denotes the transpose of the matrix B.
Without loss of generality, let B be the 2 X 2 block partitioned form

Bi1 Bn
B= ,
( By By )

where By € ]R;Xr, Bys € ]Rrx(n—r)l By € ]R(m—r)xr, By, € ROn=1x(n=),
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Lety =y, D), x=0L6)", q=0"9)", v,qu60€R, g2,00€R"7, 1y, € R" Itis easy to
see that (2) and (3) can be written as the following consistent linear system:

Bz =0, ()
where
Bu O I, Bp U g
|l Ll e 8]
0 B, B, © Y2 0

I, and I,,,— are identity matrices with order » and m — r, respectively.
Notice (5) is equivalent to

( I, B x)\_[q)\_
el )5
where
I, 0 Bu B o1
| 0 L., Bxn B2 _| o
A= -Bf, Bl 0 0 X=1y
=B, =By 0 0 Y2

For solving the rank deficient linear least squares problem (1), many authors studied overrelaxation-type
methods. Miller and Neumnn [8] first proposed a class of SOR method to solve (1). Tian etal. [7, 11] studied
the AOR method. For rank deficient linear least squares problems, the symmetric SOR(SSOR) method is
also studied, see, e.g, [3-5, 15]. Recently, Yun et al. [6, 13] proposed the unsymmetric SOR(USSOR) method
to solve saddle point problems. And Song et al. [10] constructed the USSOR method to solve rank deficient
linear least squares problems, which was based on the block consistent linear system (5).

In this note, we continue to study the USSOR method for solving rank deficient linear least squares
problems and discuss its optimal parameters. The rest of this note is organized as follow. In Section 2, we
introduce the USSOR method for solving the rank deficient linear least squares problem. In Section 3, we
discuss the optimal iteration parameters and the corresponding optimal convergence factors. Numerical
experiments are given to examine the feasibility and effectiveness of the USSOR method with optimal
parameters in Section 4.

2. The USSOR method

According to the equation (6) and similar to [6], we consider the following splitting:

A = M(w1, w2) — N(w1, w2), )
where
_ 1 Im a)zB
M(a)1,a)2) - w1+ wy — w2 ( —a)lBT —wla)zBTB + (1 - a)z)Q) ’
_ 1 (1 - a)l)(l - a)z)lm (w1w2 - a)l)B
Nl@r, @2) = w1 + Wy — W1W2 ( (w2 —w1w2)BT  —w102B"B+ (1 — @2)Q) |’

and w1, w are two positive parameters (relaxation factors) with w, # 1, w1 + wp — w1w; # 0. Here Q € R™"
is the approximation of the Schur complement BTB. Notice BTB is singular, it is more reasonable to choose
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a singular matrix as its approximation, so, in this note Q is chosen by a symmetric positive semi-definite
(and potentially singular) matrix. M(w1, w;) will act as the preconditioner for (6). The coefficient matrix A
of (6) is singular, so, a singular matrix M(w1, w,) may also be more reasonable to approximate A.

The USSOR method can be derived from the splitting (7). On the other hand, we can also derive the
USSOR method simply by the preconditioned system as follows. Notice when N(Q) € N(B), where N(:)
denotes the null space of the corresponding matrix, then it is easy to see that the Moore-Penrose generalized
inverse M' (w1, w,) of M(w1, w») has the following expression:

L, — 42BQ'BT 2 BQ"

M+(w1/ 0)2) = (Cl)l + wy — a)la)z) wll_“’z 1-w;

a8 gl
Now we obtain the preconditioned system through multiplying both sides of (6) by M (w1, w,):
M+(O)1, a)Z)ﬂX = M+((4)1, wZ)br (8)

It is known that the solution sets of (6) and (8) are identical so long as the condition N (M (w1, w2)A) = N(A)
holds. In fact, when N(Q) € N(B), then [6] we have N(M' (w1, w2)A) = N(A).
From (8) we obtain the fixed point system

X = (I M (w1, 02) A)X + M (01, 02)b, ©)

which reduces to the following general stationary iteration, i.e., the USSOR iteration:

X1 = H1, 0)Xe + M'b, k=0,1,2,..., (10)
or
Xk+1 Xk + q
=H k=0,1,2,.. 11
( Yoot ) (601,0)2)( " )+M (wl,a)z)( 0 ), 012,.., (11)

where H(w1, w2) = I — M (w1, w,)A is the iteration matrix and satisfies
H(w1, @2) = (w01 + w2 — w1w2)X

1 (@ +RT tpT
[ (= :1)1++ Tll—mz 2BQ'B ?ﬁ;BQ BTB _]i ] ] (12)
—@W [ *
1—a);Q B a)1+a)2—m]a)21 - 1—clL)zQ B'B

3. Optimal parameters of the USSOR method

In this section, we study the optimal parameters of the USSOR method (10). First, we introduce the
pseudo-spectral radius v(H (w1, @2)) as follows:

V(H(w1, @2)) = max(|A| : A € o(H(w1, w2)), A # 1), (13)

where o(H(w1, w2)) is the spectrum of H(w1, w2).

We say the iteration (10) is semi-convergent if, for any initial guess X, the iteration sequence Xy produced
by (10) converges to a solution of (6). It is well known [1] that the sufficient and necessary conditions for
the semi-convergence of (10) are: (i) N (M (w1, w2)A) = N(A); (ii) rank(l — H(w1, w2)) = rank(I — H(w1, w2))%;
(iif) v(H(w1, w2)) < 1. Fan et al. [6] studied these conditions and obtained the semi-convergence results for
USSOR by follows.

Theorem 3.1. ([6]) Let Q be symmetric positive semi-definite with N(Q) € N(B), and p be the spectral radius of
Q'BTB. Then USSOR is semi-convergent if wy and w, satisfy the following conditions

4

3+ T+4p

0<wy < (14)
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and

0<wi < ! 4 —w7|. (15)
T=@2 1+ \1+4p(1-wp)™?

Corollary 3.2. ([6]) Let p be the spectral radius of Q'BTB. Then USSOR semi-converges if aq and ws satisfy the
following conditions

1 4
wy < 1,and — @2 <wy < —wy|. (16)
I-aw T=@2\1+ \1+4p(1-wy)?

Remark 3.3. From the above Corollary we see that when w, and w, satisfy (16), then v(H(w1, w2)) < 1 holds true.
Moreover, we consider the problem of how to choose the optimal w1 and w, which minimize v(H(w1, w2)). Generally,
we find it is very complicated to determine the optimal parameters when wi > 1. So, in this note we discuss the local
optimal parameters, that is, we assume w; < 1, and together with (16), it holds 0 < (1 — w1)(1 — w7) < 1.

We need the following lemmas to find the optimal parameters.

Lemma 3.4. Let Q be symmetric positive semi-definite with N(Q) € N(B). For any A € o(H(w1, wz)) and
A # (1= wi1)(1 = wy), the p which satisfies

(1 - @) - ) - 1)
Wy — 1

A= 1+ 1 -w)—wp)+ plA+ 1 -w)-w) =0, (17)

is the eigenvalue of Q"BTB. On the contrary, for any p € o(Q'BTB), if A # (1 — w1)(1 — ws) and A satisfies (17), then
A € o(H(w1, w2)).

Proof. We can rewrite the equation (17) as follows:

(@2 = (A = (1= ) —w2) + DA+ (1 = w1)(1 - @2)) = (1 = w1)(1 — w2) — 1)*uA, (18)
Suppose that A and & = ( Z ) are the eigenvalue and eigenvector of H(w1, w,), respectively, i.e.,

Hx = Ax.
By (12), after some algebra, we can rewrite this equation as:
((1 - 0)1)(1 - a)z) - /\)M = (a)1 + Aw;y — wla)z)Bv,

(1= ) ((1 = 02)Quv — w1w2BTBv) = (~Aw; — ws + wiwy)B u,

or

1- 1
—a)lQ+BTu + v— @1 Q'B"Bv
1-w; w1 + Wy — W12 1-w; (19)
1
=—— Ay,
w1 + Wy — w12
1 -1
1 @ s Deepaipr, | @1©2 poiprg, gy
w1 + Wy — w12 1-w, 1—w; (20)

1
=—Au.
w1+ wy — w2
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Notice (1 — w1)(1 — wp) — Mu = (w1 + Awp — w1wz)Bv and & is an eigenvector. Then v # 0 and u =
w1 + Awy — wiws Bo

1-A+wiwy; —w; —wy
Substituting

w1 + Awr — wiwr B
(Y

B 1-A+wiwy; —wi —wy

+ Awy —
into the equation (19), and let t = w1 W2 — Widn , then it holds
1-A+wiwy; —wi —wy

1-w w1 A

1 ~tpT tpT
t——Q'B'B - B Bjy= ——u.
1—a)2Q v+(a)1+a)2—a)1cu2 1—(4)2Q )U a)1+w2—w1wzv
After some algebra, this equation can be written as
Q'B™Bv =
(A =D = 0)( = @) = )1 ~ w2) (1)

(@1 + w2 — w102) (@1 + Az — w102)(1 — @1) — 1 (1— )1 —w2) — A)

(A =1)((A - w1)(1 = w2) = A)(1 — @)
(01 + w2 — wr@2)((@1 + Awz — W1w2)(1 — w1) — W1 ((1 — w1)(1 — w2) — A))
p is an eigenvalue of Q"BTB which satisfies (17). The proof of the second assertion of Lemma 3.4 can be
given analogously. O

Let u =

. Then it is easy to see that

Lemma 3.5. Let Q be symmetric positive semi-definite with N(Q) € N(B). Assume A € o(H(wi,wy)) and
u € o(Q*BTB). Then A and y satisfy:

(Difu=0,thenA=1or A =(1-wi)(1-wy),

(2)ifA=10rA=(1-wi)1 - wy), then u=0.

Proof. Making use of the equation (17), then the conclusions can be obtained easily. [J

According to Lemma 3.4, for any u € 6(Q'BTA™!B), the two roots of (17) or the two eigenvalues of the
iteration matrix H(w1, w,) are given by

Ma(wr, @2, ) = 5 [ fl@n, @2 )+ y[on w20 40 - @)1 - @), @)

Mo, w2 p) = 3 | Fl@n, w2, ) = \[Fn, w2, ) =40 - o)1 = @2)], 23)
where

fwn @) =141 - w1 -y + L7 @) = D7 (24)

W — 1
Lemma 3.6. Let Q be symmetric positive semi-definite with N(Q) € N(B). Assume that uy and uy be the solutions
of the equations f(w1, wa, 4) = 2+/(1 — w1)(1 — wy) and f(w1, w2, 4) = =2+/(1 — w1)(1 — w2), respectively. Let

(\/!JZ — Umin + \/Hl - ‘umin)z

Ay, p2) = (NI + VP ,
max + max )2
Moy, ) = (Vtbmax = i1 + Nfmax = fha

(FT + iy

Then

A, p2), pa + H2 2 tin + Uaxs
V(H((t)l, wZ)) B { /\2([11/ [12)/ H1 + 2 < Hmin + Wmax,

where iy = min{p | p € o(Q*BTB)\O}} and oy = maxiy | € o(Q*BTB)\{0}).



P-B. Xu, N.-M. Zhang / Filomat 33:17 (2019), 5441-5450 5446
Proof. Let

A(C‘)ll w2, [J) = max{l/\1 (wll w2, ‘Ll)l, |A2(Cl)1, w2, H)'} (25)

Consider the following two cases:
(1)When A = (w1, wa, 1) = 4(1 — w1)(1 — w2) < 0, then

[A(w1, w2, W)l = [A2(w1, w2, )l = V(1 = w1)(1 — wo). (26)

(2) When A > 0, then

_ M(w1, wo, 1), if  f(wy, w2, 1) >0,
Aeon, @, 1) = { —Ao(wr, o, 1), if  flwr, w, p) <0.

Together with the equation (17), it holds
AM(w1, wa, A2 (w1, w2, 1) = (1 — w1)(1 — w2).
Notice 0 < (1 — w1)(1 — wy) < 1. Then

Mawr, w2, 1) 2 V(1 = w1)(1 = @2) > (1 — w1)(1 - wy). (27)

By equations (25), (26), (27) and Lemma 3.5, it is easy to see that, to investigate the optimal parameters
which minimize v(H(w1, @>)), it suffices to consider the case of A = fz(a)l, wy, 1) —4(1 — w1)(1 = w2) > 0. So,
from now on, we always assume A > 0.

Let
Ai(w1, w2) = maxeqgrprpy o) lAi(wr, w2, I}, i=1,2. (28)
Then
v(H(w1, 7)) = max{A1 (w1, w2), Ax(w1, w2)}. (29)

Together with equations (22) and (23), it holds:
When A > 0 and f(w1, wy, 1) > 0, ie., f(w1, @y, it) > 2+/(1 — w1)(1 — w»), then

A (w1, w2, W)l 2 |A2(w1, w2, w.

When A > 0 and f(w1, wy, 1) <0, ie., f(w1, w, 1) < =24/(1 — w1)(1 — wy), then
[A (w1, w2, W)l £ A2 (w1, w2, w.

(1 —w)(1 - wy) - 1)
wy — 1

Noticing < 0, then together with equations (22), (23), (24) and (28) we have

M@1,@2) = 3 [ @1, @2 tuin) + NP @1, o) ~ 40— o)A = @2)]

(30)
Naf@n, 2) = 5 [~ Fl@nr, w2, pna) + V@1, @2, finer) = 40 = w)(T = w2)]

Since W—:wﬂ*l)z < 0, there exist two variables uy and u, (0 < py < ) satisfing the following equations:
1—an)(1—wy) — 1)

1+(1—w)1—-w)+ « 1352 = -1 p1 =21 - w1)(1 - w2), (31)
1—w1)(1 - wp) — 1)

L+ (- w1 -+ Lm0 @) 2 o= an). (32)

a)z—l
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We declare 1, ti2 € [tmin, Bmax)- In fact, if g1 < piyin OF Uz > Upax, then =2 /(1 — w1)(1 — w7) < f(wi, w2, 1) <
(1 — w1)(1 = wy), in other word, A < 0, which is in contradiction with A > 0.
Making use of equations (31) and (32), after some algebra, it holds

_ V2 Vi
VA =) - @z =TT (33)

4o
R (34)

Then we can rewrite f(w1, wa, 1), M(w1, wz) and Ax(w1, wz) as follows:

a)2=1—

2+ p2 — 2p)
f(a)lla)Z/ ‘Ll) = (\/}1_1+ @)2 ’ (35)
M@, @) = (\/[Jl — Hmin + \/H2 - [Jmin)z
1\w1, @2 (\/‘IJ_1+ \/E)Z 4 (36)
Ao(@wr, wy) = (\/[Jmax — U1+ Vibmax — [»12)2
s (VEL + V2P ‘

For convenience, we denote A1(w1, w2) = A1(u1, 2) and Ax(w1, w2) = Ax(u1, p2). Easily, we see

A, p2) > Ao, o), M+ M2 > Umin + Umax, (37)

Ar(u, w2) = A1, 42), 1+ P2 = Umin + Umaxs
A, p2) < Az(u, p2), w1+ 2 < tmin + Hinax-

Together with (29), (37) it holds

) Mp, p2), it B2 = e+ s
V(H(wr, @) = { /\2([-11/ IJ2)1 1+ H2 < HUmin t Hmax, (38)

which finishes the proof. 0O

Theorem 3.7. Let Q be symmetric positive semi-definite with N(Q) € N(B). Then the optimal parameters of the
USSOR method are given by

(\/Hmux - \/[vlmin)z 4[Jmaxl»lmin
W1opt = 1- ; Woopt = 1- 57
4.“max(umin (\/Hmax + \/,Umin)

where i = minfu | u € o(Q'BTB)\{O}}, tmax = max{p | p € a(Q'BTB)\{0}}, and the corresponding optimal
convergence factor of the UUSSOR method is

VU \/Hmm
V(H(wloph wZopt)) ‘um“x + o

Proof. Notice

IA1 (U1, p2)
8}11
\/#2 = Hmin + \/[Jl — Umin \/Hl[»& + Wmin — \/(Hl - Hmin)(H2 - lumin)
Vi1 + /2 V(i = tmin) (VL + H2)?

(39)
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and
I (1, H2)
duy
_ VHmax = [+ NHmax — {2 EE2 F e — V Wmax = 1) (Uimax — p12) (40)
) Vi + Vi VG = p)(VE + VR

Then it is easy to see

IA1 (U1, p2) 50 Iy (U1, p2) -

, 0.
8}11 &yl

Similarly, it also holds

A1 (1, H2) 20 and IA2(p1, p2) <0
sz ayz )

By the same technique of Theorem 2.5 in [2], the rest proof can be completed, here omitted. [

4. Numerical experiments

In this section, we give some examples to illustrate the theoretical results of the USSOR method as
a solver and a precondidtiner by comparing its iteration steps (denoted as “IT”), elapsed CPU time in
seconds (denoted as “CPU”) and relative residual error (denoted as "RES”) with GSSOR method and
MSSOR method. All the computations are implemented in MATLAB 2012b on a PC computer with Intel
(R) Core (TM) i7-6700HQ CPU @2.60 GHz 2.60 GHz, and 8.00 GB memory.

In our experiments, all runs with respect to each method are started from the zero initial guess.

Example 4.1. This example is similar to the example 4.1 in [9]. Consider the linear system Bx = q with

_ By 0O mxn
B—(B21 O)E]R ,

where By, € R™ s nosingular, 0 # By € R™=DX 1 > . Byy and By are random matrices which can be generated
by MATLAB function rand.

In Table 1, for various m and n, we list the theoretical optimal iteration parameters Weps, Wiopr and Waopt as well
as the corresponding pseudo-spectral radii v(H(wopt)) and v(H(w1opt, w20pt)), respectively. It is clear to see that the
pseudo-spectral radii of the GSSOR [2] and the USSOR method are the same, and less than that of the MSSOR [12]
method when the optimal parameters are employed. We find that the numerical efficiency of the GSSOR method and
the USSOR method are quite close.

Example 4.2. In this example we test the USSOR method as a precondidtiner to accelerate GMRES. Consider the
linear system Bx = q, where B is the (2,1)-block matrix of the example 4.1 in [14], which comes from the discretization
of Navier-Stokes equations by IFISS software with uniform grids. We perform GMRES, USSOR-preconditioned
GMRES (abbreviated as “USSOR-GMRES”), GSSOR-preconditioned GMRES (abbreviated as “GSSOR-GMRES”),
and MSSOR-GMRES (abbreviated as “MSSOR-GMRES”), respectively. In Table 2, after taking the optimal iteration
parameters, we list numerical results with different grids, respectively. We see that the GSSOR-GMRES and USSOR-
GMRES always outperform the MSSOR-GMRES.
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Table 1: Computational results for Example 4.1

rank(B11) 100 300 500
m 500 1000 3000
n 300 800 2000
MSSOR Wopt 0.0649 0.0513 0.0265
V(H(wape) 09935 09949  0.9974
IT 1615 4724 5812
CPU 6.3106  78.1760 721.1901
RES(107°) 9.9918 9.9810 9.9860
GSSOR W1gpt 0.0468 0.0287 0.0164
Waopt 1.8840 1.1874 1.0673
V(H(@iopt, @20p)) 09763 09855 0.9918
IT 1276 2179 4827
CPU 3.3111 185150 268.9314
RES(107°) 9.9849 9.9581 9.9926
USSOR W1opt -37.3864 -39.1191 -62.9318
Waopt 0.9752 0.9758 0.9918
V(H(@iopt) @20p)) 09763 09855 0.9918
IT 1511 2561 4903
CPU 44420  27.3290 432.5890
RES(107°) 9.976 9.9997 9.7846
Table 2: Computational results for Example 4.2
Method Grid 16 x16 32x32 64x64
GMRES IT 175 394 788
CPU 0.4301 0.8312  3.0642
RES(107%)  9.7559  9.9962  9.9598
MSSOR-GMRES IT 33 53 95
CPU 0.0728 0.2210 12.3814
RES(107°) 4.8525 7.7510 702730
GSSOR-GMRES IT 29 48 93
CPU 0.1474 02253 11.1726
RES(107%)  6.7965 9.9686  7.1364
USSOR-GMRES IT 29 48 94
CPU 0.0642 0.2123 10.2316
RES(107%) 82702 8.9315  7.3399

5449
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