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Abstract. In this work we introduce a modified version of simulation function and define a simulation
type contraction mappings involving measure of non-compactness in the frame work of Banach space and
derive some basic Darbo type fixed point results. Also, our theorem generalizes the Theorem 4 of [R.
Arab, Some generalizations of Darbo fixed point theorem and its application, Miskolc Mathematical Notes,
18(2)(2017),595-610.] and extend some recent results. Further we show the applicability of obtained results
to the theory of integral equations followed by two concrete examples.

1. Introduction

Integral equation create a very important and significant part of the mathematical analysis and has
various applications into real world problems. Also, nonlinear functional-integral equations have been
studied in the vehicular traffic, the biology, theory of optimal control and economics, etc., for example, see
[1, 11, 15, 16, 18]. Recently, there have been several successful efforts to apply the concept of a measure
of noncompactness in the study of the existence and behavior of solutions of nonlinear differential and
integral equations [2–6, 8–10, 17, 19, 20, 22–24]. In our investigations, we apply the method associated
with the technique of measures of noncompactness to generalize the Darbo fixed point theorem [14] and to
extend some recent results of Arab [7]. Moreover, as an application, we study the existence of solutions of
the nonlinear integral equation of the form

x(t) = 1(t) + f1
(
t, x(t),

∫ t

0
u(t, s, x(s))ds

)
+ f2

(
t, x(t),

∫ 1

0
v(t, s, x(s))ds

)
, (1)

where f1, f2, 1,u and v satisfy certain conditions.
The rest of the paper is organized as follows. In Section 2, we present some definitions and preliminary
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results concerning the concept of measure of noncompactness. In Section 3, using the θ functions (set of all
modified simulation functions), some generalizations of Darbo fixed point theorem and recent results due
to Arab [7] are discussed. Finally in Section 4, using the obtained results in Section 3, we investigate the
problem of existence of solutions for the nonlinear integral equation (1) followed by two suitable examples.

2. Preliminaries

In this section, we recall some notations, definitions and theorems to obtain all results of this work.
Denote by R the set of real numbers and put R+ = [0,∞). Let (E, ‖ · ‖) be a real Banach space. Let B(x, r)
denote the closed ball centered at x with radius r. The symbol Br stands for the ball B(0, r). For X, a nonempty
subset of E, we denote by X and ConvX the closure and the convex closure of X, respectively. Moreover, let
us denoteME, the family of nonempty bounded subsets of E, and NE, the subfamily ofME consisting of all
relatively compact sets. We use the following definition of the measure of noncompactness given in [14].

Definition 2.1. A mapping µ :ME −→ R+ is said to be a measure of noncompactness in E if it satisfies the following
conditions:

(10) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE,

(20) X ⊂ Y⇒ µ(X) ≤ µ(Y),

(30) µ(X̄) = µ(X),

(40) µ(ConvX) = µ(X),

(50) µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1],

(60) If (Xn) is a sequence of closed sets from mE such that Xn+1 ⊂ Xn(n = 1, 2, . . . ) and if lim
n→∞

µ(Xn) = 0, then the

set X∞ =
∞⋂

n=1
Xn is nonempty.

It follows from Definition 2.1 (60) that X∞ is a member of the family kerµ. Since µ(X∞) ≤ µ(Xn) for
any n, we can deduce that µ(X∞) = 0. This implies that X∞ ∈ kerµ. Further facts concerning measures of
noncompactness and their properties may be found in [12, 14].
Darbo’s fixed point theorem is a very important generalization of Schauder’s fixed point theorem, and
includes the existence part of Banach’s fixed point theorem.

Theorem 2.2. [2, Schauder] Let C be a nonempty, bounded, closed, convex subset of a Banach space E. Then every
compact, continuous map T : C −→ C has at least one fixed point.

In the following we state a fixed-point theorem of Darbo type proved by Banaś and Goebel [14].

Theorem 2.3. Let C be a nonempty, closed, bounded, and convex subset of the Banach space E and F : C −→ C be
a continuous mapping. Assume that there exist a constant k ∈ [0, 1) such that µ(FX) ≤ kµ(X) for any nonempty
subset of C. Then F has a fixed-point in C.

Remark 2.4. [14] Under the assumptions of the above theorem it can be shown that the set FixF of fixed points of F
belonging to Ω is an element of kerµ.

3. Fixed point theorem

The main result of the present paper is the following fixed point theorem which is a generalization of
Darbo fixed point theorem (cf. Theorem 2.3) and extend Theorem 4 of [7].
The notion of a simulation function was introduced by Khojasteh et al. [21] as follows.
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Definition 3.1. [21] A simulation function is a mapping ζ : R+ ×R+ −→ R satisfying the following conditions:

(ζ1) ζ(0, 0) = 0;

(ζ2) ζ(t, s) < s − t, for all t, s > 0;

(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0.

We denote the set of all simulation functions by Z.

In this sequel, we modify the Definition 3.1 and introduce Θ, the class of functions θ : R+ × R+ −→ R
satisfying the following conditions:

(θ1) θ(t, s) < s − t, for all t, s > 0;

(θ2) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = l > 0 and lim
n→∞

sn = s > 0, then

lim sup
n→∞

θ(tn, sn) < s − l.

Example 3.2. Let θi : R+ ×R+ −→ R, i = 1, 2, 3, 4, 5 be defined by

(i) θ1(t, s) = λ s − t for all t, s ∈ R+ and 0 < λ < 1.

(ii) θ2(t, s) = s − ϕ(s) − t for all t, s ∈ R+, where ϕ : R+ −→ R+ is a lower semi-continuous function such that
ϕ(t) = 0 if and only if t = 0.

(iii) θ3(t, s) = ϕ(s) − ψ(t) for all t, s ∈ R+, where ψ,ϕ : R+ −→ R+ are two continuous functions such that
ψ(t) = ϕ(t) = 0 if and only if t = 0 and ϕ(t) < t ≤ ψ(t) for all t > 0.

(iv) θ4(t, s) = ϕ(s)− t for all t, s ∈ R+, where ϕ : R+ −→ R+ is a upper semi continuous function with ϕ(t) < t for
all t > 0 and ϕ(t) = 0 if and only if t = 0.

(v) θ5(t, s) = sϕ(s) − t for all t, s ≥ 0, where ϕ : R+ −→ [0, 1) is a function with lim sup
t→r+

ϕ(t) < 1 for all r > 0.

Then θi ∈ Θ for i = 1, 2, 3, 4, 5.

Our first result is as follows:

Theorem 3.3. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and T : C −→ C and
ϕ : R+ −→ R+ be two continuous functions. Suppose that if for any 0 < a < b < ∞ there exists 0 < γ(a, b) < 1 such
that for all X ⊆ C,

a ≤ µ(X) + ϕ(µ(X)) ≤ b
=⇒ θ[µ(TX) + ϕ(µ(TX)), γ(a, b)(µ(X) + ϕ(µ(X)))] ≥ 0, (2)

where µ is an arbitrary measure of noncompactness and θ ∈ Θ. Then T has at least one fixed point in C.

Proof. Let C0 = C, we construct a sequence {Cn} such that Cn+1 = Conv(TCn), for n ≥ 0. TC0 = TC ⊆ C =
C0,C1 = Conv(TC0) ⊆ C = C0, therefore by continuing this process, we have

C0 ⊇ C1 ⊇ · · · ⊇ Cn ⊇ Cn+1 ⊇ · · · ·

If there exists a positive integer N ∈ N such that µ(CN) + ϕ(µ(CN)) = 0, i.e, µ(CN) = 0, then CN is relatively
compact. On the other hand, we have T(CN) ⊆ Conv(TCN) = CN+1 ⊆ CN. Then Theorem 2.2 implies that T
has a fixed point. So we assume that

0 < µ(Cn) + ϕ(µ(Cn)), ∀n ≥ 1. (3)
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Suppose that

µ(Cn0 ) + ϕ(µ(Cn0 )) < µ(Cn0+1) + ϕ(µ(Cn0+1)) (4)

for some n0 ∈N. In addition, by (3) and (4), we have

0 < a := µ(Cn0 ) + ϕ(µ(Cn0 )) ≤ µ(Cn0 ) + ϕ(µ(Cn0 )) < µ(Cn0+1) + ϕ(µ(Cn0+1)) := b.

By using (2) and (θ1) with X = Cn0 , there exists 0 < γ(a, b) < 1 such that

0 ≤θ[µ(TCn0 ) + ϕ(µ(TCn0 )), γ(a, b)(µ(Cn0 ) + ϕ(µ(Cn0 )))]
=θ[µ(convTCn0 ) + ϕ(µ(convTCn0 )), γ(a, b)(µ(Cn0 ) + ϕ(µ(Cn0 )))]
=θ[µ(Cn0+1) + ϕ(µ(Cn0 + 1)), γ(a, b)(µ(Cn0 ) + ϕ(µ(Cn0 )))]
<γ(a, b)(µ(Cn0 ) + ϕ(µ(Cn0 ))) − µ(Cn0+1) + ϕ(µ(Cn0+1)),

which implies that γ(a, b) > 1, a contradiction. This implies that

µ(Cn+1) + ϕ(µ(Cn+1)) ≤ µ(Cn) + ϕ(µ(Cn)),

for all n ∈N, that is, the sequence {µ(Cn) + ϕ(µ(Cn))} is non-increasing and nonnegative, we infer that

lim
n→∞

µ(Cn) + ϕ(µ(Cn)) = r. (5)

Now, we show that r = 0. Suppose to the contrary, that r > 0. Then

0 < a := r ≤ µ(Cn) + ϕ(µ(Cn)) ≤ µ(C0) + ϕ(µ(C0)) =: b for all n ≥ 0.

By using (2) with X = Cn0 , there exists 0 < γ(a, b) < 1 such that

0 ≤θ[µ(TCn) + ϕ(µ(TCn)), γ(a, b)(µ(Cn) + ϕ(µ(Cn)))]
=θ[µ(ConvTCn) + ϕ(µ(ConvTCn)), γ(a, b)(µ(Cn) + ϕ(µ(Cn)))]
=θ[µ(Cn+1) + ϕ(µ(Cn+1)), γ(a, b)(µ(Cn) + ϕ(µ(Cn)))].

The above inequality and the condition (θ2),with tn = µ(Cn+1)+ϕ(µ(Cn+1)) and sn = γ(a, b)(µ(Cn)+ϕ(µ(Cn))),
we have

0 ≤ lim sup
n→∞

θ[µ(Cn+1) + ϕ(µ(Cn+1)), γ(a, b)(µ(Cn) + ϕ(µ(Cn)))]

<γ(a, b)r − r < 0,

which is a contradiction. Then we conclude that r = 0 and from (5), since ϕ ≥ 0, we get

lim
n→∞

µ(Cn) = 0 and lim
n→∞

ϕ(µ(Cn)) = 0.

Since Cn ⊇ Cn+1 and TCn ⊆ Cn for all n = 1, 2, . . . , it follows from (60) that

C∞ =

∞⋂
n=1

Cn

is nonempty convex closed set, invariant under T and belongs to Kerµ. Therefore Theorem 2.2 completes
the proof.

We show the unifying power of simulation functions by applying Theorem 3.3 to deduce different kinds
of contractive conditions in the existing literature. Two immediate consequences of Theorem 3.3 are the
following.
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Theorem 3.4. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and T : C → C be a
continuous function. Suppose that if for any 0 < a < b < ∞ there exists 0 < γ(a, b) < 1 such that for all X ⊆ C,

a ≤ µ(X) ≤ b =⇒ θ[µ(TX), γ(a, b)µ(X)] ≥ 0,

where µ is an arbitrary measure of noncompactness and θ ∈ Θ. Then T has at least one fixed point in C.

Theorem 3.5. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let T : C −→ C and
ϕ : R+ −→ R+ be two continuous functions and θ ∈ Θ. Suppose that there exists a constant λ ∈ (0, 1) such that for
all X ⊆ C,

θ[µ(TX) + ϕ(µ(TX)), λ (µ(X) + ϕ(µ(X)))] ≥ 0,

where µ is an arbitrary measure of noncompactness. Then T has at least one fixed point in C.

An immediate consequence of Theorem 3.5 is the following.

Corollary 3.6. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and T : C −→ C be a
continuous function. Suppose that there exist two continuous functions ψ,φ : R+ −→ R+ such that ψ(t) = φ(t) = 0
if and only if t = 0 and ψ(t) < t ≤ φ(t) for all t > 0 and a constant 0 < λ < 1, such that

φ(µ(TX)) ≤ ψ(λµ(X)) for all X ⊆ C,

where µ is an arbitrary measure of noncompactness. Then T has at least one fixed point in C.

Proof. The result follows from Theorem 3.5, by taking as function θ(t, s) = ψ(s) − φ(t), for all t, s ≥ 0 and
ϕ ≡ 0.

The following result is another consequence of Theorem 3.5.

Corollary 3.7. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let T : C −→ C and
ϕ : R+ −→ R+ be two continuous functions. Suppose that there exists a constant 0 < λ < 1 such that

µ(TX) + ϕ(µ(TX)) ≤ λ[µ(X) + ϕ(µ(X))] for all X ⊆ C,

where µ is an arbitrary measure of noncompactness. Then T has at least one fixed point in C.

Remark 3.8. Taking ϕ ≡ 0 in Corollary 3.7, we obtain the Darbo fixed point theorem.

Now, the following fixed point theorem follows immediately from Theorem 3.3 is a generalization of [7].

Theorem 3.9. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let T : C −→ C and
ϕ : R+ −→ R+ be two continuous functions such that for any 0 < a < b < ∞, there exists 0 < γ(a, b) < 1 such that
for all X ⊆ C,

a ≤ µ(X) + ϕ(µ(X)) ≤ b =⇒ µ(TX) + ϕ(µ(TX)) ≤ γ(a, b)[µ(X) + ϕ(µ(X))],

where µ is an arbitrary measure of noncompactness. Then T has at least one fixed point in C.

Proof. The result follows from Theorem 3.3, by taking as function θ(t, s) = λ s − t, for all t, s ≥ 0 and
γ(a, b) = λγ′(a, b) where λ ∈ [0, 1) and 0 < γ′(a, b) < 1.
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4. Application

In this section, as an application of Theorem 3.4, we consider the integral equation (1) and prove
the existence of solutions of that equation. In what follows we will work in the classical Banach space
C(I) = C[0, 1] consisting of all real functions defined and continuous on the interval I = [0, 1]. The space C(I)
is furnished by the standard norm

||x|| = max{|x(t)| : t ∈ I}.

Next, we recall the definition of a measure of noncompactness in C(I) which will be used in this Section.
This measure was introduced and studied in [13].
Let X be a fixed nonempty and bounded subset of C(I). For x ∈ X and ε ≥ 0, denote by ω(x, ε) the modulus
of continuity of the function x on the interval [0, 1], i.e.

ω(x, ε) := sup{|x(t) − x(s)| : t, s ∈ [0, 1], |t − s| ≤ ε}.

Further, let us put

ω(X, ε) := sup{ω(x, ε) : x ∈ X}, ω0(X) := lim
ε→0

ω(X, ε).

Define

i(x) := sup{|x(s) − x(t)| − [x(s) − x(t)] : t, s ∈ I, t ≤ s},

and

i(X) := sup{i(x) : x ∈ X}.

Observe that all functions belonging to X are nondecreasing on I if and only if i(X) = 0.
Now, let us define the function µ on the familyMC(I) by the formula

µ(X) := ω0(X) + i(X).

It can be shown [13] that the function µ is a measure of noncompactness in the space C(I).
Now, equation (1) will be investigated under the assumptions:

(A1) 1 : I −→ R+ is a continuous and nondecreasing function, let b = max{|1(t)| : t ∈ I}.

(A2) u, v : I× I×R −→ R are continuous functions such that u, v : I× I×R+ −→ R+ and for arbitrarily fixed
s ∈ I and x ∈ R+ the functions t −→ u(t, s, x) and t −→ v(t, s, x) are nondecreasing on I.

(A3) There exists a nondecreasing function h : R+ −→ R+ such that the inequality

|u(t, s, x)|, |v(t, s, x)| ≤ h(|x|),

holds for all t, s ∈ I and x ∈ R.

(A4) f1, f2 : I ×R ×R −→ R are continuous functions such that f1, f2 : I ×R+ ×R+ −→ R+. Moreover there
exists constant k ∈ [0, 1) such that

| fi(t, x, y) − fi(t, z,w)| ≤
k
2
|x − z| + |y − w|.

(A5) For arbitrarily x, y ∈ R+, t −→ fi(t, x, y) is nondecreasing on I, and for arbitrarily t ∈ I and x ∈ R+,
y −→ f1(t, x, y) is nondecreasing on R+.

(A6) There exists r0 > 0 with b + kr0 + 2h(r0) + 2M < r0, where M = sup{| f1(t, 0, 0)|, | f2(t, 0, 0)| : t ∈ I}.
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Theorem 4.1. Under assumptions (A1) − (A6), the equation (1) has at least one solution x = x(t) which belongs to
the space C(I) and is nondecreasing on I.

Proof. Consider the operators F, G and T defined on the space C(I) by the formulas

(Fx)(t) = f1
(
t, x(t),

∫ t

0
u(t, s, x(s))ds

)
,

(Gx)(t) = f2
(
t, x(t),

∫ 1

0
v(t, s, x(s))ds

)
,

(Tx)(t) = 1(t) + (Fx)(t) + (Gx)(t).

By considering the conditions of theorem we infer that Tx is continuous on I for any function x ∈ C(I), i.e.
T transforms the space C(I) into itself. Moreover, for each t ∈ I, we have

|(Fx)(t)| ≤
∣∣∣∣ f1(t, x(t),

∫ t

0
u(t, s, x(s))ds

)
− f1(t, 0, 0)

∣∣∣∣ + | f1(t, 0, 0)|

≤
k
2
|x(t)| +

∣∣∣∣ ∫ t

0
u(t, s, x(s))ds

∣∣∣∣ + | f1(t, 0, 0)|

≤
k
2
|x(t)| +

∫ t

0
h(|x(s)|)ds + | f1(t, 0, 0)|

≤
k
2
||x|| +

∫ t

0
h(||x||)ds + M

≤
k
2
||x|| + h(||x||) + M.

(6)

Similarly one can show that

|(Gx)(t)| ≤
k
2
||x|| + h(||x||) + M. (7)

Linking (6) and (7) we obtain

|(Tx)(t)| ≤ |1(t)| + |(Fx)(t)| + |(Gx)(t)| ≤ b + k||x|| + 2h(||x||) + 2M.

Hence

||Tx|| ≤ b + k||x|| + 2h(||x||) + 2M.

Thus if ||x|| ≤ r0 we obtain from assumption (A6) the estimate

||Tx|| ≤ b + kr0 + 2h(||x||) + 2M ≤ r0.

Consequently the operator T maps the ball Br0 ⊂ C(I) into itself. Next, we prove that the operator T is
continuous on Br0 . To do this, let {xn} be a sequence in Br0 such that xn → x. We have to show that Txn → Tx.
In fact, for each t ∈ I, we have

|(Fxn)(t) − (Fx)(t)|

=
∣∣∣∣ f1(t, xn(t),

∫ t

0
u(t, s, xn(s))ds

)
− f1

(
t, x(t),

∫ t

0
u(t, s, x(s))ds

)∣∣∣∣
≤

k
2
|xn(t) − x(t)| +

∣∣∣∣ ∫ t

0
[u(t, s, xn(s)) − u(t, s, x(s))]ds

∣∣∣∣
≤

k
2
||xn − x|| +

∫ t

0
Ur0 (ε)ds

≤
k
2
||xn − x|| + Ur0 (ε),
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where we denoted

Ur0 (ε) = sup{|u(t, s, x) − u(t, s, y)| : t, s ∈ I, x, y ∈ [0, r0], |x − y| ≤ ε}.

Similarly we have

|(Gxn)(t) − (Gx)(t)| ≤
k
2
||xn − x|| + Vr0 (ε),

where Vr0 (ε) is defined as

Vr0 (ε) = sup{|v(t, s, x) − v(t, s, y)| : t, s ∈ I, x, y ∈ [0, r0], |x − y| ≤ ε}.

As

|(Txn)(t) − (Tx)(t)| ≤ |(Fxn)(t) − (Fx)(t)| + |(Gxn)(t) − (Gx)(t)|
≤ k||xn − x|| + Ur0 (ε) + Vr0 (ε).

It follows that

||Txn − Tx|| ≤ k||xn − x|| + Ur0 (ε) + Vr0 (ε).

This proves that T is continuous on Br0 (obviously, Ur0 (ε) → 0 and Vr0 (ε) → 0 as ε → 0 which is a simple
consequence of the uniform continuity of the functions u and v on the set I × I × [0, r0]). Consider the
operator T on the subset B+

r0
of the ball Br0 defined in the following way:

B+
r0

= {x ∈ Br0 : x(t) ≥ 0, for t ∈ I}.

Obviously the set B+
r0

is nonempty, bounded, closed and convex. In view of our assumptions (A1) and (A4),
if x(t) ≥ 0 then (Tx)(t) ≥ 0 for all t ∈ I. Thus T transforms the set B+

r0
into itself. Moreover T is continuous on

B+
r0
. Let X be a nonempty subset of B+

r0
. Fix ε > 0 and t1, t2 ∈ I with |t2 − t1| ≤ ε. Without loss of generality

assume that t2 ≥ t1. Then we get

|(Fx)(t2) − (Fx)(t1)|

≤

∣∣∣∣ f1(t2, x(t2),
∫ t2

0
u(t2, s, x(s))ds

)
− f1

(
t2, x(t1),

∫ t2

0
u(t2, s, x(s))ds

)∣∣∣∣
+

∣∣∣∣ f1(t2, x(t1),
∫ t2

0
u(t2, s, x(s))ds

)
− f1

(
t1, x(t1),

∫ t2

0
u(t2, s, x(s))ds

)∣∣∣∣
+

∣∣∣∣ f1(t1, x(t1),
∫ t2

0
u(t2, s, x(s))ds

)
− f1

(
t1, x(t1),

∫ t2

0
u(t1, s, x(s))ds

)∣∣∣∣
+

∣∣∣∣ f1(t1, x(t1),
∫ t2

0
u(t1, s, x(s))ds

)
− f1

(
t1, x(t1),

∫ t1

0
u(t1, s, x(s))ds

)∣∣∣∣
≤

k
2
|x(t2) − x(t1)| + ω( f1, ε) +

∣∣∣∣ ∫ t2

0
[u(t2, s, x(s)) − u(t1, s, x(s))]ds

∣∣∣∣
+

∣∣∣∣ ∫ t2

t1

u(t1, s, x(s))ds
∣∣∣∣

≤
k
2
|x(t2) − x(t1)| + ω( f1, ε) +

∫ t2

0
ω(u, ε))ds +

∫ t2

t1

Kuds.

We obtain that

|(Fx)(t2) − (Fx)(t1)| ≤
k
2
ω(x, ε) + ω( f1, ε) + ω(u, ε)) + Ku ε
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where

ω(u, ε) = sup{|u(t2, s, x) − u(t1, s, x)| : t2, t1, s ∈ I, |t2 − t1| ≤ ε, x ∈ [0, r0]},
Ku = sup{|u(t, s, x)| : t, s ∈ I, x ∈ [0, r0]},

ω( f1, ε) = sup{| f1(t, x, y) − f1(s, x, y)| : t, s ∈ I, |t − s| ≤ ε, x ∈ [0, r0], y ∈ [0,Ku]}.

Also we have

|(Gx)(t2) − (Gx)(t1)|

≤

∣∣∣∣ f2(t2, x(t2),
∫ 1

0
v(t2, s, x(s))ds

)
− f2

(
t2, x(t1),

∫ 1

0
v(t2, s, x(s))ds

)∣∣∣∣
+

∣∣∣∣ f2(t2, x(t1),
∫ 1

0
v(t2, s, x(s))ds

)
− f2

(
t1, x(t1),

∫ 1

0
v(t2, s, x(s))ds

)∣∣∣∣
+

∣∣∣∣ f2(t1, x(t1),
∫ 1

0
v(t2, s, x(s))ds

)
− f2

(
t1, x(t1),

∫ 1

0
v(t1, s, x(s))ds

)∣∣∣∣
≤

k
2
|x(t2) − x(t1)| + ω( f2, ε) +

∣∣∣∣ ∫ 1

0
[v(t2, s, x(s)) − v(t1, s, x(s))]ds

∣∣∣∣
≤

k
2
ω(x, ε) + ω( f2, ε) + ω(v, ε),

where

ω(v, ε) = sup{|v(t2, s, x) − v(t1, s, x)| : t2, t1, s ∈ I, |t2 − t1| ≤ ε, x ∈ [0, r0]},
Kv = sup{|v(t, s, x)| : t, s ∈ I, x ∈ [0, r0]},

ω( f2, ε) = sup{| f2(t, x, y) − f2(s, x, y)| : t, s ∈ I, |t − s| ≤ ε, x ∈ [0, r0], y ∈ [0,Kv]}.

Hence

|(Tx)(t2) − (Tx)(t1)| ≤|1(t2) − 1(t1)| + |(Fx)(t2) − (Fx)(t1)| + |(Gx)(t2) − (Gx)(t1)|
≤ω(1, ε) + kω(x, ε) + ω( f1, ε) + ω(u, ε) + Ku ε + ω( f2, ε) + ω(v, ε).

Thus taking the supremum on x, we obtain

ω(TX, ε) ≤ ω(1, ε) + kω(X, ε) + ω( f1, ε) + ω(u, ε) + Ku ε + ω( f2, ε) + ω(v, ε)

Now, in virtue of continuity of the function ψ and the uniform continuity of the functions 1, f1 and f2
on I, I × [0, r0] × [0,Ku] and I × [0, r0] × [0,Kv], respectively, we have that ω(1, ε) −→ 0, ω( f1, ε) −→ 0,
ω( f2, ε) −→ 0, ω(u, ε) −→ 0 and ω(v, ε) −→ 0 as ε −→ 0. So let ε −→ 0 to obtain

ω0(TX) ≤ kω0(X). (8)

Let x ∈ X and t1, t2 ∈ I with t1 < t2. Then

|(Tx)(t2) − (Tx)(t1)| − [(Tx)(t2) − (Tx)(t1)]
= |1(t2) + (Fx)(t2) + (Gx)(t2) − 1(t1) − (Fx)(t1) − (Gx)(t1)|
− [1(t2) + (Fx)(t2) + (Gx)(t2) − 1(t1) − (Fx)(t1) − (Gx)(t1)]
≤ |1(t2) − 1(t1)| − [1(t2) − 1(t1)] + |(Fx)(t2) − (Fx)(t1)| − [(Fx)(t2) − (Fx)(t1)]
+ |(Gx)(t2) − (Gx)(t1)| − [(Gx)(t2) − (Gx)(t1)]
≤ k|x(t2) − x(t1)| − k[x(t2) − x(t1)].

(9)
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Indeed

|(Fx)(t2) − (Fx)(t1)| − [(Fx)(t2) − (Fx)(t1)]

≤

∣∣∣∣ f1(t2, x(t2),
∫ t2

0
u(t2, s, x(s))ds

)
− f1

(
t1, x(t1),

∫ t1

0
u(t1, s, x(s))ds

)∣∣∣∣
−

[
f1
(
t2, x(t2),

∫ t2

0
u(t2, s, x(s))ds

)
− f1

(
t1, x(t1),

∫ t1

0
u(t1, s, x(s))ds

)]
≤

∣∣∣∣ f1(t2, x(t2),
∫ t2

0
u(t2, s, x(s))ds

)
− f1

(
t2, x(t1),

∫ t2

0
u(t2, s, x(s))ds

)∣∣∣∣
+

∣∣∣∣ f1(t2, x(t1),
∫ t2

0
u(t2, s, x(s))ds

)
− f1

(
t2, x(t1),

∫ t1

0
u(t1, s, x(s))ds

)∣∣∣∣
+

∣∣∣∣ f1(t2, x(t1),
∫ t1

0
u(t1, s, x(s))ds

)
− f1

(
t1, x(t1),

∫ t1

0
u(t1, s, x(s))ds

)∣∣∣∣
−

[
f1
(
t2, x(t2),

∫ t2

0
u(t2, s, x(s))ds

)
− f1

(
t2, x(t1),

∫ t2

0
u(t2, s, x(s))ds

)]

−

[
f1
(
t2, x(t1),

∫ t2

0
u(t2, s, x(s))ds

)
− f1

(
t2, x(t1),

∫ t1

0
u(t1, s, x(s))ds

)]
−

[
f1
(
t2, x(t1),

∫ t1

0
u(t1, s, x(s))ds

)
− f1

(
t1, x(t1),

∫ t1

0
u(t1, s, x(s))ds

)]
≤

k
2
|x(t2) − x(t1)| −

k
2

[x(t2) − x(t1)].

Similarly we have

|(Gx)(t2) − (Gx)(t1)| −[(Gx)(t2) − (Gx)(t1)] ≤ k
2 |x(t2) − x(t1)| − k

2 [x(t2) − x(t1)].

Hence we get

i(Tx) ≤ k i(x),

and consequently

i(TX) ≤ k i(X). (10)

From (9) and (10) and the definition of the measure of noncompactness µ, we obtain

µ(TX) = ω0(TX) + i(TX) ≤ kω0(X) + k i(X) = k[ω0(X) + i(X)] = kµ(X).

Now the result follows from Theorem 3.4 by taking as function θ : R+ ×R+ −→ R

θ(t, s) = k s − t,∀ t, s ∈ R+ and ϕ ≡ 0.

This completes the proof.

Now we provide two examples illustrating the result obtained.

Example 4.2. Consider the following nonlinear functional-integral equation:

x(t) =
t

t + 1
+

t2

4(1 + t4)
x(t) +

t
8

∫ t

0
s arctan(x2(s))ds

+
t
4

∫ 1

0

1
1 + s

arctan(x(s))ds.

(11)
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Equation (11) is a special case of the integral equation (1), where

f1(t, x, y) = f2(t, x, y) =
t2

8(1 + t4)
x + y,

u(t, s, x) =
ts
8

arctan(x2),

v(t, s, x) =
t

4(1 + s)
arctan(x),

1(t) =
t

t + 1
, h(x) =

1
4

x.

Then it is easily seen that 1 satisfies the assumption (A1) with b = 1
2 . Since u(t, s, x) = ts

8 arctan(x2) and v(t, s, x) =
t

4(1+s) arctan(x), then for all t, s ∈ I and x ∈ R, we get

|u(t, s, x)| =
∣∣∣∣ ts8 arctan(x2)

∣∣∣∣ ≤ 1
4
|x| = h(|x|),

|v(t, s, x)| =
∣∣∣∣ t
4(1 + s)

arctan(x)
∣∣∣∣ ≤ 1

4
|x| = h(|x|).

In this example we have f1(t, x, y) = f2(t, x, y) = t2

1+t4 x + y and these functions satisfy assumption (A5). On the other
hand for all t ∈ I and x, y ∈ R, we get

| fi(t, x, y) − fi(t, z,w)| =
∣∣∣∣ t2

8(1 + t4)
x + y −

t2

8(1 + t4)
z − w

∣∣∣∣
≤

t2

8(1 + t4)
|x − z| + |y − w|

≤
1
16
|x − z| + |y − w|.

So, k = 1
8 and M = 0. Thus the existent inequalities in assumption (A6) have the forms

1
2

+
1
8

r0 + 2 ×
r0

4
≤ r0.

Indeed, if r0 ≥
4
3

then

1
2
≤ r0 −

5
8

r0 −→
1
2

+
5
8

r0 ≤ r0 −→
1
2

+
1
8

r0 + 2 ×
r0

4
≤ r0 =⇒ b + kr0 + 2h(r0) + 2M ≤ r0

It is easily seen that the last inequalities have a positive solution. For example r0 = 2. We see that all assumptions of
Theorem 4.1 are satisfied. Consequently from Theorem 4.1 the integral equation (11) has at least one solution in the
space C(I).

Example 4.3. Let us consider now the following integral equation

x(t) =
1
5

t3 +
2t(x(t) + 1)

5(1 + t)
+ arctan

( ∫ t

0

[
ts +

1
8

(t3 + 1)x(s)
]
ds

)
+

2t2

5(1 + t4)
ln(|x(t)| + 1) + ln

(
1 +

∫ 1

0

[
t2 +

1
16

(3s2 + 1)x(s)
]
ds

)
.

(12)

It can be easily seen that equation (12) is a particular case of the equation (1), where

f1(t, x, y) =
2t(x + 1)
5(1 + t)

+ arctan(y), f2(t, x, y) =
2t2

5(1 + t4)
ln(|x| + 1) + ln(|y| + 1),

u(t, s, x) =ts +
1
8

(t3 + 1)x, v(t, s, x) = t2 +
1

16
(3s2 + 1)x, 1(t) =

1
5

t3, h(x) = 1 +
1
4

x.
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The function 1 satisfies assumption (A1) and b = 1
5 . Moreover, the functions f1 and f2 satisfy hypothesis (A4), (A5)

and

| f1(t, x, y) − f1(t, z,w)| =
∣∣∣∣2t(x + 1)

5(1 + t)
+ arctan(y) −

2t(z + 1)
5(1 + t)

− arctan(w)
∣∣∣∣

≤
2t

5(1 + t)
|x − z| + | arctan(y) − arctan(w)|

≤
1
5
|x − z| + |y − w|,

and

| f2(t, x, y) − f2(t, z,w)|

=
∣∣∣∣ 2t2

5(1 + t4)
ln(|x| + 1) + ln(|y| + 1) −

2t2

5(1 + t4)
ln(|z| + 1) − ln(|w| + 1)

∣∣∣∣
≤

2t2

5(1 + t4)
| ln(|x| + 1) − ln(|z| + 1)| + | ln(|y| + 1) − ln(|w| + 1)|

≤
1
5

ln
( |x| + 1
|z| + 1

)
+ ln

( |y| + 1
|w| + 1

)
=

1
5

ln
(
1 +
|x − z|
|z| + 1

)
+ ln

(
1 +
|y − w|
|w| + 1

)
≤

1
5

ln(1 + |x − z|) + ln(1 + |y − w|)

≤
1
5
|x − z| + |y − w|,∀ x, y ∈ R and t ∈ I.

Here we have M = 1
5 . Also for all t, s ∈ I and x ∈ R, we get

|u(t, s, x)| =
∣∣∣∣ts +

1
8

(t3 + 1)x
∣∣∣∣ ≤ 1 +

1
4
|x| = h(|x|),

|v(t, s, x)| =
∣∣∣∣t2 +

1
16

(3s2 + 1)x
∣∣∣∣ ≤ 1 +

1
4
|x| = h(|x|).

Since 1
5 + 2

5 r0 + 2(1 + 1
4 r0) + 2× 1

5 < r0, for small r0 > 0, assumption (A6) holds true for sufficiently small r0. Hence,
applying Theorem 4.1 we infer that Eq. (12) has a solution x = x(t) in the space C(I).

5. Conclusions

In the current work, we investigated the existence and solutions for integral equations. Also, some
examples are presented to show the efficiency of our results.
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