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Almost Periodic Generalized Ultradistributions

Chikh Bouzar?®, Fethia Ouikene?®

?Laboratory of Mathematical Analysis and Applications, Université Oranl. Oran, Algeria

Abstract. We first introduce an algebra of almost periodic generalized ultradistributions containing
classical almost periodic ultradistributions as well as the algebra of almost periodic generalized functions,
and then we study the fundamental properties of this algebra.

1. Introduction

The concept of an almost periodic distribution extending the classical Bohr and Stepanoff almost periodic
functions is due to L. Schwartz [13]. In view of the problem of multiplication of distributions, algebras
of generalized functions containing different classes of distributions have been introduced and developed,
see [11]. Consequently, an algebra of almost periodic generalized functions containing almost periodic
functions and almost periodic distributions has been introduced and studied in [3], and an application to
systems of ordinary differential equations is given in [4].

It is well known that ultradistributions are generalization of distributions, they are useful for concrete
problems, for example differential equations, see [8]. However they are also less adapted to non linear oper-
ations. Algebras of generalized ultradistributions containing ultradistributions are nowadays an important
subject of research, see [2] and [7].

The almost periodicity of Beurling ultradistributions in the sense of Komatsu [10] is tackled in the paper
[6].

Therefore, this work mainly investigates the concept of almost periodicity in the setting of algebras of
generalized functions containing almost periodic ultradistributions. So we have a new reservoir of mathe-
matical objects that could be useful for studying problems with nonlinear operations on ultradistributions.
The paper aims to introduce an algebra of almost periodic generalized ultradistributions containing almost
periodic Beurling ultradistributions of [6], as well as the algebra of almost periodic generalized functions
of [3], and then it studies fundamental properties of this algebra.

The paper is organised as follows, this introduction is followed by a second section of preliminaries
where we recall the mathematical notions needed in the sequel. In the third section, we first introduce
the algebra of almost periodic generalized ultradistributions G and then we show some properties they
satisfy. The fourth section is aimed to study generalized numbers with asymptotic behavior connected
to the punctual values of generalized ultradistributions. In section five, examples of almost periodic
generalized ultradistributions are given, in particular we propose the embedding of the space of Beurling
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ultradistributions into g%. In section six, we show how the algebra Q% is stable under a nonlinear operation
as the composition with tempered generalized ultradistributions. The last section is aimed to show that
the extension of the classical generalized point value and the mean value to the case of almost periodic
generalized ultradistributions, and then it gives a result connected with the classical Bohl-Bohr Theorem.

2. Preliminaries

We consider functions and distributions defined on the whole space of real numbers R. Let Cy;, denotes
the space of continuous, bounded and complex valued functions defined on R, endowed with the norm
|I.llc of uniform convergence on IR, the space (C,y, ||.|l,) is @ Banach algebra.

Definition 2.1. A continuous function on R is said to be almost periodic if it satisfies one of the following equivalent
assertions :
i) Ve > 0 the set

E(e,f)={reR:|f(+D-fO|, <e
is relatively dense in R, i.e. there exists a number | such that every interval of length I contains at least a number of
E(e, f).
it) For any sequence of real numbers (h,), one can extract a subsequence (hy, ), such that (f (. + hy,)), converges

uniformly on R.
iit) Ve > 0 there exists P a trigonometric polynomial such that

If =Pl <

We denote by Cy, the space of almost periodic functions on R.

We summarize some properties of the space Cy, for the proofs see [9].
Proposition 2.2. 1. Cy, C Cyp.

2. Cpp X Cpp C Cpp.

3. Cpp* L' CCpp.

4. If f € Cyp then f' € Cpp if and only if f' is uniformly continuous on RR.

The following result called Bohl-Bohr’s Theorem gives the almost periodicity of a primitive.
Proposition 2.3. A primitive of f € Cy, is almost periodic if and only if it is bounded.

One of the important properties of almost periodic functions is the association of Fourier series to them.
Proposition 2.4. If f € Cyp and A € R then

X

; = lim 4 —idx ;

iag(A):= XETMX Off(x)e dx exists.

ii. There exists at most a countable set of A’s for which ag (A) # 0.

X
iii. If f is positive then M (f) := Xlim 1 [ f () dx is zero if and only if f = 0.
-t Y

iv. Yo € L1,

M(f * ) = M(f) f o (x) dx. W
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+00 X
Definition 2.5. The numbers A, := ag(A,),n € N, are called Fourier coefficients of f. The formal series ). A, ehnx
n=1
is called the Fourier series associated to f.

Denoting by & the space of infinitely derivable functions, we recall the space of almost periodic infinitely
derivable functions and the space of infinitely derivable bounded functions, see [13] and [3], are denoted
and defined respectively by

By = {(p c&:Vjez,, ol e Cpp}.
B:= {(p c&:Vjez,, ol e L“}.
It is well known that 8 is a Frechet algebra.
Proposition 2.6. i) B, is a closed differential subalgebra of 8 stable under derivation .
ii) By x L' C By
iii) By = BN Cyp.

Let M = (M) 55 be a sequence of positive numbers, we define the following properties
Logarithmic Convexity

Mi < My Mg, Yk € Z,. (Hy)

Stability under ultraderivation

JA > 0,3H > 0, Mys; < AH*MM,, Vk,q € Z.. (H>)
Non quasi-analyticity

(o)
M4

M, < oo, (Hé

k=1

Definition 2.7. The associated function of the sequence M is the function defined by
k
M) = supln%,o <t < oo,
e M

Example 2.8. If My = (k!)7,0 > 1, then M (t) is equivalent to ts.
An important properties of the associated function is given by the following result, see [10].
Proposition 2.9. i) The sequence M satisfies (Hy) if and only if Yk € Z,

tkM()

ii) Let M satisfying condition (H,) , then it satisfies (H,) if and only if 3A,H > 0,VYt > 0,
2M (t) < M (Ht) + In (AM)) .
The function M being increasing and by Proposition 2.9- ii) we have dA, H > 0,Vt,t, > 0,
M(t) + M (t2) < M (Hmax (1, £2)) + In (AMp) . (2)

The general case is proved further in Lemma 4.2.
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Remark 2.10. We will always assume that the sequence M satisfies conditions (H1) , (Hz) and (Hé) .

We need some function spaces, see [12].

Definition 2.11. The space Z)(L];A), 1 <p < o0, is the set of ¢ € E such that Vh > 0,3c > 0,Vj € Z,,

e, < cnim;

The space Z)(L];/I) is endowed with the projective limit topology of Banach spaces, i.e.

(M),h

(M) ._ 15 ;
Dy = limprojDy, ™,

where the space
o = {(P €& el < Oo} e

provided with the norm

By
ol = sup 2PN
P i WM

is a Banach space.

Remark 2.12. The space

DM = {qo € & : VK compact of R,Yh > 0,3c > 0,Yj € Z,,sup }8f(p(x)| < cthj}

xeK

5410

- (M)
of Beurling ultradifferentiable functions is dense in Z)(L]:,A) forp € [1, +oo[ . We denote by B the closure of the space

DM iy DM = g,

L’

Definition 2.13. Let p € [1, +oo[ and  +; = 1, the topological dual of DM, denoted by D, . ., is called the space of

L1,(M)
M)

- (
LP- Beurling ultradistributions. We denote D/ the topological dual of B . The space denoted by B

L1,(M)
is called the space of bounded ultradistributions .

3. Almost periodic generalized ultradistributions

LetI:=]0,1], if (f;),. is a sequence of functions the notation
], = o). 0
il < ce®.

Definition 3.1. i) The space of almost periodic moderate elements is the space defined by

9 =o(eM<f>),Ho}.

means that 3¢ > 0,3deg € I, Ve < ¢,

I .
ML= {( f)eet € (By) 1 VjeZ., k>0,

ii) The space of almost periodic null elements is the space defined by

O = o) ¢ - o}.

(]

I .
NM = {( f)eet € (By) 1 VjeZ., Yk >0,

o = ('D(LIYD)/
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We have the null characterization of N;,\;,I .
Proposition 3.2. An element (f.), € My, is null if and only if Vk > 0,
£l = 0() e > 0. ©)
Proof. The proof is based on the following classical Landau-Kolmogorov inequality

£
m
0’

”f(p)”m <2 ”f”:’* hi

where 0 < p < m € Z, and the function f is of class C".
Let (f.), € M), ie. Vie Z,, 3k > 0,3c; > 0,3¢; € Ve < &,

”ff)”oo < ciexp (M(%)) (6)

Suppose that (f;), satisfies (5),i.e. Yk > 0,3c > 0,3eg € I, Ve < ¢, fs”m < ceM(?). The Landau-Kolmogorov

inequality for m = 21, (5), (6) and (2) give

O\ A .
I < 2e Al I <2 )’ e ) < )

1
where C; = 27‘(AM0C%C,.2. Let kp > 0 using the inequality (2) with ’g‘ = Hmax (%, ]%) we obtain the result, i.e.
Yie Z,,Vky >0,

1], < ™)
O

The main properties of the spaces M% and N;,"/,I are shown in the following Proposition.

Proposition 3.3. 1) The space M%ﬂ is an algebra stable under derivation.
2) The space Ny, is an ideal of M%).

Proof. 1) The stability with respect to the derivation is obvious. Let (f;), ,(g¢), € M%, then they satisfy (6)
and we haveVn € Z,,

lo" (£g0)ll., < Y

i+j=n

n!
itjt

gff) (x)) < Z %cjeM(k*j)cieM(;).

i+j=n

’ f(f) (x)‘

kj ki . .
—,tr, = —, k = Hmax (kj, ki) and € < min (ej, si), we obtain
& & i+j=n i+j=n

() () < (2] mean,

& &

From (2) with t; =

and consequently

lo (£e9)., <

i+j=n

! k
AM Z :—]f'cjci] eM(z)/
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which gives (f.g:), € M.
2) Let (f.), € M% and (g.), € N}%I, ie. VieZ,, 3k >0,3c;>0,3e; €I, Ve < &,

0) . ki
L, <cenp ()

and Vi € Z,,Vk; > 0,3c; > 0,3el € [,Ve < ¢,

69l < e ™), 7)

since Né‘g c M%, then (f.g.), € M%. It remains to prove (5) . Indeed

Il <l ol < o)1),

k k
Due to (2) with t; = ?0, th = g,kl = Hmax (ko, k) and ¢ < min (E(), 86) , we obtain

M(’E) _ M(’ﬂ) < —M(’f) +In(AMy),
E & &

then
||fggg||oo < cocéAMoe‘M(zk),
according to Proposition 3.2, we have (f.g.), € N{,\g . O

The main definition of this work is the following one.

Definition 3.4. The algebra of almost periodic generalized ultradistributions, denoted by g%, is the quotient algebra
M
M ._ My
P T M
Nop

In order to obtain the properties of Q% in the spirit of the space By, given in Proposition 2.6, we recall
the following algebras. Let p € [1, o0], the algebra of LP-generalized ultradistributions is defined by

M
i = x—gd (®)
where
MM = {(fg)ge, c&:vjez, k>0 = 0(eM9), e - o},
and
NM .= {(fg)d e&:VjezZ, Yk >0, fg(j) L= O(e—M(f)),g R 0},

Remark 3.5. The elements of GI%, are said bounded generalized ultradistributions.
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The algebra of C,—generalized functions is defined by

M
C,
M . P
gcw TONMY ©)
Cpp
where

MY = {(fg)ﬁd € (Cpp)l 3> 0,||f]l, =0 (M), e — o},

and

NS = {(F)er € (C) ¥ > 0[], = O (D)), & = .

If i = [(ue).] € G)L and 7 = [(ve),] € GV}, it is ot difficult to show that the convolution i * 7 given by

@90 = [w6- 0. 0) dy)g v

is a well-defined element of QJL‘/L

Proposition 3.6. We have
1. gﬁf, is a subalgebra of G, stable under derivation and translation.

2. GMgMc g,
3.6 =61 NG

Proof. 1. The stability with respect to derivation and translation is obvious. Let u = [(u,),] € gf,f,, ie. (ug),
satisfies (6) , and as u. € B, = C,, N B C B, Ve > 0, then (u,), € M]L‘ffo In the same way, if (u,), € N,I,VI, then
(ue). € NM.

2. Let (u.), be a representative of u € Q;,V‘ and (v,), be a representative of v € GX{, due to Proposition

2.6-ii) we have u. * v, € 8,, Ve > 0, and since (u.), and (v¢), satisfy estimates as moderate elements of
respectivelly MM, and MM, then we have Yj € Z.,,

L LV
sl

consequently (u, *v), € M%. One shows easily that the result is independent on representatives.

3. We clearly have Q% cg”n ngp. Letu € Gt N QN}IW, there are two representatives of #, namelly
(1), € MM, and (v,), € Mjg,i,, such that (i), = (v.). € MM, N Mgp, so we have that u, € BN Cp, = By,
Ve > 0, and satisfying (6) which give (i), € My). In the same way, if (i), = (ve), € N}% N Néfp, then
(). € NYA N Néf/ so we obtain u, € BN Cyy = By, Ve > 0, and satisfying (7) which give that (u,), € N}?ﬁ.
We may have also that (i), € MM, and (v,), € Néfp or (). € NM and (v,), € Mé’ip, then in the both cases
we obtain that (u.), € M%. Consequently u € g’%. d

uV)

ot + 000)|_ < ol

The following consequence of the last Proposition is a lifting to the generalized setting of the character-
isation of a classical almost periodic Beurling ultradistribution, see Definition 5.3.

Corollary 3.7. Let it € G, the following statements are equivalent :
i) ueGpy,.
i)uxpeG¥ NopeDM

rr
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4. Generalized numbers of type M
In this section, we study the algebra of generalized numbers with an asymptotic behavior of type M.
Definition 4.1. The ring of generalized numbers of type M is defined by

v MUK
RIS

where
MMIK] = {(z.), e KO, Tk € Z,, |z = O (M), & 0]
and
NMIK] = {(z.), € KO, Vk € Z,,[z] = O (e™M(2)), e — 0}
Here K is the field C or R.
Let us remark that it is easy to prove MM [K] is an algebra and AN [K] is an ideal of MM [K].

Lemma 4.2. If the sequence M satisfies condition (Hy) then ¥ t1, ..., t, > 0,¥n € IN, we have

(n+2)(n-1)

M(t) + ..+ M(t,) < M(H 2 ax (b, .. tn)) + (1 —1)In AM,. (10)

Proof. According to (H,) and repeating this property, we obtain 34 > 0,3H > 0,Vn € IN,
My = Mau-vpsp < AH"Mp-1,M,
M,, < A’H"H""PM, 5,M

A’HH

(n+2)(n-1)
My < 2 ”MZ
SoVt>0
M’ w+2m-1) \'P P
0 -1 pacs Ul n
<A (H ) ) M
= 0
M My
and then
£ M S M
0 0 An-13 -1
sup In < sup ln[—A My |,
P Mj P My
hence

(n+2)(n-1)

M (b) < M(tH L ) T (n—1)In AM,.

Letty,...,t, > 0, we have
(n+2)(n-1)

M (£) < M(tiHT )+ (n—1)InAMo,1<i<n,

hence

(n+2)(n-1)

M(t1)+...+M(tn)sM(H 5 max(tl,tz,...,t,,))+(n—1)lnAM0.

O
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Lemma 4.3. Let A € KM, then (7\)] € HzM,Vj eN.

Proof. IfA= [(Ao)] € KM and j€N,as (1), € MM[K] we have Jk € Z,,c > 0,3eg € 10,1], Ve < &g, |A:| <
ceM(é), then |/\£_|]' < cle™M(%). Due to Lemma 42, fort1=...=t, = ’f_, we obtain

M[ (i+2g§f—1)]
efM(tk)s(AMo)(j_l)e )

hence
N < (AMO)(j_l) eM(%),
(+2)(-1)

withk =kH 2, ie. (A:)) € MM[K].
If (), € NM[K], then Yk € Z,,3c > 0,3eo € 10,1], Ve < &g, A < e ™M(?). From (H;) we have

j
M s (M)
pi= "0
M,
then
Mm%
M%) s € ,(1),
Mé_
SO

M M) > M) > 0,1,
ie. (1) €K™, O
Corollary 4.4. The set of generalized numbers KM is an algebra.
Example 4.5. The generalized number [(e*M(tk))g] e KM, k> 0.

Remark 4.6. The algebra KM is not a field.

5. Examples of almost periodic generalized ultradistributions

The algebra of almost periodic generalized functions of [3] is the quotient algebra

M
G = _PPI
pr Npp
where
My = {(fé‘)sel € (BPP)I :VjeZy, 3k >0, s(j) ’ = O(E_k)’g - O}

and

(o)

Ny = {(fé‘)ge] € (BW)I Vj€Zy, k> 0" 0

=0(&"), e - 0}.
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Proposition 5.1. The algebra G, is embedded into gf,f,.

Proof. Defining
I: gpp - g%

()] — (o). +Npy *

to show that I is an embedding it suffices to prove that My, ¢ My} and My, N N7 € Np,.
Due to Proposition 2.9-i),we have

tkMo
My = Stlj(l))e]w_(t),k €.,

then

Vp €Z+,eM(zk) >

k p
(£ Mo > (kpMo)s‘P, (11)

4 MP

Let (f:), € My, ie. Vie Z,,Fk>0,3c; > 0,de; € [,Ve < ¢,
£, < cie™,

in (11), we take p = k, then

; M
”ff)”c>o <cger< Cikk]\/klo eM(f),

ie VieZ,, Ak >0,3C = e >0,3e; € [ Ve < ¢,

”fe@”oo < Cie(M(%))

ie. (fo), € My, which gives M, ¢ M.
Let (f.), € Ny, ie. Vie Z, Yk >0,3c, > 0,3e/ € Ve < &,

79|, < ce ™),

The estimate

kM,
Ek > (Tko)e_M(f),Vk e”Z,,

gives Vi€ Z,,Vk>0,3c; > 0,de € [, Ve < ¢,

0 , My x
||fé ||oo S¢ kkMog
which gives N} € Ny,. Consequentely we have My, N Ny € Ny as Ny € My O
A generalized trigonometric polynomial P is defined as
—_— m -~
P(x):= Z e x e R,

k=1

where G, € CM and A; € RM.
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Proposition 5.2. Every generalized trigonometric polynomial is an almost periodic generalized ultradistribution.

— . m P = —
Proof. As for every j € N we have PY (x) = Y, (iX)j e then the result is obtained from the fact that KM
k=1

is an algebra. [

We now show that as important examples of almost periodic generalized ultradistributions are almost
periodic Beurling ultradistributions. Let us give the definition and the fundamental result of [6].

Definition 5.3. A bounded ultradistribution T is an almost periodic Beurling ultradistribution if it satisfies one of
the following equivalent statements :

i) T+ € Cpp, Y € DM,

it) There exist P(D) an (M)—ultradifferential operator and f, g € Cy, such that T = P (D) f + g.

The space of almost periodic Beurling ultradistributions is denoted by B;p,(M).

Recall that an (M)—ultradifferential operator P (D) := }, j aij is a differential operator of infinite order
satisfying 3h > 0 dc > 0,Vj € Z,,

i
< 12
ol < 5z (12)

IfN = (Np);io is a sequence of positive real numbers, the space Z) N defined by the inductive limite
topology of Banach spaces

Z)L1 = limindD; N)h
h—0

where the Banach space D(L]:’)’h is already defined in (3).
Fore>0and ¢ € D{LI:” define ¢.(.) := %(p (—)

&
Theorem 5.4. Let M, N be two sequence satisfying (Hi), (H) and (Hé) , the map
I+ By G
T b T=[(T+g),]
is a linear embedding.

Proof. Let T € B’ o (VN)? according to Definition 5.3, there exist P(D) = }, ja ]-Df an (MN)-ultradifferential
operator and f, g e Cpp such that T = P(D) f + g. Moreover, we have Vy € Z,,

(T*(pg)()’) =P (D) (f*(PS)’)) n 9*@5}’),

from (12) and the fact that ¢ € Z)L1 ,i.e. Ab > 0 such that ”(p”bN < 00, we have

+ ‘(9*@9))(@ ,
[0 ><y)| .
< cufanMN v [Ty Dol [0 @fay

)| < |[PO1fo )
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Due to (Hy) : 34, A’ > 0,3H,H’ > 0,Nj,,, < AH*YN,)N, and M, < A’H'"M;M,,

bR (HH) 1 077 ¢ (]/)|
AL L o [ S

) + +
; Misy ey b7*7Njsy

vl [

|8V (T* @) (x)' < cAA

o (y)|dy,

i.e. we have

2h) ) bR (HH'YY (2h) 7 (y)
gl = i, IR L [0,
e, f|f9 @(y)l

éV N M
, ZhbHH )W 1 (e
< can'|fl. 221 - f N
1 (2h) |8 @(y)!
wamfwﬂ%
(ZhhHH )]+1 (2hb)7’
< AN waZZ =[]l + 9l el M,

according to Proposition 2.9, we obtain

(Zh)

D @] < e [l loll X2 + il ol ),
j
< 20 ol O ol o ),
< ceM),
where k = H max (2hbHH’, 2hb) and C = max (ZCAA’ f”o0 “go”l AN’ (P“Lb,N ”gHoo) ,i.e. we proved
3k > 0,3C > 0,Yy € Z.., " (T = ) ()| < C—L- (Zh)VVeM( )) (13)

which gives (T * ¢,), € MM

Let(pEZ)[L andf(p(x)dx—l If (T*@), € Ny, then Ve >0, T*¢, € By, and Yk > 0,3c > 0,3¢g €

PP’ ppr

]01 1] ’ Ve < €0,
T+ ]|, < ce™). (14)

Lety e D(MN) we have (T, ) = lirr(} f(T + ,) (x) P (x) dx, from (14), we obtain 3¢’ > 0, Ve < ¢,

< c’e‘M(f),

[@pomyma

the limit ¢ — 0, gives (T, ) =0,V € D(MN) Hence ] is injective. [

Remark 5.5. The Theorem indicates explicitly the contribution of the mollifier ¢ when embedding the space of almost
periodic ultradistributions into the algebra g%. However, the authors of [7] propose a way to avoid the contribution
of the mollifier by imposing an inevitable condition between the ultradifferentiability order (N) of the mollifier ¢ and
the ultradifferentiability order (M) of the embedded ultradistributions, but this is valid only in the local case .
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6. A nonlinear operation

The following algebra of tempered generalized ultradistributions defined on C and denoted by G (C)
plays the same role as the algebra of tempered generalized functions, see [11] for more details, its definition
is the quotient algebra

MU(C)
M — T

where the space of tempered moderate elements is defined by

M= {(fe)gd e&:Vjez,, k>0,

-+ 00| =o(®).e - 0}

and the space of tempered null elements is

NY = {(ﬂ.)ed e&:Vjez,,Ip>0Vk>0,

@700 =o(®),e o},

Proposition 6.1. Lef u = [(u,).] € g%ﬂ and F = [(fe)] € QJ;/_I (C) then

Fou:= [(fe © us)e]

is a well-defined element of g%.

Proof. Let ()., (f:), be representatives of u and F respectively, then

VreZ,, 3k >0,3c, > 0,3, € Ve < &, |[ul?|| _ < c,e(), (15)

kj
Vi€ Z,,3k;>0,3c;>0,3e; €[ Ve < ¢, < CjeM(T) (16)

@+ £ <.>|

Let us show that (f; o u,), € Mﬁf,. Due to the classical formula of Faa di Bruno, we have

)
Geond” = ¥, P wo T %

1<r<n ny+ny+...+n,=n

nle
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and from Lemma 4.2, (15) and (16), we have

K
-M(%) ||(f ) BVOR M ko) M(12) L M)
e € e Mg) < e € Cr ”1 + uE”oo ¢ _C]e
« 1szrs‘n r n1+nzl+_!+m=n nj!
H]Z
4 k T
< MO YR (14 () M)
1<r<n 7!
1 i
X —lcjeM(‘ )
m+no+..4+1,=n J*
n]zl
< M) Z ”_: & (1 + OO IOHDM(E) ML)
1<r<n r
1 i
X —|cjeM( ¢ )
m+ny+...4+1n,=n j
n/zl
M(k 1 M(k’ 7('””2)5!"71)) K0
< M) Z —cr (1 + ) (AMp)™ M)

15r<n

1 i
< 1 e M)

nm+nx+..+n,=n

n]zl

where m = [k (r)] + 1. According to Lemma 4.2, for I = H max (k (r), k’H%) ,€ <min (&1, &), we obtain

. I (m+2)y(;n—1) k() , (m+2)y(';n—1)
eM(@)eM( S ) = eM( )+M(k e ) < AMoeM(f).
Consequently
n! _ 4
MO |(Fou)®| < MO Y e (140" (M) AV x
« 1<r<n r
1
X H n—C]
nm+ny+..+n,=n J*
11121
n! _ _
< M) Z = (140 (AM)" ™ AMpeM(2) (AM,)" ™ x
1<r<n r
M(KH (n+22)£lnfl) ) 1
xXe \° —'C]
nm+not..+n=n
"721
For k = Hmax (l rH" 5 ”) & <min (g1, &), we have

(m+2)(m-1)

MOMETTIT) g M)
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hence
1
MO |fou)|| = Y, e+ 0" A0 (AM)" (AM)" X

« 1<r<n

1

X —c]A”(r

n1+n2H+nr =n ]

n/>1
< G,

Therefore, Yn € Z,,3k > 0,3C=C), > 0,3ep € [, Ve < €9

< CneM(é),

s
ie(fiou:), € MY

To show that F o u is well defined, we first show

(fs (uf +Tl5) ff (uf)) € pp/ V (7’[5) €

According to Proposition 6, it suffices to show Yk > 0,3C > 0,

||ﬂ (ue +n.) = fe (ug)”w < Cexp (—M(g))

Taylor’s formula and Lemma 4.2 give

1
MO f, (e + 1) () = fo (e )] < MO, ()] f | (Ou. (x))| a6,
< ceM(®)e (%)01 (1 +10u ()" e (
< M) (kTZ)Q (140 klM(T)eM(le)
< ceM®)e” (k%)cl (140" (AM)" ! x
M[% () +z>]

where m’ = [kq] + 1.
(m’—l)(m’+2)

Due to Lemma 4.2, let k, = H max (le Lk, k) ,€ <min (&1, &, €3), then

eM(f)eM(ﬁiH%]eM(%) < (AMy)? eM(kTZ),
hence

MV, (e + 1) () = e (e ()] < 1 (1+ 0" (AMp)" ™! = C
i.e. weobtain Yk > 0,3AC > 0,d¢eg € I, Ve < &,

|fe (e + 1) () = fo (ue ()] < Ce™M ()

=

1

&

)

5421
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Now let (g:), be another representative of F, so (f. —g.), = (h). € Ng/f (©), and let show that

(fe = g¢) (ue) = he (ue) € N;};I, Y (ue), € M%. Indeed according to Lemma 4.2,

MO, ) = M)

1
he (0) + ue (x) | hi (Oue (x))dO
/

IA

M(E) (cle_M(kg) + ceM(kTq) (1 + |Bue (x)])F g_M(kg))

k ki

eM(f) (cleM(‘l) + ceM(TO) (1 + Co)p epM(k:-’)gM(kg))

IA

ko
e

(c1 +c(1+c)) eM(f)e_M(le)eM( )gPM(%)

IA

M| EH

(1) (p+2)
(c1+c(1+ c)”)eM(%)B_M(k%)eM(kTO) (AMo)' " e [ ]

IA

2

(-1)(p+2)
< (c1+c(+0)f)(AMy) eM(é)e_M(%)eM(%)eM[ZH ]

(r-1)(+2)
The same reasoning as above, for k; = H max (k, ko,pH % ), € <min (&1, €2, €3), we get

M) |, (uo)l < C

hence the result. [

7. More properties of Qz’r’,

The notion of point value is extended to the algebra g%.

Proposition 7.1. i) Letu = [(u.)] € Gy, and x = [(x.),] € IRM, the point value of it at X given by 1 (%) := [(ue (xc)),]
is a well- defined element of M,

ii) If € Gy, then
=0 M e () =0 i M RM
u=0inG,, & u(x)=0inC" VxeR".
Proof. 1) Let u = [(u.),] € G, and x = [(x.),] € RRM, it follows easily that (u. (x.)), € MM[C]. Let (v.),

another representative of ¥, using Taylor’s formula we have

1
|u€ (oxe) — ue (yé-)( < (xg - y£| f |u;. (xe +t(ye — xg))| dt,
0

and since (u.), € MM

el then3dk e Z,,3c > 0,dey €I, Ve < €,

), (xe + t(ye —x.))| < ceM(%).

On the other hand, Yk’ € Z,, 3¢’ > 0 such that |yg - x5| < c’e‘M(k?’), and therefore, taking ¢’ = max(c,c’),
we have

e () = e (ye)] < 7M(DeM(D),
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k "
From Lemma 4.2 with t; = = t = k? and k¥’ = Hmax (k, k"), we obtain

|u€ (xe) — ue (ye)‘ < C/,AMoeiM(ktl),

which shows that u, (x,) — u. (y.) € NM[C].
i) If u = 0 in G}, it's obvious that u(x) = 0 in C". Conversely, suppose that i # 0 in
Proposition 3.2, we have

pp in view of

Jk >0,V > 0,¥ep € I, 3e < eq, ue ()| > ce™(0), 17)
and since u (x) = 0, then u, (x.) satisfies (7) fori = 0,i.e. Yk > 0,3co > 0,deg € I, Ve < &,

e (xe)l < coe™(9),
which gives is a contradiction with (17). O

Let u = [(uc).] € G}y, the generalized mean value of i, denoted M, (1), is defined by

X

M, (u) = [Xlirgé f Ue (y)dyJ + N (0).

0 €
Proposition 7.2. Ifu = [(u,),] € g%{ then M, () is a well-defined element of cM,

Proof. Let (u,), a representative of 1, we have

X
1
lim §fu£ (y)dy| < lim —‘[|u‘g (y)ldy<ceM( ),
0

X—>+o00 X—+00 X
0

M then (u,), satisfies (7), consequently

X
hence [Xlir?w% Ofu{ (v) dy e MM[C]. If (u,), € N fiap

b'e
1 -M(%)
XEIPoonu‘g (y)dy| <ce ,

0

X
ie.( %fué-(y)dy] e NM[C]. O
0

¢

Let u € G), and A € RM, then Tie-**e G, , consequently the generalized mean value M (ue W‘) of u

is a well-defined element of CM. We define the generalized spectra of u as the set of generalized numbers
defined by

Ay (@) = A € RM : a5 (@) # 0in €Y}, (18)
where

ay (u) == M, (’uve*’%‘) .
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— mo o~
Example 7.3. Let P(.) = Y cge'™ then
k=1

Ag@:{?\;:k:l,...m}.

Remark 7.4. The generalized spectra of an almost periodic generalized ultradistribution A, (u) is not necessarily
countable, see [3].

In the same way as almost periodic distributions, see [13], the mean value of T € B;p (v is defined as the

value
X
1
M) = M(T<p) = lim £ [T p) (e,
0
where p € DM and [, p (x)dx = 1.
Proposition 7.5. If T € B, then M, (J(T)) = M(T) in cM,

+o00
Proof. We have for p e DMV and [ p(x)dx =1,

—00

X
M, (J(T)) - M(T) = [}gi_rgo}l(fT*@ps—p)(y)dy]‘,6>O,

0

wherep € D{Ll:” issuch that f @ (x)dx =1.SinceT € B;p/(MN),there existP (D) = Y, i aij an (MN)—ultradifferential

R
operator and f, g € C,, such that T = P (D) f + g, hence

T+ (pe —p)(y) P(D) f*(pe=p)(y) + g+ (@ —p) (W),
aof *+(pe = p) () + Y aif + D (pe = p) () + g+ (@ = P) (¥),

=1

By the Proposition 2.4-vi), we obtain
b'e

g{}o%fﬁ(%—p)(y)dy = aoM(f)f(%—p)(x)dH

0

+ Y aM() [ D, - p) v
R

=1

+M(g) f (¢e - p) () dx = 0,

as Ve € I,fgog (x)dx = fp (x)dx =1and D/I"! (¢, — p)|J_r: = 0. So the result is obtained. [
R R

A primitive Uofu = [(ue),] € Q% is defined by Ux) = [ f ue (y) dy] + N (C),xp € R. This definition
Xo e
does not depend on the representative. We have a generalized version of the classical Bohl-Bohr’s result.
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Proposition 7.6. A primitive of an almost periodic generalized ultradistribution is almost periodic if and only if it is
a bounded generalized ultradistribution.

Proof. Letu = [(u.),] € g% and suppose that U = [(U,),] € oo de Ue (x) := fug (y)dy € B,¥e > 0, then U,
Xo
is a bounded primitive of the almost periodic function u, according to the classical Bohl-Bohr’s Theorem

U, € B,,. In addition (U,), € M, ie. Vj e Z,, 3k > 0,3c > 0,[u?| < ce(®), hence (), € MY, so
—_— —_— —_— Leo —_—
ue Q]gfw, and then U € G}, by Proposition 3.6-3. Conversely, if U € G, = G}t N ggp cGM, thenUisa

bounded generalized ultradistribution. [

Remark 7.7. As a generalization of the obtained result in a forthcoming work, see [5], we study systems of ordinary
differential equations

u=Au+f,

where f: ([(flg)g] S eeer [(fns)g]) € (Qf,f,)n and A = (aij)Osi,jgn is a square matrix of order n of elements of C.
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