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Some Inequalities for General Zeroth–Order Randić Index
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Abstract. Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple connected graph with n vertices, m edges and
vertex degree sequence ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0, di = d(vi). General zeroth–order Randić index of G
is defined as 0Rα(G) =

∑n
i=1 dαi , where α is an arbitrary real number. In this paper we establish relationships

between 0Rα(G) and 0Rα−1(G) and obtain new bounds for 0Rα(G). Also, we determine relationship between
0Rα(G), 0Rβ(G) and 0R2α−β(G), where α and β are arbitrary real numbers. By the appropriate choice of
parameters α and β, a number of old/new inequalities for different vertex–degree–based topological indices
are obtained.

1. Introduction

Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple connected graph with n vertices, m edges and a sequence
of vertex degrees ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ, di = d(vi). If vertices vi and v j are adjacent, we write i ∼ j.

The topological indices form an important class of molecular structure descriptors used for quantifying
information on molecules. Thousands of topological indices have been introduced in order to describe
physical and chemical properties of molecules. Various mathematical properties of topological indices
have been investigated, as well. As topological indices have been defined for quantifying information of
graphs, this area could be classified into the so-called quantitative graph theory [8].

There is no doubt that the Randić index is the most studied, most often applied, and most popular
topological index among all [21]. It was introduced by Milan Randić in 1975 [29] under the name branching
index as a suitable measure of the extent of branching of the carbon–atom skeleton of saturated hydrocarbons.
It is defined as

R(G) =
∑
i∼ j

1√
did j

.

After the Randić index was introduced, based on its definition various Randić–type invariants have
been proposed and studied.

Bollobás and Erdős [3] generalized this index by replacing −1/2 with any real number α:

Rα(G) =
∑
i∼ j

(did j)α,
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Received: 11 April 2019; Accepted: 19 May 2019
Communicated by Dragan S. Djordjević
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and called it general Randić index.
The sum of the α-th powers of the degrees of a (molecular) graph G

0Rα(G) =

n∑
i=1

dαi ,

is known as general zeroth–order Randić index [14]. It is also met under names general first Zagreb index [18]
and variable first Zagreb index [23] (see also [1, 2]).

Here we are interested in the following special cases of 0Rα(G):

• Modified first Zagreb index, mM1(G) = 0R−2(G), introduced in [27];

• Inverse degree or modified total adjacency index, ID(G) =0R−1, [10, 27];

• Zeroth–order connectivity index or zeroth–order Randić index, 0R(G) = 0R−1/2(G) , [17];

• First Zagreb index, M1(G) =0R2(G), [12];

• Forgotten topological index, F(G) =0R3(G), [12].

In this paper we determine relations between 0Rα(G) and 0Rα−1(G) and obtain new bounds for 0Rα(G).
Also, we establish relations between 0Rα(G), 0Rβ(G) and 0R2α−β(G), where α and β are arbitrary real numbers.
As special cases, for some specific values of parameters α and β, we obtain a number of old/new inequalities
for different vertex–degree–based topological indices of graphs.

2. Preliminaries

In this section we recall some discrete inequalities for real number sequences that will be used later in
the paper.

Let p = (pi), i = 1, 2, . . . ,n, be a nonnegative real number sequence and a = (ai), i = 1, 2, . . . ,n, positive
real number sequence. Then for any real r, such that r ≥ 1 or r ≤ 0, holds (Jensen’s inequality) [25] n∑

i=1

pi


r−1 n∑

i=1

piar
i ≥

 n∑
i=1

piai


r

. (1)

If 0 ≤ r ≤ 1, then the sense of (1) reverses. Equality holds if and only if a1 = a2 = · · · = an, or for some k,
1 ≤ k ≤ n − 1, such that p1 = p2 = · · · = pk = 0 and pk+1 = pk+2 + · · · + pn and ak+1 = ak+2 = · · · = an.

Let x = (xi), i = 1, 2, . . . ,n, be a nonnegative real number sequence and a = (ai), i = 1, 2, . . . ,n, positive
real number sequence. In [28] it was proven that for any r ≥ 0 holds

n∑
i=1

xr+1
i

ar
i
≥

 n∑
i=1

xi


r+1

 n∑
i=1

ai


r . (2)

Equality is reached if and only if r = 0 or x1
a1

= x2
a2

= · · · = xn
an

.
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3. Main results

In the following theorem we establish relations between 0Rα(G) and 0Rα−1(G).

Theorem 3.1. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then for any real α, such that
α ≤ 0 or α ≥ 1, holds

0Rα(G) ≥ max
{

(2m − n)α

(n − ID(G))α−1 + 0Rα−1(G),
(2m + n)α

(n + ID(G))α−1 −
0Rα−1(G)

}
. (3)

If 0 ≤ α ≤ 1, then

0Rα(G) ≤ min
{

(2m − n)α

(n − ID(G))α−1 + 0Rα−1(G),
(2m + n)α

(n + ID(G))α−1 −
0Rα−1(G)

}
. (4)

Equalities hold if and only if either α = 0, or α = 1, or G is regular, or when dk+1 = dk+2 = · · · = dn = 1 and
d1 = d2 = · · · = dk > 1, where 1 ≤ k ≤ n − 1.

Proof. For any real α we have that

0Rα(G) − 0Rα−1(G) =

n∑
i=1

(di − 1) dα−1
i (5)

and

0Rα(G) + 0Rα−1(G) =

n∑
i=1

(di + 1) dα−1
i . (6)

For r = α, pi = 1 − 1
di

, ai = di, i = 1, 2, . . . ,n, the inequality (1) becomes n∑
i=1

(
1 −

1
di

)
α−1 n∑

i=1

(di − 1) dα−1
i ≥

 n∑
i=1

(
1 −

1
di

)
di


α

,

that is

n∑
i=1

(di − 1) dα−1
i ≥

(2m − n)α

(n − ID(G))α−1 . (7)

On the other hand, for r = α, pi = 1 + 1
di

, ai = di, i = 1, 2, . . . ,n, the inequality (1) transforms into n∑
i=1

(
1 +

1
di

)
α−1 n∑

i=1

(di + 1) dα−1
i ≥

 n∑
i=1

(
1 +

1
di

)
di


α

,

that is

n∑
i=1

(di + 1) dα−1
i ≥

(2m + n)α

(n + ID(G))α−1 . (8)

Now, from (5) and (7), that is (6) and (8), we get

0Rα(G) ≥ 0Rα−1(G) +
(2m − n)α

(n − ID(G))α−1 (9)
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and

0Rα(G) ≥
(2m + n)α

(n + ID(G))α−1 −
0Rα−1(G). (10)

The inequalities (3) and (4) are obtained from (9) and (10).
Equalities in (7) and (8) hold if and only if either α = 0, or α = 1, or d1 = d2 = · · · = dn, which implies

that equalities in (3) and (4) hold if and only if either α = 0, or α = 1, or G is regular.

Based on (9) and (10) we have the following corollary of Theorem 3.1.

Corollary 3.2. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then for any real α, such that
α ≤ 0 or α ≥ 1, holds

0Rα(G) ≥
1
2

(
(2m − n)α

(n − ID(G))α−1 +
(2m + n)α

(n + ID(G))α−1

)
.

If 0 ≤ α ≤ 1, the sense of the above inequality reverses. Equality holds if and only if either α = 0, or α = 1, or G is a
regular graph.

Corollary 3.3. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then

M1(G) ≥ max
{

(2m − n)2

n − ID(G)
+ 2m,

(2m + n)2

n + ID(G)
− 2m

}
,

M1(G) ≥
1
2

(
(2m − n)2

n − ID(G)
+

(2m + n)2

n + ID(G)

)
,

F(G) ≥ max
{

(2m − n)3

(n − ID(G))2 + M1(G),
(2m + n)3

(n + ID(G))2 −M1(G)
}
,

F(G) ≥
1
2

(
(2m − n)3

(n − ID(G))2 +
(2m + n)3

(n + ID(G))2

)
mM1(G) ≥

1
2

(
(n − ID(G))3

(2m − n)2 +
(n + ID(G))3

(2m + n)2

)
.

Equalities hold if and only if G is regular.

Corollary 3.4. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then for any real α ≥ 1 holds

0Rα(G) ≥ 0Rα−1(G) + (2m − n)
(2m

n

)α−1

. (11)

Equality holds if and only if α = 1 or G is regular graph.

Proof. According to arithmetic–harmonic mean inequality for real numbers (see e.g. [26]), we have that

n∑
i=1

1
di

n∑
i=1

di ≥ n2,

i.e.

ID(G) ≥
n2

2m
. (12)

From the above inequality follows
2m − n

n − ID(G)
≥

2m
n
,
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therefore for any real α ≥ 1 holds (
2m − n

n − ID(G)

)α−1

≥

(2m
n

)α−1

.

Now from the above and inequality (9) we arrive at (11).

Corollary 3.5. Let G be a simple connected graph with n vertices and m edges. Then

F(G) ≥M1(G) +
4m2(2m − n)

n2 (13)

and

M1(G) ≥
4m2

n
. (14)

Equalities hold if and only if G is regular.

Remark 3.6. Since

M1(G) +
4m2(2m − n)

n2 ≥
8m3

n2 ,

the inequality (13) is stronger than inequality

F(G) ≥
8m3

n2 ,

proven in [16].
The inequality (14) was proven in [9] (see also [5, 15, 16, 30]).

Theorem 3.7. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then for any real α, such that
α ≤ 1 or α ≥ 2, holds

0Rα(G) ≥ max
{

(M1(G) − 2m)α−1

(2m − n)α−2 + 0Rα−1(G),
(M1(G) + 2m)α−1

(2m + n)α−2 −
0Rα−1(G)

}
. (15)

If 1 ≤ α ≤ 2, then

0Rα(G) ≤ min
{

(M1(G) − 2m)α−1

(2m − n)α−2 + 0Rα−1(G),
(M1(G) + 2m)α−1

(2m + n)α−2 −
0Rα−1(G)

}
. (16)

Equalities hold if and only if either α = 1, or α = 2, or G is regular, or when dk+1 = dk+2 = · · · = dn = 1 and
d1 = d2 = · · · = dk > 1, where 1 ≤ k ≤ n − 1.

Proof. For r = α − 1, pi = di − 1, ai = di, i = 1, 2, . . . ,n, the inequality (1) transforms into n∑
i=1

(di − 1)


α−2 n∑

i=1

(di − 1) dα−1
i ≥

 n∑
i=1

(di − 1) di


α−1

,

i.e.
n∑

i=1

(di − 1) dα−1
i ≥

(M1(G) − 2m)α−1

(2m − n)α−2 . (17)

On the other hand, for r = α − 1, pi = di + 1, ai = di, i = 1, 2, . . . ,n, the inequality (1) becomes n∑
i=1

(di + 1)


α−2 n∑

i=1

(di + 1) dα−1
i ≥

 n∑
i=1

(di + 1) di


α−1

,



P. Milošević et al. / Filomat 33:16 (2019), 5249–5258 5254

i.e.
n∑

i=1

(di + 1) dα−1
i ≥

(M1(G) + 2m)α−1

(2m + n)α−2 . (18)

Combining (5) and (17), respectively (6) and (18), we obtain

0Rα(G) ≥ 0Rα−1(G) +
(M1(G) − 2m)α−1

(2m − n)α−2 (19)

and

0Rα(G) ≥
(M1(G) + 2m)α−1

(2m + n)α−2 −
0Rα−1(G). (20)

The inequalities (15) and (16) are directly obtained from to (19) and (20).
Equalities in (17) and (18) hold if and only if either α = 1, or α = 2, or d1 = d2 = · · · = dn. This implies

that equalities in (15) and (16) hold if and only if either α = 1, or α = 2, or G is a regular graph.

Corollary 3.8. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then for any real α, such that
α ≤ 1 or α ≥ 2, holds

0Rα(G) ≥
1
2

(
(M1(G) − 2m)α−1

(2m − n)α−2 +
(M1(G) + 2m)α−1

(2m + n)α−2

)
.

If 1 ≤ α ≤ 2, then the sense of the above inequality reverses. Equality holds if and only if either α = 1, or α = 2, or G
is regular.

Corollary 3.9. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then

F(G) ≥ max
{

(M1(G) − 2m)2

2m − n
+ M1(G),

(M1(G) + 2m)2

2m + n
−M1(G)

}
and

ID(G) ≥ max
{

(2m − n)3

(M1(G) − 2m)2 + mM1(G),
(2m + n)3

(M1(G) + 2m)2 −
mM1(G)

}
.

Equalities hold if and only if G is regular, or when dk+1 = dk+2 = · · · = dn = 1 and d1 = d2 = · · · = dk > 1, where
1 ≤ k ≤ n − 1.

Corollary 3.10. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then

ID(G) ≥
1
2

(
(2m − n)3

(M1(G) − 2m)2 +
(2m + n)3

(M1(G) + 2m)2

)
and

mM1(G) ≥
1
2

(
(2m − n)4

(M1(G) − 2m)3 +
(2m + n)4

(M1(G) + 2m)3

)
.

Equalities hold if and only if G is a regular graph.

The proof of the next result is fully analogous to that of Theorems 3.1 and 3.7, and hence omitted.

Theorem 3.11. Let G be a simple connected graph with m ≥ 2 edges. Then for any real α, such that α ≤ 2 or α ≥ 3,
holds

0Rα(G) ≥ max
{

(F(G) −M1(G))α−2

(M1(G) − 2m)α−3 + 0Rα−1(G),
(F(G) + M1(G))α−2

(M1(G) + 2m)α−3 −
0Rα−1(G)

}
.
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If 2 ≤ α ≤ 3, then

0Rα(G) ≤ min
{

(F(G) −M1(G))α−2

(M1(G) − 2m)α−3 + 0Rα−1(G),
(F(G) + M1(G))α−2

(M1(G) + 2m)α−3 −
0Rα−1(G)

}
.

Equalities hold if and only if either α = 2, or α = 3, or G is regular, or when dk+1 = dk+2 = · · · = dn = 1 and
d1 = d2 = · · · = dk > 1, where 1 ≤ k ≤ n − 1.

Corollary 3.12. Let G be a simple connected graph with m ≥ 2 edges. Then for any real α such that α ≤ 2 or α ≥ 3
holds

0Rα(G) ≥
1
2

(
(F(G) −M1(G))α−2

(M1(G) − 2m)α−3 +
(F(G) + M1(G))α−2

(M1(G) + 2m)α−3

)
.

If 2 ≤ α ≤ 3, then the sense of the above inequality reverses. Equality holds if and only if α = 2 or α = 3 or G is a
regular graph.

In the next theorems we determine relations between invariants 0Rα(G), 0Rβ(G) and 0R2α−β(G), where α
and β are arbitrary real numbers.

Theorem 3.13. Let G be a simple connected graph with n ≥ 3 vertices. Then for any real numbers α and β hold

0Rα(G) ≤ ∆α + δα +

√(
0R2α−β(G) − ∆2α−β − δ2α−β

) (
0Rβ(G) − ∆β − δβ

)
, (21)

with equality if and only if α = β or d2 = d3 = · · · = dn−1.

Proof. The inequality (2) can be considered as

n−1∑
i=2

x2
i

ai
≥

n−1∑
i=2

xi


2

n−1∑
i=2

ai

.

For xi = dαi , ai = dβi , i = 2, 3, . . . ,n − 1, where α and β are arbitrary real numbers, this inequality becomes

n−1∑
i=2

d2α−β
i ≥

n−1∑
i=2

dαi


2

n−1∑
i=2

dβi

,

i.e.

0R2α−β(G) − ∆2α−β
− δ2α−β

≥

(
0Rα(G) − ∆α

− δα
)2

0Rβ(G) − ∆β − δβ
, (22)

wherefrom (21) is obtained.
Equality in (22), and hence in (21), is attained if and only if α = β or d2 = d3 = · · · = dn−1.

By similar arguments as in case of Theorem 3.13, the following results can be proven.

Theorem 3.14. Let G be a simple connected graph with n ≥ 2 vertices. Then for any real numbers α and β hold

0Rα(G) ≤ ∆α +

√(
0R2α−β(G) − ∆2α−β

) (
0Rβ(G) − ∆β

)
.

Equality holds if and only if α = β or d2 = d3 = · · · = dn.
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Theorem 3.15. Let G be a simple connected graph with n vertices. Then for any real numbers α and β hold

0Rα(G) ≤
√

0R2α−β(G) 0Rβ(G).

Equality holds if and only if α = β or G is a regular graph.

By the appropriate choices of parameters α and β, from Theorems 3.13, 3.14 and 3.15 a number of
old/new inequalities for different vertex–degree–based topological indices of graphs can be obtained. In
the next corollary we list some of them.

Corollary 3.16. Let G be a simple connected graph with n vertices and m edges. Then

0Rα(G) ≤

√
2m 0R2α−1(G) ,

0Rα(G) ≤

√
ID(G) 0R2α+1(G) ,

0Rα(G)0R−α(G) ≥ n2 , (23)
0R1/2(G) ≤

√

2mn ,

ID(G) ≤

√
n mM1(G) , (24)

ID(G) ≥
1
∆

+
1
δ

+
(n − 2)2

2m − ∆ − δ
, (25)

M1(G) ≥ ∆2 +
(2m − ∆)2

n − 1
, (26)

M1(G) ≥ ∆2 + δ2 +
(2m − ∆ − δ)2

n − 2
, (27)

F(G) ≥
M1(G)2

2m
, (28)

F(G) ≥ ∆3 + δ3 +
(M1(G) − ∆2

− δ2)2

2m − ∆ − δ
. (29)

The inequality (23) was proven in [19], the inequality (24) in [20], (25) in [7], (26) in [22], (27) in [6], (28) in
[11]. The inequality (23) was proven in [13] for the case α = 2.

In the next theorem we obtain a relation between 0R2α(G) and 0Rα(G).

Theorem 3.17. Let G be a simple connected graph with n ≥ 3 vertices. Then for any real number α holds

n 0R2α(G) − 0Rα(G)2
≥

n
2

(∆α
− δα)2 . (30)

Equality is attained if and only if dα2 = dα3 = · · · = dαn−1 = ∆α+δα

2 .

Proof. According to the Lagrange’s identity (see e.g. [26]), we have that

n 0R2α(G) − 0Rα(G)2 = n
n∑

i=1

d2α
i −

 n∑
i=1

dαi


2

=
∑

1≤i< j≤n

(
dαi − dαj

)2

= (∆α
− δα)2 +

∑
1≤i< j≤n
(i, j),(1,n)

(
dαi − dαj

)2
(31)

≥ (∆α
− δα)2 +

n−1∑
i=2

((
dα1 − dαi

)2
+

(
dαi − dαn

)2
)
.
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Now, setting n = 2, r = 2, p1 = p2 = 1, a1 = dα1 − dαi , a2 = dαi − dαn in (1) we get

(∆α
− δα)2 +

n−1∑
i=2

((
dα1 − dαi

)2
+

(
dαi − dαn

)2
)
≥ (∆α

− δα)2 +
1
2

n−1∑
i=2

(
dα1 − dαn

)2
. (32)

The inequality (30) immediately follows from (31) and (32).

Equality in (31) is attained if and only if dα2 = dα3 = · · · = dαn−1. Equality in (32) holds if and only if dαi =
dα1 +dαn

2 ,
for every i = 2, . . . ,n − 1, therefore equality in (30) is attained if and only if dα2 = dα3 = · · · = dαn−1 = ∆α+δα

2 .

Corollary 3.18. Let G be a simple connected graph with n ≥ 3 vertices. Then

M1(G) ≥
4m2

n
+

1
2

(∆ − δ)2 , (33)

mM1(G) ≥
ID(G)2

n
+

1
2

(1
δ
−

1
∆

)2

.

The inequality (33) was proven in [24] (see also [22] and [4]). This inequality is stronger than (14).
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