Perturbation Theory for Core and Core-EP Inverses of Tensor via Einstein Product

Hong-mei Du ${ }^{\text {a }}$, Bing-xue Wang ${ }^{\text {a }}$, Hai-feng Ma ${ }^{\text {a,* }}$
${ }^{a}$ School of Mathematical Science, Harbin Normal University, Harbin 150025, P. R. China.

Abstract

In this paper, for given tensors \mathcal{A}, \mathcal{E} and $\mathcal{B}=\mathcal{A}+\mathcal{E}$, we investigate the perturbation bounds for the core inverse \mathcal{A}^{\oplus} and core-EP inverse \mathcal{A}^{\oplus} under some conditions via Einstein product.

1. Introduction

There are several papers on the core inverse and core-EP inverse [1-5, 7-9]. Recently, there are recent monographs [10-12] on the generalized inverse.

For convenience, we first adopt some of the terminologies which will be used in this paper. For a positive integer N, let $[N]=\{1, \ldots, N\}$. An order N tensor $\mathcal{A}=\left(\mathcal{A}_{i_{1}, i_{2}, \ldots, i_{N}}\right)_{1 \leq i_{j} \leq \mathbf{I}_{j}},(j=1, \ldots, N)$ is a multidimensional array with $\mathbf{I}_{1} \mathbf{I}_{2} \cdots \mathbf{I}_{N}$ entries. Let $\mathbb{C}^{\mathbf{I}_{1} \times \cdots \times \mathbf{I}_{N}}$ and $\mathbb{R}^{\mathbf{I}_{1} \times \cdots \times \mathbf{I}_{N}}$ be the sets of the order N dimension $\mathbf{I}_{1} \times \cdots \times \mathbf{I}_{N}$ tensors over the complex field \mathbb{C} and the real field \mathbb{R}, respectively. Each entry of \mathcal{A} is denoted by $a_{i_{1} \cdots i_{N}}$.

For a tensor $\mathcal{A}=\left(a_{i_{1} \cdots i_{N} j_{1} \cdots j_{M}}\right) \in \mathbb{C}_{1}^{I_{1} \times \cdots \times I_{N} \times J_{1} \times \cdots \times J_{M}}$, let $\mathcal{B}=\left(b_{i_{1} \cdots i_{M}} j_{1} \cdots j_{N}\right) \in \mathbb{C}^{J_{1} \times \cdots \times J_{M} \times I_{1} \times \cdots \times I_{N}}$ be the conjugate transpose of \mathcal{A}, where $b_{i_{1} \cdots i_{M} j_{1} \cdots j_{N}}=\bar{a}_{j_{1} \cdots j_{M} i_{1} \cdots i_{N}}$. The tensor \mathcal{B} is denoted by \mathcal{A}^{*}. When $b_{i_{1} \cdots i_{M} j_{1} \cdots j_{N}}=a_{j_{1} \cdots j_{M 1} \cdots i_{N}}, \mathcal{B}$ is the transpose of \mathcal{A}, and is denoted by \mathcal{A}^{T}. A tensor $\mathcal{D}=\left(d_{i_{1} \cdots i_{N} i_{1} \cdots i_{N}}\right) \in \mathbb{C}^{I_{1} \times \cdots \times I_{N} \times I_{1} \times \cdots \times I_{N}}$ is called a diagonal tensor if all its entries are zero except for $d_{i_{1} \cdots i_{N} i_{1} \cdots i_{N}}$ In case of all the diagonal entries $d_{i_{1} \cdots i_{N} i_{1} \cdots i_{N}}=1$, we call \mathcal{D} as a unit tensor and is denoted by \mathcal{I}. Similarly, O denotes the zero tensor in case of all the entries are zero.

The Einstein product of tensors is defined in [13] by the operation ${ }_{N}$ via

$$
\begin{equation*}
\left(\mathcal{A} *_{N} \mathcal{B}\right)_{i_{1} \ldots i_{N} j_{1} \ldots j_{M}}=\sum_{k_{1} \ldots k_{N}} \mathcal{A}_{i_{1} \ldots i_{N} k_{1} \ldots k_{N}} \mathcal{B}_{k_{1} \ldots k_{N} j_{1} \ldots j_{M}} \tag{1}
\end{equation*}
$$

where $\mathcal{A} \in \mathbb{C}^{\mathbf{I}_{1} \times \cdots \times \mathbf{I}_{N} \times \mathbf{K}_{1} \times \cdots \times \mathbf{K}_{N}}, \mathcal{B} \in \mathbb{C}^{\mathbf{K}_{1} \times \cdots \times \mathbf{K}_{N} \times \mathbf{I}_{1} \times \cdots \times \mathbf{I}_{M}}$ and $\mathcal{A} *_{N} \mathcal{B} \in \mathbb{C}^{\mathbf{I}_{1} \times \cdots \times \mathbf{I}_{N} \times \mathbf{J}_{1} \times \cdots \times \mathbf{J}_{M}}$. The associative law of this tensor product holds. In the above formula, when $\mathcal{B} \in \mathbb{C}^{\mathbf{K}_{1} \times \cdots \times \mathbf{K}_{N}}$, then

$$
\left(\mathcal{A} *_{N} \mathcal{B}\right)_{i_{1} i_{2} . . i_{N}}=\sum_{k_{1} \ldots k_{N}} \mathcal{A}_{i_{1} \ldots i_{N} k_{1} \ldots k_{N}} \mathcal{B}_{k_{1} \ldots k_{N}}
$$

where $\mathcal{A}{ }^{*} N \mathcal{B} \in \mathbb{C}^{\mathbf{I}_{1} \times \cdots \times \mathbf{I}_{N}}$. For convenience, we denote $\mathbb{C}^{\mathbf{I}_{1} \times \cdots \times \mathbf{I}_{N} \times \mathbf{I}_{1} \times \cdots \times \mathbf{I}_{N}}$ simply by $\mathbb{C}^{I(N) \times I(N)}$.

[^0]Definition 1.1. [16] For $\mathcal{A} \in \mathbb{C}^{I(N) \times K(N)}$, the range $\mathcal{R}(\mathcal{A})$ and the null space $\mathcal{N}(\mathcal{A})$ of \mathcal{A} are defined by

$$
\begin{aligned}
& \mathcal{R}(\mathcal{A})=\left\{\boldsymbol{y} \in \mathbb{C}^{\mathbf{I}_{1} \times \cdots \times \mathbf{I}_{N}}: \mathcal{Y}=\mathcal{A}{*_{N}}_{\mathcal{X}}, \mathcal{X} \in \mathbb{C}^{\mathbf{K}_{1} \times \cdots \times \mathbf{K}_{N}}\right\} \\
& \mathcal{N}(\mathcal{A})=\left\{\mathcal{X} \in \mathbb{C}^{\mathbf{K}_{1} \times \cdots \times \mathbf{K}_{N}}: \mathcal{A}{*_{N}}_{\mathcal{X}}=\mathcal{O}\right\},
\end{aligned}
$$

where O is an appropriate order zero tensor.
Definition 1.2. [16] The inner product on $\mathbb{C}^{\mathbf{N}_{1} \times \cdots \times \mathbf{N}_{K}}$ is defined by

$$
\langle\boldsymbol{X}, \boldsymbol{y}\rangle=\sum_{n_{r} \in\left[N_{r}\right], r \in[k]} \bar{X}_{n_{1} n_{2} \cdots n_{k}} \boldsymbol{y}_{n_{1} n_{2} \cdots n_{k}}, \forall \mathcal{X}, \boldsymbol{Y} \in \mathbb{C}^{\mathbf{N}_{1} \times \cdots \times \mathbf{N}_{K}}
$$

and the spectral norm $\|\cdot\|_{2}$ is defined as [17, Lemma 2.1]

$$
\|\mathcal{X}\|_{2}=\sqrt{\lambda_{\max }\left(\mathcal{X}^{*}{ }_{N} \mathcal{X}\right)}
$$

where $\lambda_{\max }\left(X^{*}{ }^{*} \mathcal{X}\right)$ denotes the largest eigenvalue of $\mathcal{X}^{*}{ }^{*}{ }_{N} \mathcal{X}$.
Definition 1.3. [14] Let $\mathcal{A} \in \mathbb{C}^{I(N) \times K(N)}$. The tensor $\mathcal{X} \in \mathbb{C}^{K(N) \times(N)}$ which satisfies
(1) $\mathcal{A} *_{N} \mathcal{X} *_{N} \mathcal{A}=\mathcal{A}$;
(2) $\mathcal{X} *_{N} \mathcal{A} *_{N} \mathcal{X}=\mathcal{X}$;
(3) $\left(\mathcal{A} *_{N} \mathcal{X}\right)^{*}=\mathcal{A} *_{N} \mathcal{X}$;
(4) $\left(\mathcal{X} *_{N} \mathcal{A}\right)^{*}=\mathcal{X} *_{N} \mathcal{A}$
is called the Moore-Penrose inverse of \mathcal{A}, abbreviated by M-P inverse, denoted by \mathcal{A}^{\dagger}. If the equation (i) of the above equations (1) - (4) holds, then \mathcal{X} is called an (i)-inverse of \mathcal{A}, denoted by $\mathcal{A}^{(\mathrm{i})}$.

Definition 1.4. [17] Assume that $\mathcal{A} \in \mathbb{C}^{I(N) \times I(N)}$. Define

$$
\mathcal{A}^{0}=\mathcal{I} \text { and } \mathcal{A}^{p}=\mathcal{A}^{p-1}{{ }^{N}} \mathcal{A}, \quad \text { for } p \geq 2
$$

It is easily seen that

$$
\{0\} \subseteq \cdots \subseteq \mathcal{R}\left(\mathcal{A}^{p+1}\right) \subseteq \mathcal{R}\left(\mathcal{A}^{p}\right) \subseteq \cdots \subseteq \mathcal{R}\left(\mathcal{A}^{2}\right) \subseteq \mathcal{R}(\mathcal{A}) \subseteq \mathcal{R}(\mathcal{I})=\mathbb{C}^{\mathbf{I}_{1} \times \cdots \times \mathbf{I}_{N}}
$$

and

$$
\{0\}=\mathcal{N}(\mathcal{I}) \subseteq \mathcal{N}(\mathcal{A}) \subseteq \mathcal{N}\left(\mathcal{A}^{2}\right) \subseteq \cdots \subseteq \mathcal{N}\left(\mathcal{A}^{p}\right) \subseteq \mathcal{N}\left(\mathcal{A}^{p+1}\right) \subseteq \cdots \subseteq \mathbb{C}^{\mathbf{I}_{1} \times \cdots \times \mathbf{I}_{N}}
$$

The smallest non-negative integer p such that $\mathcal{R}\left(\mathcal{A}^{p+1}\right)=\mathcal{R}\left(\mathcal{P}^{p}\right)\left(\right.$ or $\left.\mathcal{N}\left(\mathcal{A}^{p+1}\right)=\mathcal{N}\left(\mathcal{A}^{p}\right)\right)$, denoted by $\operatorname{Ind}(\mathcal{A})$, is called the index of \mathcal{A}.

Definition 1.5. [17] Let $\mathcal{A} \in \mathbb{C}^{I(N) \times I(N)}$. The tensor $\mathcal{X} \in \mathbb{C}^{I(N) \times I(N)}$ which satisfies
(2) $\mathcal{X}{ }_{{ }^{N}} \mathcal{A}{ }^{*}{ }_{N} \mathcal{X}=\mathcal{X}$;
(5) $\mathcal{A}{ }^{*}{ }_{N} \mathcal{X}=\mathcal{X}{ }^{*}{ }_{N} \mathcal{A}$;
$\left(1^{k}\right) \mathcal{A}^{k+1}{ }^{*}{ }_{N} \mathcal{X}=\mathcal{A}^{k}$
is called the Drazin inverse of \mathcal{A}, denoted by \mathcal{A}_{d}. Especially, if $\operatorname{Ind}(\mathcal{A})=1, \mathcal{X}$ is called the group inverse of \mathcal{A}, denoted by \mathcal{A}_{g}.

According to Hartwig and Spindelböck decomposition [18] of tensors, every tensor $\mathcal{A} \in \mathbb{C}^{I(N) \times I(N)}$ of rank r can be represented by

$$
\mathcal{A}=\mathcal{U} *_{N}\left(\begin{array}{cc}
\sum *_{N} \mathcal{K} & \sum *_{N} \mathcal{L} \tag{2}\\
O & O
\end{array}\right) *_{N} \mathcal{U}^{*},
$$

where $\Sigma \in \mathbb{C}^{R(N) \times R(N)}$ is a diagonal tensor of singular values of \mathcal{A}, and the tensors $\mathcal{K} \in \mathbb{C}^{R(N) \times R(N)}, \mathcal{L} \in$ $\mathbb{C}^{R(N) \times\left(I_{N}-R_{N}\right)}$ satisfy

$$
\begin{equation*}
\mathcal{K}{ }^{*} \mathcal{K}^{*}+\mathcal{L} *_{N} \mathcal{L}^{*}=\mathcal{I} \tag{3}
\end{equation*}
$$

It follows from (2) that the Moore-Penrose inverse of \mathcal{A} is given as follows:

$$
\mathcal{A}^{+}=\mathcal{U} *_{N}\left(\begin{array}{ll}
\mathcal{K}^{*} *_{N} \Sigma^{-1} & O \\
\mathcal{L}^{*} *_{N} \Sigma^{-1} & O
\end{array}\right){{ }^{2}} \mathcal{U}^{*}
$$

If $\operatorname{Ind}(\mathcal{F}) \leq 1$, then the group inverse of \mathcal{A} is

$$
\mathcal{A}_{g}=\mathcal{U} *_{N}\left(\begin{array}{cc}
\mathcal{K}^{-1}{ }_{*_{N}} \Sigma^{-1} & \mathcal{K}^{-1} *_{N} \Sigma^{-1}{ }_{*_{N}} \mathcal{K}^{-1}{ }^{{ }_{N}} \mathcal{L} \\
O & O
\end{array}\right){{ }_{N}} \mathcal{U}^{*}
$$

Lemma 1.6. [15] Let $\mathcal{E} \in \mathbb{C}^{I(1) \times I(N)}$ be a tensor of index k. If $\|\mathcal{E}\|_{2}<1$, then $\mathcal{I}+\mathcal{E}$ is nonsingular and

$$
\left\|(\mathcal{I}+\mathcal{E})^{-1}\right\|_{2} \leq \frac{1}{1-\|\mathcal{E}\|_{2}}
$$

Lemma 1.7. [15] Let $\mathcal{E} \in \mathbb{C}^{I(K) \times I(K)}$. If $\|\mathcal{E}\|_{2}<1$, then

$$
\begin{align*}
& (\mathcal{I}-\mathcal{E})^{-1}=\sum_{n=0}^{\infty} \mathcal{E}^{n} \tag{4}\\
& \left\|(\mathcal{I}-\mathcal{E})^{-1}-\mathcal{I}\right\|_{2} \leq \frac{\|\mathcal{E}\|_{2}}{1-\|\mathcal{E}\|_{2}} \tag{5}
\end{align*}
$$

The recent results on the core inverse of tensor can be found in [19, 20].
Definition 1.8. [19, 20] Let $\mathcal{A} \in \mathbb{C}^{I(N) \times I(N)}$ be a given core tensor. A tensor $\mathcal{X} \in \mathbb{C}^{I(N) \times I(N)}$ satisfying

$$
\mathcal{X} *_{N} \mathcal{A}^{2}=\mathcal{A} ; \quad \mathcal{A} *_{N} \mathcal{X}^{2}=\mathcal{X} ; \quad\left(\mathcal{A} *_{N} \mathcal{X}\right)^{*}=\mathcal{A} *_{N} \mathcal{X}
$$

is called the core inverse of \mathcal{A} and denoted by \mathcal{A}^{\boxplus}
Lemma 1.9. [19, 20] Let $\mathcal{A} \in \mathbb{C}^{I(N) \times I(N)}$ be given. Then \mathcal{A}^{\oplus} satisfies equations (1) and (2) in Definition 1.3.
By the definition of core inverse, we have the following lemma.
Lemma 1.10. $[19,20]$ Let $\mathcal{A} \in \mathbb{C}^{I(N) \times I(N)}$ be of the form (2) and $\operatorname{Ind}(\mathcal{A}) \leq 1$. Then

$$
\mathcal{A}^{\oplus}=\mathcal{U} *_{N}\left(\begin{array}{cc}
\left(\sum *_{N} \mathcal{K}\right)^{-1} & O \\
O & O
\end{array}\right){{ }_{N}} \mathcal{U}^{*} .
$$

Another important generalized inverse is the core-EP inverse.
Definition 1.11. $[8,19]$ Let $\mathcal{A} \in \mathbb{C}^{I(N) \times I(N)}$ and $\operatorname{Ind}(\mathcal{A})=k$. A tensor $\mathcal{X} \in \mathbb{C}^{I(N) \times I(N)}$ satisfying

$$
\mathcal{X} *_{N} \mathcal{A}^{k+1}=\mathcal{A}^{k} ; \quad \mathcal{A} *_{N} \mathcal{X}^{2}=\mathcal{X} ; \quad\left(\mathcal{A} *_{N} \mathcal{X}\right)^{*}=\mathcal{A} *_{N} \mathcal{X}
$$

is called core-EP inverse of \mathcal{A} and it is denoted as \mathcal{A}^{\oplus}.
Lemma 1.12. $[8,19]$ Let $\mathcal{A} \in \mathbb{C}^{I(N) \times I(N)}$ and $\operatorname{Ind}(\mathcal{A})=k$. There is a Schur form of \mathcal{A},

$$
\mathcal{A}=\mathcal{U}{{ }^{N}}\left(\begin{array}{cc}
\mathcal{T}_{1} & \mathcal{T}_{2} \tag{6}\\
O & \mathcal{T}_{3}
\end{array}\right) *_{N} \mathcal{U}^{*}
$$

where $\mathcal{U} \in \mathbb{C}^{I(N) \times I(N)}$ is a unitary tensor, \mathcal{T}_{1} is a upper triangular tensor and \mathcal{T}_{3} is a nilpotent tensor with $\operatorname{Ind}\left(\mathcal{T}_{3}\right)=k$.

From Definition 1.11 and (6), we can obtain that

$$
\mathcal{A}^{\oplus}=\mathcal{U} *_{N}\left(\begin{array}{cc}
\mathcal{T}_{1}^{-1} & \mathcal{O} \tag{7}\\
\mathcal{O} & \mathcal{O}
\end{array}\right) *_{N} \mathcal{U}^{*}
$$

Definition 1.13. $[15,22]$ Let $I_{1}, \ldots, I_{M}, K_{1}, \ldots, K_{N}$ be given integers and $\mathfrak{I}, \mathfrak{R}$ are the integers defined as

$$
\mathfrak{I}=I_{1} I_{2} \cdots I_{M}, \quad \Re=K_{1} K_{2} \cdots K_{N}
$$

The reshaping operation

$$
\mathrm{rsh}: \mathbb{C}^{I(M) \times K(N)} \mapsto \mathbb{C}^{\mathfrak{J} \times \Re}
$$

transforms a tensor $\mathcal{A} \in \mathbb{C}^{I(M) \times K(N)}$ into the matrix $A \in \mathbb{C}^{\Im \times \Re}$ using the Matlab function reshape as follows:

$$
\operatorname{rsh}(\mathcal{A})=A=\operatorname{reshape}(\mathcal{A}, \mathfrak{\Im}, \mathfrak{R}), \quad \mathcal{A} \in \mathbb{C}^{I(M) \times K(N)}, \quad A \in \mathbb{C}^{\Im \times \Re}
$$

The inverse reshaping of $A \in \mathbb{C}^{\mathfrak{\Im} \times \mathfrak{\Re}}$ is the tensor $\mathcal{A} \in \mathbb{C}^{I(M) \times K(N)}$ defined by

$$
\operatorname{rsh}^{-1}(A)=\mathcal{A}=\operatorname{reshape}\left(A, I_{1}, \ldots, I_{M}, K_{1}, \ldots, K_{N}\right) .
$$

Also, an appropriate definition of the tensor rank, arising from the reshaping operation, was proposed in [22].

Definition 1.14. $[15,22]$ Let $\mathcal{A} \in \mathbb{C}^{I(N) \times K(N)}$ and $A=\operatorname{reshape}(\mathcal{A}, \mathfrak{J}, \mathfrak{R})=\operatorname{rsh}(\mathcal{A}) \in \mathbb{C}^{\Im \times \Re}$. Then the tensor rank of \mathcal{A}, denoted by $\operatorname{rshrank}(\mathcal{A})$, is defined by $\operatorname{rshrank}(\mathcal{A})=\operatorname{rank}(A)$.

2. Perturbation for core inverse

In this section, we present the optimal perturbations for the core inverse of tensors via Einstein product under two-sided and one-sided conditions.

Theorem 2.1. Let $\mathcal{A}, \mathcal{E} \in \mathbb{C}^{I(N) \times I(N)}$ be of the form (2) and $\operatorname{Ind}(\mathcal{A}) \leq 1, \mathcal{B}=\mathcal{A}+\mathcal{E}$. If the perturbation \mathcal{E} satisfies $\mathcal{A} *_{N} \mathcal{A}{ }^{\oplus}{ }_{N} \mathcal{E}=\mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\boxplus}=\mathcal{E}$ and $\left\|\mathcal{A}{ }^{\oplus}{ }_{N} \mathcal{E}\right\|_{2}<1$, then

$$
\mathcal{B}^{\oplus}=\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1} *_{N} \mathcal{A}^{\oplus}=\mathcal{A}^{\oplus} *_{N}\left(\mathcal{I}+\mathcal{E} *_{N} \mathcal{A}^{\oplus}\right)^{-1},
$$

and

$$
\mathcal{B} *_{N} \mathcal{B}^{\oplus}=\mathcal{A} *_{N} \mathcal{A}^{\oplus}, \quad \mathcal{B}^{\oplus} *_{N} \mathcal{B}=\mathcal{A}^{\oplus *_{N}} \mathcal{A}+\left(\mathcal{I}+\mathcal{A}^{\oplus *_{N}} \mathcal{E}\right)^{-1}{{ }^{N}} \mathcal{A}^{\oplus} *_{N} \mathcal{E} *_{N}\left(\mathcal{I}-\mathcal{A}{ }^{\oplus}{*_{N}}_{N}\right) .
$$

Furthermore,

$$
\frac{\left\|\mathcal{A}^{\oplus}\right\|_{2}}{1+\left\|\mathcal{A}^{\oplus *_{N}} \mathcal{E}\right\|_{2}} \leq\left\|\mathcal{B}^{\oplus}\right\|_{2} \leq \frac{\left\|\mathcal{A}^{\oplus}\right\|_{2}}{1-\left\|\mathcal{A}^{\oplus *_{N}} \mathcal{E}\right\|_{2}}
$$

and

$$
\frac{\left\|\mathcal{B}^{\oplus} *_{N} \mathcal{B}-\mathcal{A}^{\oplus *_{N}} \mathcal{A}\right\|_{2}}{\left\|\mathcal{A}{ }^{\oplus *_{N}} \mathcal{A}\right\|_{2}} \leq \frac{\left\|\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right\|_{2}}{1-\left\|\mathcal{A}^{\oplus *_{N}} \mathcal{E}\right\|_{2}} .
$$

Proof. We assume that the perturbation \mathcal{E} is partitioned by

$$
\mathcal{E}=\mathcal{U} *_{N}\left(\begin{array}{ll}
\mathcal{E}_{11} & \mathcal{E}_{12} \\
\mathcal{E}_{21} & \mathcal{E}_{22}
\end{array}\right){{ }_{N}} \mathcal{U}^{*}
$$

Using the fact that $\mathcal{A} *_{N} \mathcal{A}{ }^{\oplus} *_{N} \mathcal{E}=\mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}{ }^{\oplus}=\mathcal{E}$, together with

$$
\mathcal{A} *_{N} \mathcal{A}^{\oplus}=\mathcal{U} *_{N}\left(\begin{array}{ll}
\mathcal{I} & O \\
O & O
\end{array}\right) *_{N} \mathcal{U}^{*}
$$

implies $\mathcal{E}_{12}=O, \mathcal{E}_{21}=O, \mathcal{E}_{22}=O$. It is easy to see that the perturbation \mathcal{E} has the form

$$
\mathcal{E}=\mathcal{U}{{ }^{N}}\left(\begin{array}{cc}
\mathcal{E}_{11} & O \\
O & O
\end{array}\right){{ }^{N}} \mathcal{U}^{*} .
$$

Furthermore, we obtain

$$
\mathcal{B}=\mathcal{A}+\mathcal{E}=\mathcal{U}{*_{N}}^{\sum *_{N}}\left(\begin{array}{cc}
\mathcal{K}+\mathcal{E}_{11} & \sum *_{N} \mathcal{L} \\
O & O
\end{array}\right){*_{N}} \mathcal{U}^{*} .
$$

In view of Lemma 1.6 , since $\left\|\mathcal{A}{ }^{\oplus}{ }^{*} \mathcal{E}\right\|_{2}<1$, then $I+\mathcal{A}^{\oplus} *_{N} \mathcal{E}$ is invertible and

$$
\left\|\left(I+\mathcal{A}{ }^{\oplus} *_{N} \mathcal{E}\right)^{-1}\right\|_{2} \leq \frac{1}{1-\left\|\mathcal{A} *_{*_{N}} \mathcal{E}\right\|_{2}} .
$$

Moreover,

$$
\mathcal{I}+\mathcal{A}^{\oplus *_{N}} \mathcal{E}=\mathcal{U}{{ }^{N} N}\left(\begin{array}{cc}
\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{{ }^{*}}_{N} \mathcal{E}_{11} & O \\
O & I
\end{array}\right){*_{N}} \mathcal{U}^{*},
$$

and

$$
\left(I+\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{{ }^{*}}_{N} \mathcal{E}_{11}\right)^{-1}=\left(\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{*_{N}}\left(\sum *_{N} \mathcal{K}+\mathcal{E}_{11}\right)\right)^{-1}=\left(\Sigma *_{N} \mathcal{K}+\mathcal{E}_{11}\right)^{-1}{ }_{*_{N}} \Sigma *_{N} \mathcal{K},
$$

this implies that $\left(\sum{ }^{*} N \mathcal{K}+\mathcal{E}_{11}\right)^{-1}$ exists.
Then the core inverse of \mathcal{B} exists and has the following expression,

$$
\begin{aligned}
\mathcal{B}^{\circledast} & \left.=\mathcal{U}{*_{N}}^{\left(\Sigma *_{N} \mathcal{K}+\mathcal{E}_{11}\right)^{-1}} \begin{array}{cc}
O \\
O & O
\end{array}\right){{ }^{N}} \mathcal{U}^{*} \\
& =\mathcal{U} *_{N}\left(\begin{array}{cc}
\left(I+\left(\Sigma *_{N} \mathcal{K}\right)^{-1} *_{N} \mathcal{E}_{11}\right)^{-1} *_{N}\left(\Sigma *_{N} \mathcal{K}\right)^{-1} & O \\
O & O
\end{array}\right){ }^{*_{N}} \mathcal{U}^{*} \\
& =\left(I+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1} *_{N} \mathcal{A} \mathcal{A}^{\oplus} .
\end{aligned}
$$

By using (4) of Lemma 1.7, direct computation shows that

$$
\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1}{ }_{*_{N}} \mathcal{A}^{\oplus}=\mathcal{A}^{\oplus} *_{N}\left(\mathcal{I}+\mathcal{E} *_{N} \mathcal{A}^{\oplus}\right)^{-1} .
$$

Next, the perturbation bounds of core inverse are estimated. It is easy to verify that

$$
\begin{aligned}
& \mathcal{B}^{{ }^{*}}{ }_{N} \mathcal{B}-\mathcal{A}{ }^{\oplus}{ }_{*_{N}} \mathcal{A} \\
& =\mathcal{U}_{*_{N}}\left(\begin{array}{ll}
O & \left(\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1} *_{N} \mathcal{E}_{11}\right)^{-1} *_{*_{N}} \mathcal{K}^{-1} *_{N} \mathcal{L}-\mathcal{K}^{-1}{{ }^{*}}_{N} \mathcal{L}
\end{array}\right){ }_{*_{N}} \mathcal{U} \\
& =\mathcal{U}{{ }^{*} N}\left(\begin{array}{cc}
O & \left(\left[\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1} *_{N} \mathcal{E}_{11}\right]^{-1}-\mathcal{I}\right) *_{N} \mathcal{K}^{-1} *_{N} \mathcal{L} \\
O & O
\end{array}\right){ }_{*_{N}} \mathcal{U}^{*} \\
& =\mathcal{U}{ }_{*_{N}}\left(\begin{array}{ll}
O & \left(\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{*_{N}} \mathcal{E}_{11}\right)^{-1}{ }^{*_{N}} \\
O & {\left[\mathcal{I}-\left(\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{*_{N}} \mathcal{E}_{11}\right)\right]{ }^{*}{ }_{N} \mathcal{K}^{-1}{ }_{*_{N}} \mathcal{L}}
\end{array}\right){ }_{*_{N}} \mathcal{U}^{*} \\
& =\mathcal{U}{{ }^{*} N}\left(\begin{array}{ll}
O & -\left[\left(\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{*_{N}} \mathcal{E}_{11}\right]^{-1}{ }_{*_{N}}\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{*_{N}} \mathcal{E}_{11}{{ }^{N}} \mathcal{K}^{-1}{ }_{*_{N}} \mathcal{L}\right.
\end{array}\right){ }_{*_{N}} \mathcal{U}^{*} \\
& =\left(\mathcal{I}+\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E}\right)^{-1}{ }_{*_{N}} \mathcal{A}^{\oplus}{{ }^{N}}_{N} \mathcal{E}{*_{N}}_{N}\left(\mathcal{A}{*_{N}} \mathcal{A}^{\oplus}-\mathcal{A}^{\oplus}{{ }^{N}} \mathcal{A}\right) \\
& =\left(I+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1}{ }_{{ }_{N}} \mathcal{A}^{\oplus} *_{N} \mathcal{E} *_{N}\left(I-\mathcal{A}^{\oplus} *_{N} \mathcal{A}\right) .
\end{aligned}
$$

Taking forms of both sides, we obtain

$$
\begin{aligned}
\left\|\mathcal{B}^{\oplus}{ }_{N} \mathcal{B}-\mathcal{A}^{\oplus} *_{N} \mathcal{A}\right\|_{2} & \leq\left\|\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1}\right\|_{2}\left\|\mathcal{A} *_{N} \mathcal{E}\right\|_{2}\left\|\mathcal{I}-\mathcal{A}^{\oplus} *_{N} \mathcal{A}\right\|_{2} \\
& =\left\|\left(\mathcal{I}+\mathcal{A} *_{N} \mathcal{E}\right)^{-1}\right\|_{2}\left\|\mathcal{A} *_{N} \mathcal{E}\right\|_{2}\left\|\mathcal{A} *_{*_{N}} \mathcal{A}\right\|_{2} .
\end{aligned}
$$

That is

$$
\frac{\left\|\mathcal{B}^{\oplus *_{N}} \mathcal{B}-\mathcal{A} \mathcal{A}^{\oplus} *_{N} \mathcal{A}\right\|_{2}}{\left\|\mathcal{A} \oplus *_{N} \mathcal{A}\right\|_{2}} \leq \frac{\left\|\mathcal{A} \mathcal{A}^{\oplus} *_{N} \mathcal{E}\right\|_{2}}{1-\left\|\mathcal{A}{ }^{\oplus *_{N}} \mathcal{E}\right\|_{2}} .
$$

The proof is complete.
Next, we provide a perturbation bound for the core inverse under one-sided condition.
Theorem 2.2. Let $\mathcal{A}, \mathcal{E} \in \mathbb{C}^{I(N) \times I(N)}$ be of the form (2) and $\operatorname{Ind}(\mathcal{A}) \leq 1, \mathcal{B}=\mathcal{A}+\mathcal{E}$. If the perturbation \mathcal{E} satisfies $\mathcal{A}{ }^{*}{ }_{N} \mathcal{A}{ }^{\oplus}{ }^{*}{ }_{N} \mathcal{E}=\mathcal{E}$ and $\left\|\mathcal{A}{ }^{\oplus}{ }^{*}{ }_{N} \mathcal{E}\right\|_{2}<1$, then

$$
\mathcal{B}^{\oplus}=\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1} *_{N} \mathcal{A}^{\oplus}=\mathcal{A}^{\oplus} *_{N}\left(\mathcal{I}+\mathcal{E} *_{N} \mathcal{A}^{\oplus}\right)^{-1},
$$

and

$$
\mathcal{B} *_{N} \mathcal{B}^{\oplus}=\mathcal{A} *_{N} \mathcal{A}^{\oplus}, \quad \mathcal{B}^{\oplus *_{N}} \mathcal{B}=\mathcal{A}^{\oplus *_{N}} \mathcal{A}+\left(\mathcal{I}+\mathcal{A}^{\oplus *_{N}} \mathcal{E}\right)^{-1} *_{N} \mathcal{A}^{\oplus *_{N}} \mathcal{E} *_{N}\left(\mathcal{I}-\mathcal{A}^{\oplus *_{N}} \mathcal{A}\right) .
$$

Furthermore,

$$
\frac{\left\|\mathcal{A}^{\oplus}\right\|_{2}}{1+\left\|\mathcal{A}^{\oplus *_{N}} \mathcal{E}\right\|_{2}} \leq\left\|\mathcal{B}^{\oplus}\right\|_{2} \leq \frac{\left\|\mathcal{A}^{\oplus}\right\|_{2}}{1-\left\|\mathcal{A}^{\oplus *_{N}} \mathcal{E}\right\|_{2}}
$$

and

$$
\frac{\left\|\mathcal{B}^{\oplus} *_{N} \mathcal{B}-\mathcal{A}{ }^{\oplus} *_{N} \mathcal{A}\right\|_{2}}{\left\|\mathcal{A}{ }^{\oplus} *_{N} \mathcal{A}\right\|_{2}} \leq \frac{\left\|\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right\|_{2}}{1-\left\|\mathcal{A}^{\oplus *_{N}} \mathcal{E}\right\|_{2}} .
$$

Proof. We assume that the perturbation \mathcal{E} is partitioned by

$$
\mathcal{E}=\mathcal{U} *_{N}\left(\begin{array}{ll}
\mathcal{E}_{11} & \mathcal{E}_{12} \\
\mathcal{E}_{21} & \mathcal{E}_{22}
\end{array}\right){{ }_{N}} \mathcal{U}^{*}
$$

Using the fact that $\mathcal{A} *_{N} \mathcal{A}{ }^{\oplus{ }^{*}}{ }_{N} \mathcal{E}=\mathcal{E}$, it together with

$$
\mathcal{A} *_{N} \mathcal{A}^{\oplus}=\mathcal{U}{*_{N}}_{N}\left(\begin{array}{ll}
\mathcal{I} & O \\
O & O
\end{array}\right){{ }_{N}} \mathcal{U}^{*}
$$

implies $\mathcal{E}_{21}=O, \mathcal{E}_{22}=\mathcal{O}$. It is easy to see that the perturbation \mathcal{E} has the form

$$
\mathcal{E}=\mathcal{U} *_{N}\left(\begin{array}{cc}
\mathcal{E}_{11} & \mathcal{E}_{12} \\
O & O
\end{array}\right) *_{N} \mathcal{U}^{*}
$$

Furthermore, we obtain

$$
\mathcal{B}=\mathcal{A}+\mathcal{E}=\mathcal{U}{{ }^{*}}_{N}\left(\begin{array}{cc}
\sum *_{N} \mathcal{K}+\mathcal{E}_{11} & \sum *_{N} \mathcal{\mathcal { L }}+\mathcal{E}_{12} \\
\mathcal{O} & \mathcal{O}
\end{array}\right){{ }_{N}}_{N} \mathcal{U}^{*}
$$

Since $\left\|\mathcal{A}^{\boxplus{ }^{\oplus}} \mathcal{E}\right\|_{2}<1$ and $\mathcal{A} *_{N} \mathcal{A}{ }^{\boxplus}$ is an orthogonal projection, we obtain

$$
\left\|\mathcal{A}^{\oplus *_{N}} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}\right\|_{2} \leq\left\|\mathcal{A}^{\oplus *_{N}} \mathcal{E}\right\|_{2}\left\|\mathcal{A} *_{N} \mathcal{A}^{\oplus}\right\|_{2}=\left\|\mathcal{A}{ }^{\oplus} *_{N} \mathcal{E}\right\|_{2}<1 .
$$

Then $\mathcal{I}+\mathcal{A}{ }^{\oplus} *_{N} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A} \oplus$ is invertible, so $\left[\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1} *_{N} \mathcal{E}_{11}\right]^{-1}$ exists. Then the core inverse of \mathcal{B} exists and has the following expression.

$$
\begin{aligned}
& \mathcal{B}^{\circledast}=\mathcal{U}_{{ }^{*} N}\left(\begin{array}{cc}
\left(\Sigma *_{N} \mathcal{K}+\mathcal{E}_{11}\right)^{-1} & O \\
O & O
\end{array}\right){ }^{{ }_{N}} \mathcal{U}^{*} \\
& =\mathcal{U}{ }_{*_{N}}\left(\begin{array}{cc}
{\left[I+\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{*_{N}} \mathcal{E}_{11}\right]^{-1}{ }_{*_{N}}\left(\Sigma *_{N} \mathcal{K}\right)^{-1}} & O \\
O & O
\end{array}\right){ }_{*_{N}} \mathcal{U}^{*} \\
& =\left(I+\mathcal{A}{ }^{\oplus}{*_{N}}^{\mathcal{E}}{{ }^{N}} \mathcal{A} *_{N} \mathcal{A}\right)^{-1} *_{N} \mathcal{A}^{\oplus} \\
& =\mathcal{A}^{\oplus} *_{N}\left(\mathcal{I}+\mathcal{E} *_{N} \mathcal{A}^{\oplus}\right)^{-1} \\
& =\left(I+\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E}\right)^{-1}{ }_{*_{N}} \mathcal{A} \text {, }
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathcal{B}{ }^{*}{ }_{N} \mathcal{B} \\
& =\mathcal{U} *_{N}\left(\begin{array}{ll}
\mathcal{I} & \left(\Sigma *_{N} \mathcal{K}+\mathcal{E}_{11}\right)^{-1} *_{N}\left(\Sigma *_{N} \mathcal{L}+\mathcal{E}_{12}\right) \\
O & O
\end{array}\right){ }_{*_{N}} \mathcal{U}^{*} \\
& =\mathcal{U}{*_{N}}_{N}\left(\begin{array}{ll}
\mathcal{I} & \left(\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{*_{N}}_{N} \mathcal{E}_{11}\right)^{-1}{ }_{*_{N}}\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{*_{N}}\left(\Sigma *_{N} \mathcal{L}+\mathcal{E}_{12}\right)
\end{array}\right){ }_{*_{N}} \mathcal{U}{ }^{*} \\
& =\mathcal{U}{{ }^{*} N}\left(\begin{array}{ll}
\mathcal{I} & {\left[\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1} *_{N} \mathcal{E}_{11}\right]^{-1}{ }_{*_{N}}\left[\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{*_{N}} \mathcal{E}_{12}+\mathcal{K}^{-1}{ }^{*}{ }_{N} \mathcal{L}\right]}
\end{array}\right){ }_{{ }^{*}} \mathcal{U} \mathcal{U}^{*} .
\end{aligned}
$$

Now we can estimate

$$
\begin{aligned}
& \mathcal{B}^{\oplus}{ }^{*}{ }_{N} \mathcal{B}-\mathcal{A}{ }^{\oplus}{ }^{*}{ }_{N} \mathcal{A} \\
& =\mathcal{U} *_{N}\left(\begin{array}{lc}
\mathcal{O} & {\left[\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1} *_{N} \mathcal{E}_{11}\right]^{-1}{ }_{*_{N}}\left[\left(\Sigma *_{N} \mathcal{K}\right)^{-1} *_{N} \mathcal{E}_{12}+\mathcal{K}^{-1}{ }^{*}{ }_{N} \mathcal{L}\right]-\mathcal{K}^{-1} *_{N} \mathcal{L}} \\
\boldsymbol{O} & \boldsymbol{O}
\end{array}\right){ }^{*}{ }_{N} \mathcal{U}^{*} \\
& =\mathcal{U} *_{N}\left(\begin{array}{cc}
\mathcal{O} & \left(\left[\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{*_{N}} \mathcal{E}_{11}\right]^{-1}-\mathcal{I}\right) *_{N} \mathcal{K}^{-1}{ }_{{ }^{*}} \mathcal{L} \\
\boldsymbol{O} & \mathcal{O}
\end{array}\right){ }_{*_{N}} \mathcal{U}^{*} \\
& +\mathcal{U} *_{N}\left(\begin{array}{lc}
\boldsymbol{O} & {\left[\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{*_{N}} \mathcal{E}_{11}\right]^{-1}{ }^{*_{N}}\left(\Sigma *_{N} \mathcal{K}\right)^{-1} *_{N} \mathcal{E}_{12}} \\
\boldsymbol{O} & \boldsymbol{O}
\end{array} *_{N} \mathcal{U}^{*}\right. \\
& =\mathcal{U} *_{N}\left(\begin{array}{ll}
\boldsymbol{O} & -\left[\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{{ }_{N}} \mathcal{E}_{11}\right]^{-1}{ }_{*_{N}}\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{{ }^{*} N} \mathcal{E}_{11}{ }^{*}{ }_{N} \mathcal{K}^{-1}{ }^{*}{ }_{N} \mathcal{L}
\end{array}\right){ }^{\boldsymbol{O}}{ }_{N} \mathcal{U}^{*} \\
& +\mathcal{U} *_{N}\left(\begin{array}{lc}
\boldsymbol{O} & {\left[\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1} *_{N} \mathcal{E}_{11}\right]^{-1}{ }^{*_{N}}\left(\Sigma *_{N} \mathcal{K}\right)^{-1}{ }_{*_{N}} \mathcal{E}_{12}} \\
\boldsymbol{O} & \boldsymbol{O}
\end{array}\right){ }^{*}{ }_{N} \mathcal{U}^{*} \\
& =\mathcal{U} *_{N}\left(\begin{array}{cc}
{\left[\mathcal{I}+\left(\Sigma *_{N} \mathcal{K}\right)^{-1} *_{N} \mathcal{E}_{11}\right]^{-1}{ }^{{ }^{*}}{ }_{N}\left(\Sigma *_{N} \mathcal{K}\right)^{-1} *_{N} \mathcal{E}_{11}} & O \\
O & O
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{O} & -\mathcal{K}^{-1}{ }^{*_{N}} L \\
\boldsymbol{O} & \boldsymbol{O}
\end{array}\right) *_{N} \mathcal{U}^{*} \\
& +\mathcal{U} *_{N}\left(\begin{array}{cc}
\boldsymbol{O} & {\left[\mathcal{I}+\left(\sum *_{N} \mathcal{K}\right)^{-1} *_{N} \mathcal{E}_{11}\right]^{-1}{ }^{*_{N}}\left(\sum *_{N} \mathcal{K}\right)^{-1}{ }^{{ }_{N}} \mathcal{E}_{12}} \\
O & O
\end{array}\right){ }_{N} \mathcal{U}^{*} \\
& =\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\oplus}\right)^{-1} *_{N} \mathcal{A}^{\oplus} *_{N} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\oplus} *_{N}\left(\mathcal{A} *_{N} \mathcal{A}^{\oplus}-\mathcal{A}^{\oplus} *_{N} \mathcal{A}\right) \\
& +\left(\mathcal{I}+\mathcal{A}^{\oplus}{{ }^{N}} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\oplus}\right)^{-1} *_{N} \mathcal{A}^{\oplus} *_{N} \mathcal{E} *_{N}\left(\mathcal{I}-\mathcal{A} *_{N} \mathcal{A}{ }^{\oplus}\right) \\
& =\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\oplus}\right)^{-1}{ }^{*_{N}} \mathcal{A}^{\oplus}{ }^{*_{N}} \mathcal{E} *_{N}\left(\mathcal{I}-\mathcal{A}{ }^{\oplus} *_{N} \mathcal{A}\right) \\
& =\mathcal{A}^{\oplus} *_{N} \mathcal{E} *_{N}\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1}{ }^{*}{ }_{N}\left(\mathcal{I}-\mathcal{A}{ }^{\oplus}{ }^{*}{ }_{N} \mathcal{A}\right) \\
& =\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1}{ }^{*}{ }_{N} \mathcal{A}^{\oplus} *_{N} \mathcal{E} *_{N}\left(\mathcal{I}-\mathcal{A}^{\oplus} *_{N} \mathcal{A}\right) \text {. }
\end{aligned}
$$

Taking norms of both sides, we obtain

$$
\left\|\mathcal{B}^{\boxplus{ }^{\oplus}} \mathcal{B}-\mathcal{A}{ }^{\oplus}{{ }_{N}}_{N} \mathcal{A}\right\|_{2} \leq\left\|\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1}\right\|_{2}\left\|\mathcal{A}{ }^{\oplus} *_{N} \mathcal{E}\right\|_{2}\left\|\mathcal{I}-\mathcal{A}^{\oplus}{{ }_{N}}_{N} \mathcal{A}\right\|_{2},
$$

i.e.,

$$
\frac{\left\|\mathcal{B}^{\oplus *_{N}} \mathcal{B}-\mathcal{A}^{\oplus *_{N}} \mathcal{A}\right\|_{2}}{\left\|\mathcal{A}^{\oplus *_{N}} \mathcal{A}\right\|_{2}} \leq \frac{\left\|\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right\|_{2}}{1-\left\|\mathcal{A}^{\oplus *_{N}} \mathcal{E}\right\|_{2}} .
$$

This completes the proof of the theorem.
In a similar way, we obtain another one-sided perturbation formula.
Theorem 2.3. Let $\mathcal{A}, \mathcal{E} \in \mathbb{C}^{I(N) \times I(N)}$ be of the form (2) and $\operatorname{Ind}(\mathcal{A}) \leq 1, \mathcal{B}=\mathcal{A}+\mathcal{E}$. If the perturbation \mathcal{E} satisfies $\mathcal{A}^{\oplus} *_{N} \mathcal{A} *_{N} \mathcal{E}=\mathcal{E}$ and $\left\|\mathcal{A}{ }^{\oplus} *_{N} \mathcal{E}\right\|_{2}<1$, then

$$
\mathcal{B}^{\oplus}=\left(\mathcal{I}+\mathcal{A}^{\oplus *_{N}} \mathcal{E}\right)^{-1} *_{N} \mathcal{A}^{\oplus}=\mathcal{A}^{\oplus} *_{N}\left(I+\mathcal{E} *_{N} \mathcal{A}^{\oplus}\right)^{-1} .
$$

and

$$
\mathcal{B} *_{N} \mathcal{B}^{\oplus}=\mathcal{A} *_{N} \mathcal{A}^{\oplus}, \mathcal{B}^{\oplus} *_{N} \mathcal{B}=\mathcal{A}^{\oplus} *_{N} \mathcal{A}+\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1} *_{N} \mathcal{A}^{\oplus} *_{N} \mathcal{E} *_{N}\left(\mathcal{I}-\mathcal{A}^{\oplus} *_{N} \mathcal{A}\right) .
$$

3. Perturbation for core-EP inverse

In this section, we investigate the optimal perturbations for the core-EP inverse of tensors via Einstein product under one-sided conditions which extends the matrix case [9].

Theorem 3.1. Let $\mathcal{A}, \mathcal{E} \in \mathbb{C}^{\mathbf{I}(\mathbf{N}) \times \mathbf{I}(\mathbf{N})}$ be of the form(6) and $\operatorname{Ind}(\mathcal{A})=k, \mathcal{B}=\mathcal{A}+\mathcal{E} \in \mathbb{C}^{\mathbf{I}(\mathbf{N}) \times \mathbf{I}(\mathbf{N})}$. If the perturbation \mathcal{E} satisfies $\mathcal{A} *_{N} \mathcal{A}^{\oplus}{ }^{*} N \mathcal{E}=\mathcal{E}$ and $\left\|\mathcal{A}^{\oplus}{ }^{*} N \mathcal{E}\right\|_{2}<1$, then

$$
\begin{equation*}
\mathcal{B}^{\oplus}=\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1} *_{N} \mathcal{A}^{\oplus}=\mathcal{A}^{\oplus} *_{N}\left(\mathcal{I}+\mathcal{E} *_{N} \mathcal{A}^{\oplus}\right)^{-1}, \tag{8}
\end{equation*}
$$

and

$$
\mathcal{B} *_{N} \mathcal{B}^{\oplus}=\mathcal{A} *_{N} \mathcal{A}^{\oplus}, \quad \mathcal{B}^{\oplus} *_{N} \mathcal{B}=\mathcal{A}^{\oplus} *_{N} \mathcal{A}+\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1}{{ }^{*}}_{N} \mathcal{A}^{\oplus} *_{N} \mathcal{E} *_{N}\left(\mathcal{I}-\mathcal{A}^{\oplus} *_{N} \mathcal{A}\right) .
$$

Furthermore,

$$
\frac{\left\|\mathcal{A}^{\oplus}\right\|_{2}}{1+\left\|\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right\|_{2}} \leq\left\|\mathcal{B}^{\oplus}\right\|_{2} \leq \frac{\left\|\mathcal{A}^{\oplus}\right\|_{2}}{1-\left\|\mathcal{A}^{\oplus}{ }^{*_{N}} \mathcal{E}\right\|_{2}}
$$

and

Proof. We assume that the perturbation \mathcal{E} is partitioned by

$$
\mathcal{E}=\mathcal{U} *_{N}\left(\begin{array}{ll}
\mathcal{E}_{11} & \mathcal{E}_{12} \\
\mathcal{E}_{21} & \mathcal{E}_{22}
\end{array}\right){{ }_{N}} \mathcal{U}^{*}
$$

Since \mathcal{E} satisfies $\mathcal{A} *_{N} \mathcal{A}^{\oplus} *_{N} \mathcal{E}=\mathcal{E}$, together with

$$
\mathcal{A} *_{N} \mathcal{A}^{\oplus}=\mathcal{U}{{ }^{N}}\left(\begin{array}{ll}
\mathcal{I} & O \\
O & O
\end{array}\right){{ }_{N}} \mathcal{U}^{*}
$$

leads to $\mathcal{E}_{21}=O, \mathcal{E}_{22}=O$. It is straightforward to see that the perturbation \mathcal{E} has the form

$$
\mathcal{E}=\mathcal{U}{{ }^{N}}\left(\begin{array}{cc}
\mathcal{E}_{11} & \mathcal{E}_{12} \\
O & O
\end{array}\right) *_{N} \mathcal{U}^{*}
$$

and the tensor \mathcal{B} keeps the Schur form

$$
\mathcal{B}=\mathcal{A}+\mathcal{E}=\mathcal{U} *_{N}\left(\begin{array}{cc}
\mathcal{T}_{1}+\mathcal{E}_{11} & \mathcal{T}_{2}+\mathcal{E}_{12} \\
\boldsymbol{O} & \mathcal{T}_{3}
\end{array}\right) *_{N} \mathcal{U}^{*}
$$

Since $\left\|\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E}\right\|_{2}<1$, and $\mathcal{A} *_{N} \mathcal{A}^{\oplus}$ is an orthogonal projection, we obtain

$$
\left\|\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E} *_{N} \mathcal{A}{*_{N}} \mathcal{A}^{\oplus}\right\|_{2} \leq\left\|\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E}\right\|_{F}\left\|\mathcal{A} *_{N} \mathcal{A}^{\oplus}\right\|_{2}=\left\|\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right\|_{2}<1 .
$$

Then $\mathcal{I}+\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\oplus}$ is invertible, so $\left(\mathcal{I}+\mathcal{T}_{1}^{-1}{{ }^{N}} \mathcal{E}_{11}\right)^{-1}$ exists.

Then the core-EP inverse of \mathcal{B} exists, and it has the form as follows

$$
\begin{aligned}
& \mathcal{B}^{\oplus}=\mathcal{U}{{ }^{*}}_{N}\left(\begin{array}{cc}
\left(\mathcal{T}_{1}+\mathcal{E}_{11}\right)^{-1} & O \\
O & O
\end{array}\right){ }_{N} \mathcal{U}^{*} \\
& =\mathcal{U}{ }_{*_{N}}\left(\begin{array}{cc}
\left(\mathcal{I}+\mathcal{T}_{1}^{-1}{ }^{*}{ }_{N} \mathcal{E}_{11}\right)^{-1}{ }_{*_{N}} \mathcal{T}_{1}^{-1} & O \\
O & O
\end{array}\right){ }^{{ }_{N}} \mathcal{U}^{*} \\
& =\left(\mathcal{I}+\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\oplus}\right)^{-1}{ }^{{ }_{N}} \mathcal{A}^{\oplus} \\
& =\mathcal{A}^{\oplus}{ }_{N}\left(\mathcal{I}+\mathcal{E} *_{N} \mathcal{A}^{\oplus}\right)^{-1} \\
& =\left(\mathcal{I}+\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E}\right)^{-1} *_{N} \mathcal{A}^{\oplus} \text {, }
\end{aligned}
$$

and $\mathcal{B}^{\oplus}{ }^{*}{ }_{N} \mathcal{B}$ possesses the following representation

$$
\mathcal{B}^{\oplus}{ }_{{ }^{N}} \mathcal{B}=\mathcal{U}{{ }^{N}}\left(\begin{array}{cc}
\mathcal{I} & \left(\mathcal{T}_{1}+\mathcal{E}_{11}\right)^{-1}{ }_{*_{N}}\left(\mathcal{T}_{2}+\mathcal{E}_{12}\right) \\
\boldsymbol{O} & \boldsymbol{O}
\end{array}\right){ }_{*_{N}} \mathcal{U}^{*}
$$

Further,

$$
\mathcal{A}^{\oplus *_{N}} \mathcal{A}=\mathcal{U}{{ }^{*}}_{N}\left(\begin{array}{cc}
\mathcal{I} & \mathcal{T}_{1}^{-1}{{ }^{*}}_{N} \mathcal{T}_{2} \\
O & O
\end{array}\right){{ }^{N}} \mathcal{U}^{*}
$$

Now we can estimate

$$
\begin{aligned}
& \mathcal{B}^{\oplus}{ }^{*}{ }_{N} \mathcal{B}-\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{A} \\
& =\mathcal{U} *_{N}\left(\begin{array}{cc}
\boldsymbol{O} & {\left[\left(\mathcal{T}_{1}+\mathcal{E}_{11}\right)^{-1}-\mathcal{T}_{1}^{-1}\right]{ }_{N} \mathcal{T}_{2}+\left(\mathcal{T}_{1}+\mathcal{E}_{11}\right)^{-1}{ }_{{ }^{*}} \mathcal{E}_{12}} \\
O & O
\end{array}\right){ }^{N} \mathcal{U}^{*} \\
& =\mathcal{U} *_{N}\left(\begin{array}{lc}
\boldsymbol{O} & -\left(\mathcal{T}_{1}+\mathcal{E}_{11}\right)^{-1}{ }_{*_{N}} \mathcal{E}_{11}{ }^{*_{N}} \mathcal{T}_{1}^{-1}{ }_{{ }^{*}} \mathcal{T}_{2}+\left(\mathcal{I}+\mathcal{T}_{1}^{-1}{ }_{*_{N}} \mathcal{E}_{11}\right)^{-1}{ }^{*}{ }_{N} \mathcal{T}_{1}^{-1}{ }^{*}{ }_{N} \mathcal{E}_{12} \\
\boldsymbol{O} & \boldsymbol{O}
\end{array}\right){ }_{*_{N}} \mathcal{U}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& =-\left(\mathcal{I}+\mathcal{A}^{\oplus}{{ }^{*}}_{N} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\oplus}\right)^{-1} *_{N} \mathcal{A}^{\oplus}{ }^{*_{N}} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\oplus}{ }_{*_{N}}\left(\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{A}-\mathcal{I}\right) \\
& +\left(\mathcal{I}+\mathcal{A}^{\oplus}{{ }^{N}} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\oplus}\right)^{-1} *_{N} \mathcal{A}^{\oplus}{ }^{*_{N}} \mathcal{A} *_{N} \mathcal{A}^{\oplus}{{ }^{N}}_{N} \mathcal{E} *_{N}\left(\mathcal{I}-\mathcal{A} *_{N} \mathcal{A}^{\oplus}\right) \\
& =\left(\mathcal{I}+\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E} *_{N} \mathcal{A}{*_{N}} \mathcal{A}^{\oplus}\right)^{-1}{ }_{*_{N}} \mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E} *_{N}\left(\mathcal{A} *_{N} \mathcal{A}^{\oplus}-\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{A}\right) \\
& +\left(\mathcal{I}+\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\oplus}\right)^{-1}{ }^{*_{N}} \mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E} *_{N}\left(\mathcal{I}-\mathcal{A} *_{N} \mathcal{A}^{\oplus}\right) \\
& =\left(\mathcal{I}+\mathcal{A}^{\oplus}{ }_{N} \mathcal{E}\right)^{-1}{ }^{*}{ }_{N} \mathcal{A}^{\oplus}{ }^{*}{ }_{N} \mathcal{E} *_{N}\left(\mathcal{I}-\mathcal{A}^{\oplus}{ }^{*}{ }_{N} \mathcal{A}\right) \text {. }
\end{aligned}
$$

The proof is complete.
In the same way, we obtain the similar perturbation formula.
Theorem 3.2. Let $\mathcal{A}, \mathcal{E} \in \mathbb{C}^{\mathbf{I}(\mathbf{N}) \times \mathbf{I}(\mathbf{N})}$ be of the form(6) and $\operatorname{Ind}(\mathcal{A})=k, \mathcal{B}=\mathcal{A}+\mathcal{E} \in \mathbb{C}^{\mathbf{I}(\mathbf{N}) \times \mathbf{I}(\mathbf{N})}$. If the perturbation \mathcal{E} satisfies $\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{A} *_{N} \mathcal{E}=\mathcal{E}$ and $\left\|\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right\|_{2}<1$, then

$$
\begin{aligned}
& \mathcal{B}^{\oplus}=\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1}{ }_{*_{N}} \mathcal{A}^{\oplus}=\mathcal{A}^{\oplus} *_{N}\left(\mathcal{I}+\mathcal{E} *_{N} \mathcal{A}^{\oplus}\right)^{-1}, \\
& \mathcal{B} *_{N} \mathcal{B}^{\oplus}=\mathcal{A} *_{N} \mathcal{A}^{\oplus} .
\end{aligned}
$$

Now we consider another perturbation formula with the weaker condition $\left(\mathcal{I}-\mathcal{A}{ }^{*}{ }_{N} \mathcal{A}{ }^{\oplus}\right){ }_{N} \mathcal{E} *_{N} \mathcal{A}{ }_{N} \mathcal{A}^{\oplus}=$ O.

Theorem 3.3. Let $\mathcal{A}, \mathcal{E} \in \mathbb{C}^{\mathbf{I}(\mathbf{N}) \times \mathbf{I}(\mathbf{N})}$ be of the form(6) and $\operatorname{Ind}(\mathcal{A})=k, \mathcal{B}=\mathcal{A}+\mathcal{E} \in \mathbb{C}^{\mathbf{I}(\mathbf{N}) \times \mathbf{I}(\mathbf{N})}$. If the perturbation \mathcal{E} satisfies $\left(\mathcal{I}-\mathcal{A} *_{N} \mathcal{A}{ }^{\oplus}\right){ }_{N} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\oplus}=O$ and $\operatorname{rank}\left(\mathcal{A}^{k}\right)=\operatorname{rank}\left(\mathcal{B}^{k}\right)$ with $\left\|\mathcal{A}^{\oplus}{ }_{*_{N}} \mathcal{E}\right\|_{2}<1$, then

$$
\begin{aligned}
& \mathcal{B}^{\oplus}=\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1}{{ }^{N}} \mathcal{A}^{\oplus}=\mathcal{A}^{\oplus} *_{N}\left(\mathcal{I}+\mathcal{E} *_{N} \mathcal{A}^{\oplus}\right)^{-1}, \\
& \mathcal{B} *_{N} \mathcal{B}^{\oplus}=\mathcal{A} *_{N} \mathcal{A}^{\oplus} .
\end{aligned}
$$

Proof. We assume that the perturbation \mathcal{E} is partitioned by

$$
\mathcal{E}=\mathcal{U} *_{N}\left(\begin{array}{ll}
\mathcal{E}_{11} & \mathcal{E}_{12} \\
\mathcal{E}_{21} & \mathcal{E}_{22}
\end{array}\right){{ }_{N}} \mathcal{U}^{*}
$$

Since \mathcal{E} satisfies $\left(\mathcal{I}-\mathcal{A} *_{N} \mathcal{A}^{\oplus}\right){ }^{*}{ }_{N} \mathcal{E} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\oplus}=\mathcal{O}$, together with

$$
\mathcal{A} *_{N} \mathcal{A}^{\oplus}=\mathcal{U} *_{N}\left(\begin{array}{ll}
\mathcal{I} & O \\
O & O
\end{array}\right) *_{N} \mathcal{U}^{*}
$$

implies $\mathcal{E}_{21}=\mathcal{O}$, and then \mathcal{B} has the following expression

$$
\mathcal{B}=\mathcal{A}+\mathcal{E}=\mathcal{U} *_{N}\left(\begin{array}{cc}
\mathcal{T}_{1}+\mathcal{E}_{11} & \mathcal{T}_{2}+\mathcal{E}_{12} \\
\boldsymbol{O} & \mathcal{T}_{3}+\mathcal{E}_{22}
\end{array}\right){{ }_{N}} \mathcal{U}^{*}
$$

Now, from $\left\|\mathcal{F}^{\oplus}{ }_{N} \mathcal{E}\right\|_{2}<1$ and $\operatorname{rank}\left(\mathcal{A}^{k}\right)=\operatorname{rank}\left(\mathcal{B}^{k}\right)$, we can obtain that $\mathcal{T}_{1}+\mathcal{E}_{11}$ is invertible and $\operatorname{rank}\left[\left(\mathcal{T}_{3}+\right.\right.$ $\left.\left.\mathcal{E}_{22}\right)^{k}\right]=O,\left(\mathcal{T}_{2}+\mathcal{E}_{22}\right)^{k}=O$. Moreover,

$$
\mathcal{B}^{\oplus}=\mathcal{U}_{*_{N}}\left(\begin{array}{cc}
\left(\mathcal{T}_{1}+\mathcal{E}_{11}\right)^{-1} & O \\
O & O
\end{array}\right) *_{N} \mathcal{U}^{*} .
$$

Similar to the proof of Theorem 3.1, we obtain

$$
\mathcal{B}^{\oplus}=\left(\mathcal{I}+\mathcal{A}^{\oplus} *_{N} \mathcal{E}\right)^{-1} *_{N} \mathcal{A}^{\oplus}=\mathcal{A}^{\oplus} *_{N}\left(\mathcal{I}+\mathcal{E} *_{N} \mathcal{A}^{\oplus}\right)^{-1},
$$

and

$$
\mathcal{B} *_{N} \mathcal{B}^{\oplus}=\mathcal{A} *_{N} \mathcal{A}^{\oplus} .
$$

The proof is complete.

References

[1] O.M. Baksalary and G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra, 58 (2010), 681-697.
[2] O.M. Baksalary and G. Trenkler, On a generalized core inverse, Appl. Math. Comput., 236 (2014), 450-457.
[3] O.M. Baksalary, G.P.H. Styan, and G. Trenkler, On a matrix decomposition of Hartwig and Spindelböck, Linear Algebra Appl., 430 (2009), 2798-2812.
[4] H. Kurata, Some theorems on the core inverse of matrices and the core partial ordering, Appl. Math. Comput., 316 (2018), 43-51.
[5] H. Ma, Optimal perturbation bounds for the core inverse, Appl. Math. Comput., 336 (2018), 176-181.
[6] H. Ma and T. Li, Characterizations and representations of the core inverse and its applications, Linear Multilinear Algebra, 2019, DOI: 10.1080/03081087.2019.1588847.
[7] K. Manjunatha Prasad and K.S. Mohana, Core-EP inverse, Linear Multilinear Algebra, 62 (2014), pp. 792-802.
[8] H. Wang, Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289-300.
[9] H. Ma and P. Stanimirović, Characterizations, approximation and perturbations of the core-EP inverse, Appl. Math. Comput., 359 (2019), 404-417
[10] D. S. Cvetković-Ilić and Y. Wei, Algebraic Properties of Generalized Inverses, Springer, Singapore, 2017.
[11] G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: Theory and Computations, Developments in Mathematics 53. Singapore: Springer; Beijing: Science Press, 2018.
[12] Y. Wei, P. Stanimirović and M. Petković, Numerical and Symbolic Computations of Generalized Inverses, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018.
[13] A. Einstein, The foundation of the general theory of relativity, In: A. Kox, M. Klein, and R. Schulmann, editors, The collected papers of Albert Einstein, Vol. 6. Princeton (NJ): Princeton University Press, 2007. p. 146-200
[14] L. Sun, B. Zheng, C. Bu and Y. Wei, Moore-Penrose inverse of tensors via Einstein product, Linear Multilinear Algebra, 64 (2016), 686-698
[15] H. Ma, N. Li, P. Stanimirović and V. N. Katsikis, Perturbation theory for Moore-Penrose inverse of tensor via Einstein product, Computational and Applied Mathematics, 38 (2019), no. 3, Art. 111, 24 pp. https://doi.org/10.1007/s40314-019-0893-6.
[16] J. Ji and Y. Wei, Weighted Moore-Penrose inverses and the fundamental theorem of even-order tensors with Einstein product, Front. Math. China, 12 (2017), 1317-1337.
[17] J. Ji and Y. Wei, The Drazin inverse of an even-order tensor and its application to singular tensor equations, Comput. Math. Appl., 75 (2018), 3402-3413.
[18] R. E. Hartwig and K. Spindelböck, Matrices for which A^{*} and A^{\dagger} commute, Linear Multilinear Algebra, 14 (1983), 241-256.
[19] J. K. Sahoo, R. Behera, P. S. Stanimirović, V. N. Katsikis and H. Ma. Core and core-EP inverses of tensors, arXiv:1905.07874, 2019.
[20] J. K. Sahoo and R. Behera, Reverse-order law for core inverse of tensor, arXiv:1907.09291, 2019.
[21] M. Liang, B. Zheng and R. Zhao, Tensor inversion and its application to the tensor equations with Einstein product, Linear Multilinear Algebra, 67 (2019), 843-870.
[22] P. Stanimirovic, M. Ciric, V. Katsikis, C. Li and H. Ma, Outer and (b, c) inverse of tensors, Linear Multilinear Algebra, https://doi.org/10.1080/03081087.2018.1521783.

[^0]: 2010 Mathematics Subject Classification. Primary 15A09; Secondary 65F20.
 Keywords. core inverse; core-EP inverse; perturbation; tensor; Einstein product
 Received: dd Month yyyy; Accepted: dd Month yyyy
 Communicated by Yimin Wei
 Research supported by the National Natural Science Foundation of China under grant 11971136 and the bilateral project between China and Poland (no.37-18).
 *Corresponding author: Hai-feng Ma
 Email addresses: 1348159157@qq.com (Hong-mei Du), 553291837@qq. com (Bing-xue Wang), haifengma@aliyun. com (Hai-feng Ma)

